Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,027)

Search Parameters:
Keywords = rare disease models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 508 KiB  
Review
RNF213-Related Vasculopathy: An Entity with Diverse Phenotypic Expressions
by Takeshi Yoshimoto, Sho Okune, Shun Tanaka, Hiroshi Yamagami and Yuji Matsumaru
Genes 2025, 16(8), 939; https://doi.org/10.3390/genes16080939 - 7 Aug 2025
Abstract
Moyamoya disease (MMD) is primarily associated with genetic variants in RNF213. RNF213 p.R4810K (c.14429G>A, p.Arg4810Lys) is a founder variant predominantly found in East Asian populations and is strongly associated with MMD, a rare cerebrovascular condition characterized by progressive stenosis of intracranial arteries [...] Read more.
Moyamoya disease (MMD) is primarily associated with genetic variants in RNF213. RNF213 p.R4810K (c.14429G>A, p.Arg4810Lys) is a founder variant predominantly found in East Asian populations and is strongly associated with MMD, a rare cerebrovascular condition characterized by progressive stenosis of intracranial arteries and the development of abnormal collateral networks. Recent evidence suggests that RNF213 variants are also enriched in non-moyamoya intracranial arteriopathies, such as large-artery atherosclerotic stroke and intracranial arterial stenosis/occlusion (ICASO), particularly in east Asian individuals with early-onset or cryptogenic stroke. This expanded phenotypic spectrum, termed RNF213-related vasculopathy (RRV), represents a distinct pathogenic entity that may involve unique pathogenic processes separate from traditional atherosclerosis. In this review, we synthesize current genetic, clinical, radiological, and experimental findings that delineate the unique features of RRV. Patients with RRV typically exhibit a lower burden of traditional vascular risk factors, negative vascular remodeling in the absence of atheromatous plaques, and an increased propensity for disease progression. RNF213 variants may compromise vascular resilience by impairing adaptive responses to hemodynamic stress. Furthermore, emerging cellular and animal model data indicate that RNF213 influences angiogenesis, lipid metabolism, and stress responses, offering mechanistic insights into its role in maintaining vascular integrity. Recognizing RRV as a distinct clinical entity has important implications for diagnosis, risk stratification, and the development of genome-informed therapeutic strategies. Full article
(This article belongs to the Special Issue Genetic Research on Cerebrovascular Disease and Stroke)
Show Figures

Figure 1

12 pages, 888 KiB  
Article
Identification of Candidate Genes for Endometriosis in a Three-Generation Family with Multiple Affected Members Using Whole-Exome Sequencing
by Carla Lintas, Alessia Azzarà, Vincenzo Panasiti and Fiorella Gurrieri
Biomedicines 2025, 13(8), 1922; https://doi.org/10.3390/biomedicines13081922 - 6 Aug 2025
Abstract
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its [...] Read more.
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its etiology. To this end, we performed whole-exome sequencing (WES) in a multi-affected family. Methods: A multigenerational family was studied, comprising three sisters, their mother, grandmother, and a daughter, all diagnosed with endometriosis. WES was conducted on the three sisters and their mother. We used the enGenome-Evai and Varelect software to perform our analysis, which mainly focused on rare, missense, frameshift, and stop variants. Results: Bioinformatic analysis identified 36 co-segregating rare variants. Six missense variants in genes associated with cancer growth were prioritized. The top candidates were c.3319G>A (p.Gly1107Arg) in the LAMB4 gene and c.1414G>A (p.Gly472Arg) in the EGFL6 gene. Variants in NAV3, ADAMTS18, SLIT1, and MLH1 may also contribute to disease onset through a synergistic and additive model. Conclusions: We identified novel candidate genes for endometriosis in a multigenerational affected family, supporting a polygenic model of the disease. Our study is an exploratory family-based WES study, and replication and functional studies are warranted to confirm these preliminary findings. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 330 KiB  
Review
Collaboration Between Endocrinologists and Dentists in the Care of Patients with Acromegaly—A Narrative Review
by Beata Wiśniewska, Kosma Piekarski, Sandra Spychała, Ewelina Golusińska-Kardach, Maria Stelmachowska-Banaś and Marzena Wyganowska
J. Clin. Med. 2025, 14(15), 5511; https://doi.org/10.3390/jcm14155511 - 5 Aug 2025
Abstract
Acromegaly is caused by an excessive secretion of growth hormone and the secondary elevation of IGF-1 levels, leading to progressive changes in multiple body systems, including the craniofacial region and oral cavity. Dental manifestations such as mandibular overgrowth, macroglossia, malocclusion, periodontal disease, and [...] Read more.
Acromegaly is caused by an excessive secretion of growth hormone and the secondary elevation of IGF-1 levels, leading to progressive changes in multiple body systems, including the craniofacial region and oral cavity. Dental manifestations such as mandibular overgrowth, macroglossia, malocclusion, periodontal disease, and prosthetic difficulties represent not only a clinical component of the disease but also a significant therapeutic and diagnostic challenge. The aim of this review is to present the current state of knowledge on the relationship between acromegaly and oral health and to analyze the role of interdisciplinary collaboration between endocrinologists and dentists in patient care. For this narrative review, a literature search was conducted in the PubMed, Scopus, and Web of Science databases covering the period from 2000 to 2025. Sixty-two peer-reviewed publications meeting the methodological and thematic criteria were included in the analysis, including original studies, meta-analyses, systematic reviews, and case reports. The results indicate significant correlations between disease activity and the severity of periodontal and microbiological changes, while effective endocrine treatment only results in the partial regression of morphological changes. Particular attention was given to the role of the dentist in recognizing the early symptoms of the disease, planning prosthetic and surgical treatment, and monitoring therapy-related complications. Interdisciplinary collaboration models, including integrated clinics and co-managed care, were also described as optimal systemic solutions for improving treatment quality. The conclusion drawn from the analysis are as follows: there is a need for the permanent integration of dentistry into the standard of interdisciplinary care for patients with acromegaly, in both diagnostic and therapeutic dimensions. Increasing awareness among dentists and developing integrated collaboration models may reduce the time to diagnosis, improve patients’ quality of life, and enable the more effective management of craniofacial complications in the course of this rare disease. Full article
(This article belongs to the Section Endocrinology & Metabolism)
23 pages, 5695 KiB  
Article
Impact of miR-181a on SIRT1 Expression and Senescence in Hutchinson–Gilford Progeria Syndrome
by Eva-Maria Lederer, Felix Quirin Fenzl, Peter Krüger, Moritz Schroll, Ramona Hartinger and Karima Djabali
Diseases 2025, 13(8), 245; https://doi.org/10.3390/diseases13080245 - 4 Aug 2025
Viewed by 85
Abstract
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic [...] Read more.
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic cellular dysfunction. While autophagy and inflammation are key dysregulated pathways in HGPS, the role of microRNAs (miRNAs) in these processes remains poorly understood. Methods: We performed an extensive literature review to identify miRNAs involved in autophagy and inflammation. Through stem-loop RT-qPCR in aging HGPS and control fibroblast strains, we identified significant miRNAs and focused on the most prominent one, miR-181a-5p, for in-depth analysis. We validated our in vitro findings with miRNA expression studies in skin biopsies from an HGPS mouse model and conducted functional assays in human fibroblasts, including immunofluorescence staining, β-Galactosidase assay, qPCR, and Western blot analysis. Transfection studies were performed using an miR-181a-5p mimic and its inhibitor. Results: We identified miR-181a-5p as a critical regulator of premature senescence in HGPS. miR-181a-5p was significantly upregulated in HGPS fibroblasts and an HGPS mouse model, correlating with Sirtuin 1 (SIRT1) suppression and induction of senescence. Additionally, we demonstrated that TGFβ1 induced miR-181a-5p expression, linking inflammation to miRNA-mediated senescence. Inhibiting miR-181a-5p restored SIRT1 levels, increased proliferation, and alleviated senescence in HGPS fibroblasts, supporting its functional relevance in disease progression. Conclusions: These findings highlight the important role of miR-181a-5p in premature aging and suggest its potential as a therapeutic target for modulating senescence in progeroid syndromes. Full article
(This article belongs to the Section Rare Syndrome)
Show Figures

Figure 1

15 pages, 980 KiB  
Article
Wilson’s Disease in Oman: A National Cohort Study of Clinical Spectrum, Diagnostic Delay, and Long-Term Outcomes
by Said A. Al-Busafi, Juland N. Al Julandani, Zakariya Alismaeili and Juhaina J. Al Raisi
Clin. Pract. 2025, 15(8), 144; https://doi.org/10.3390/clinpract15080144 - 3 Aug 2025
Viewed by 158
Abstract
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of [...] Read more.
Background/Objectives: Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism that results in hepatic, neurological, and psychiatric manifestations. Despite being described globally, data from the Middle East remains limited. This study presents the first comprehensive national cohort analysis of WD in Oman, examining clinical features, diagnostic challenges, treatment patterns, and long-term outcomes. Methods: A retrospective cohort study was conducted on 36 Omani patients diagnosed with WD between 2013 and 2020 at Sultan Qaboos University Hospital using AASLD diagnostic criteria. Clinical presentation, biochemical parameters, treatment regimens, and progression-free survival were analyzed. Results: The median age at diagnosis was 14.5 years, with a slight female predominance (55.6%). Clinical presentation varied: 25% had hepatic symptoms, 22.2% had mixed hepatic-neurological features, and 16.7% presented with neurological symptoms alone. Asymptomatic cases identified via family screening accounted for 33.3%. Diagnostic delays were most pronounced among patients presenting with neurological symptoms. A positive family history was reported in 88.9% of cases, suggesting strong familial clustering despite a low rate of consanguinity (5.6%). Regional distribution was concentrated in Ash Sharqiyah North and Muscat. Chelation therapy with trientine or penicillamine, often combined with zinc, was the mainstay of treatment. Treatment adherence was significantly associated with improved progression-free survival (p = 0.012). Conclusions: WD in Oman is marked by heterogeneous presentations, frequent diagnostic delays, and strong familial clustering. Early detection through cascade screening and sustained treatment adherence are critical for favorable outcomes. These findings support the need for national screening policies and structured long-term care models for WD in the region. Full article
Show Figures

Figure 1

21 pages, 1677 KiB  
Systematic Review
Pharmacoeconomic Profiles of Advanced Therapy Medicinal Products in Rare Diseases: A Systematic Review
by Marianna Serino, Milana Krstin, Sara Mucherino, Enrica Menditto and Valentina Orlando
Healthcare 2025, 13(15), 1894; https://doi.org/10.3390/healthcare13151894 - 2 Aug 2025
Viewed by 294
Abstract
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic [...] Read more.
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic review aims to analyze the cost-effectiveness and cost-utility profiles of the European Medicines Agency-authorized ATMPs for treating rare diseases. Methods: A systematic review was conducted following PRISMA guidelines. Studies were identified by searching PubMed, Embase, Web of Science, and ProQuest scientific databases. Economic evaluations reporting incremental cost-effectiveness/utility ratios (ICERs/ICURs) for ATMPs were included. Costs were standardized to 2023 Euros, and a cost-effectiveness plane was constructed to evaluate the results against willingness-to-pay (WTP) thresholds of EUR 50,000, EUR 100,000, and EUR 150,000 per QALY, as part of a sensitivity analysis. Results: A total of 61 studies met the inclusion criteria. ATMPs for rare blood diseases, such as tisagenlecleucel and axicabtagene ciloleucel, were found to be cost-effective in a majority of studies, with incremental QALYs ranging from 1.5 to 10 per patient over lifetime horizon. Tisagenlecleucel demonstrated a positive cost-effectiveness profile in the treatment of acute lymphoblastic leukemia (58%), while axicabtagene ciloleucel showed a positive profile in the treatment of diffuse large B-cell lymphoma (85%). Onasemnogene abeparvovec for spinal muscular atrophy (SMA) showed uncertain cost-effectiveness results, and voretigene neparvovec for retinal diseases was not cost-effective in 40% of studies, with incremental QALYs around 1.3 and high costs exceeding the WTP threshold set. Conclusions: ATMPs in treating rare diseases show promising economic potential, but cost-effectiveness varies across indications. Policymakers must balance innovation with system sustainability, using refined models and the long-term impact on patient outcomes. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

22 pages, 716 KiB  
Article
Survival in Patients with Colorectal Cancer and Isolated Brain Metastases: Temporal Trends and Prognostic Factors from the National Cancer Database (2010–2020)
by Zouina Sarfraz, Diya Jayram, Ahmad Ozair, Lydia Hodgson, Shreyas Bellur, Arun Maharaj, Vyshak A. Venur, Sarbajit Mukherjee and Manmeet S. Ahluwalia
Cancers 2025, 17(15), 2531; https://doi.org/10.3390/cancers17152531 - 31 Jul 2025
Viewed by 189
Abstract
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective [...] Read more.
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective cohort study used the U.S. National Cancer Database to evaluate survival outcomes, treatment patterns, and prognostic factors in CRC patients diagnosed with BM between 2010 and 2020. Patients with isolated brain-only metastases formed the primary analytic cohort, while those with additional extracranial metastases were included for descriptive comparison. Multivariable Cox proportional hazards and logistic regression models were used to assess factors associated with of survival. Proportional hazards assumptions were tested using Schoenfeld residuals. Accelerated failure time models were also employed. Results: From a cohort of 1,040,877 individuals with CRC, 795 had metastatic disease present along with relevant data, of which 296 had isolated BM. Median overall survival (mOS) in BM-only metastatic disease group was 7.82 months (95% CI: 5.82–9.66). The longest survival was observed among patients treated with stereotactic radiosurgery combined with systemic therapy (SRS+Sys), with a median OS of 23.26 months (95% CI: 17.51–41.95) and a 3-year survival rate of 35.8%. In adjusted Cox models, SRS, systemic therapy, and definitive surgery of the primary site were each independently associated with reduced hazard of death. Rectal cancer patients had longer survival than those with colon primaries (mOS: 10.35 vs. 6.08 months). Age, comorbidity burden, and insurance status were not associated with survival in adjusted analyses. Conclusions: SRS+Sys was associated with longer survival compared to other treatment strategies. However, treatment selection is highly dependent on individual clinical factors such as performance status, comorbidities, and disease extent; therefore, these findings must be interpreted with caution Future prospective studies incorporating molecular and biomarker data are warranted to better guide care in this rare and high-risk group. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

26 pages, 7326 KiB  
Article
Cocoa Polyphenols Alter the Fecal Microbiome Without Mitigating Colitis in Mice Fed Healthy or Western Basal Diets
by Eliza C. Stewart, Mohammed F. Almatani, Marcus Hayden, Giovanni Rompato, Jeremy Case, Samuel Rice, Korry J. Hintze and Abby D. Benninghoff
Nutrients 2025, 17(15), 2482; https://doi.org/10.3390/nu17152482 - 29 Jul 2025
Viewed by 319
Abstract
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This [...] Read more.
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This study investigated the impact of cocoa polyphenol (CP) supplementation on inflammation and microbiome composition in mice with colitis, fed either a healthy or Western diet, before, during, and after the onset of disease. We hypothesized that CPs would attenuate inflammation and promote distinct shifts in the microbiome, especially in the context of a Western diet. Methods: A 2 × 2 factorial design tested the effects of the basal diet (AIN93G vs. total Western diet [TWD]) and CP supplementation (2.6% w/w CocoaVia™ Cardio Health Powder). Inflammation was induced using the AOM/DSS model of colitis. Results: CP supplementation did not reduce the severity of colitis, as measured by disease activity index or histopathology. CPs did not alter gene expression in healthy tissue or suppress the colitis-associated pro-inflammatory transcriptional profile in either of the two diet groups. However, fecal microbiome composition shifted significantly with CPs before colitis induction, with persistent effects on several rare taxa during colitis and recovery. Conclusions: CP supplementation did not mitigate inflammation or mucosal injury at the tissue level, nor did it affect the expression of immune-related genes. While CPs altered microbiome composition, most notably in healthy mice before colitis, these shifts did not correspond to changes in inflammatory signaling. Basal diet remained the primary determinant of inflammation, mucosal damage, and colitis severity in this model. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

11 pages, 242 KiB  
Article
Genetic Insights into Hemiplegic Migraine: Whole Exome Sequencing Highlights Vascular Pathway Involvement via Association Analysis
by Zizi Molaee, Robert A. Smith, Neven Maksemous and Lyn R. Griffiths
Genes 2025, 16(8), 895; https://doi.org/10.3390/genes16080895 - 28 Jul 2025
Viewed by 334
Abstract
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points [...] Read more.
Background: Hemiplegic migraine (HM) is a rare and severe subtype of migraine with a complex genetic basis. Although pathogenic variants in CACNA1A, ATP1A2, and SCN1A explain some familial cases, a significant proportion of patients remain genetically undiagnosed. Increasing evidence points to an overlap between migraine and cerebral small vessel disease (SVD), implicating vascular dysfunction in HM pathophysiology. Objective: This study aimed to identify rare or novel variants in genes associated with SVD in a cohort of patients clinically diagnosed with HM who tested negative for known familial hemiplegic migraine (FHM) pathogenic variants. Methods: We conducted a case-control association analysis of whole exome sequencing (WES) data from 184 unrelated HM patients. A targeted panel of 34 SVD-related genes was assessed. Variants were prioritised based on rarity (MAF ≤ 0.05), location (exonic/splice site), and predicted pathogenicity using in silico tools. Statistical comparisons to gnomAD’s Non-Finnish European population were made using chi-square tests. Results: Significant variants were identified in several SVD-related genes, including LRP1 (p.Thr4077Arg), COL4A1 (p.Pro54Leu), COL4A2 (p.Glu1123Gly), and TGFBR2 (p.Met148Leu and p.Ala51Pro). The LRP1 variant showed the strongest association (p < 0.001). All key variants demonstrated pathogenicity predictions in multiple computational models, implicating them in vascular dysfunction relevant to migraine mechanisms. Conclusions: This study provides new insights into the genetic architecture of hemiplegic migraine, identifying rare and potentially deleterious variants in SVD-related genes. These findings support the hypothesis that vascular and cellular maintenance pathways contribute to migraine susceptibility and may offer new targets for diagnosis and therapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
21 pages, 1699 KiB  
Review
Cardiac Hypertrophy: A Comprehensive Review from Prenatal Life to Young Adulthood
by Martina Avesani, Elettra Pomiato, Sara Moscatelli, Jolanda Sabatino, Nunzia Borrelli, Leonie Luedke, Rosalba De Sarro, Sara Pavesi, Giulia Pelaia, Claudio Mastellone, Isabella Leo and Giovanni Di Salvo
Children 2025, 12(8), 989; https://doi.org/10.3390/children12080989 - 28 Jul 2025
Viewed by 355
Abstract
Myocardial hypertrophy (MH) represents a complex and heterogeneous condition in the pediatric and young adult population. While rare in children, MH encompasses a wide spectrum of physiological and pathological entities, ranging from transient hypertrophy in the infants of diabetic mothers to progressive genetic [...] Read more.
Myocardial hypertrophy (MH) represents a complex and heterogeneous condition in the pediatric and young adult population. While rare in children, MH encompasses a wide spectrum of physiological and pathological entities, ranging from transient hypertrophy in the infants of diabetic mothers to progressive genetic hypertrophic cardiomyopathies (HCM) with significant morbidity and mortality. Differential diagnosis is critical, as many phenocopies—including metabolic, mitochondrial, and syndromic diseases—can mimic HCM. Echocardiography remains the first-line imaging modality, with cardiac magnetic resonance (CMR) and molecular diagnostics increasingly used for detailed characterization. Risk stratification tools, such as the HCM Risk-Kids model, support clinical decision-making but must be integrated with individualized assessment. Advances in prenatal screening and genetic testing have significantly improved outcomes, though long-term management requires multidisciplinary care. Understanding age-specific presentations and the underlying etiologies is essential for accurate diagnosis and targeted treatment. This review provides a comprehensive overview of cardiac hypertrophy from fetal life through young adulthood, with a focus on etiologies, diagnostic approaches, imaging modalities, and therapeutic strategies, and aims to guide clinicians through the evolving landscape of MH, emphasizing early recognition, comprehensive evaluation, and personalized care. Full article
(This article belongs to the Special Issue Evaluation and Management of Children with Congenital Heart Disease)
Show Figures

Figure 1

20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 408
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

23 pages, 1585 KiB  
Article
The Key Role of Thermal Relaxation Time on the Improved Generalized Bioheat Equation: Analytical Versus Simulated Numerical Approach
by Alexandra Maria Isabel Trefilov, Mihai Oane and Liviu Duta
Materials 2025, 18(15), 3524; https://doi.org/10.3390/ma18153524 - 27 Jul 2025
Viewed by 366
Abstract
The Pennes bioheat equation is the most widely used model for describing heat transfer in living tissue during thermal exposure. It is derived from the classical Fourier law of heat conduction and assumes energy exchange between blood vessels and surrounding tissues. The literature [...] Read more.
The Pennes bioheat equation is the most widely used model for describing heat transfer in living tissue during thermal exposure. It is derived from the classical Fourier law of heat conduction and assumes energy exchange between blood vessels and surrounding tissues. The literature presents various numerical methods for solving the bioheat equation, with exact solutions developed for different boundary conditions and geometries. However, analytical models based on this framework are rarely reported. This study aims to develop an analytical three-dimensional model using MATHEMATICA software, with subsequent mathematical validation performed through COMSOL simulations, to characterize heat transfer in biological tissues induced by laser irradiation under various therapeutic conditions. The objective is to refine the conventional bioheat equation by introducing three key improvements: (a) incorporating a non-Fourier framework for the Pennes equation, thereby accounting for the relaxation time in thermal response; (b) integrating Dirac functions and the telegraph equation into the bioheat model to simulate localized point heating of diseased tissue; and (c) deriving a closed-form analytical solution for the Pennes equation in both its classical (Fourier-based) and improved (non-Fourier-based) formulations. This paper investigates the nuanced relationship between the relaxation time parameter in the telegraph equation and the thermal relaxation time employed in the bioheat transfer equation. Considering all these aspects, the optimal thermal relaxation time determined for these simulations was 1.16 s, while the investigated thermal exposure time ranged from 0.01 s to 120 s. This study introduces a generalized version of the model, providing a more realistic representation of heat exchange between biological tissue and blood flow by accounting for non-uniform temperature distribution. It is important to note that a reasonable agreement was observed between the two modeling approaches: analytical (MATHEMATICA) and numerical (COMSOL) simulations. As a result, this research paves the way for advancements in laser-based medical treatments and thermal therapies, ultimately contributing to more optimized therapeutic outcomes. Full article
Show Figures

Figure 1

21 pages, 407 KiB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 488
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
11 pages, 931 KiB  
Article
Clinical Characteristics and Survival Trends of Male Breast Cancer in the United States: A Propensity Score Matched Analysis
by Jayasree Krishnan, Malak Alharbi, Kristopher Attwood and Arya Mariam Roy
J. Pers. Med. 2025, 15(7), 321; https://doi.org/10.3390/jpm15070321 - 17 Jul 2025
Viewed by 303
Abstract
Background: Male breast cancer (MBC) is extremely rare, representing less than 1% of breast cancer (BC). Owing to the rarity, there is a substantial knowledge gap regarding the survival trends of MBC compared with female breast cancer (FBC). Methods: We queried the National [...] Read more.
Background: Male breast cancer (MBC) is extremely rare, representing less than 1% of breast cancer (BC). Owing to the rarity, there is a substantial knowledge gap regarding the survival trends of MBC compared with female breast cancer (FBC). Methods: We queried the National Cancer Database for BC patients diagnosed during 2004–2018 and utilized an inverse propensity weighted cox regression model assessed the association between sex and overall survival (OS) and survival trends over time by sex. Results: We identified 24,055 MBC and 2,532,470 FBC patients. Patients with MBC were older (mean age: 65.6 vs. 61.4 years), and more likely to have stage IV at diagnosis (7% vs. 4.7%), larger tumors (cT4: 6% vs. 3.7%), and node-positive disease (18.5% vs. 15.5%) (p < 0.001) compared with FBC. MBC were more likely to be estrogen (ER) (88.5% vs. 78.5%) and progesterone receptor (PR) (79.6% vs. 68%) positive and less likely to be HER2 receptor positive (7.9% vs. 9.3%) or triple negative (2.8% vs. 7.6%) compared with FBC (all p < 0.001). The OS rates were lower in MBC compared with FBC (5-year: 73% vs. 83%; 10-year: 54% vs. 70%, p < 0.001). In the propensity weighted cox-regression model, males had higher mortality than females with BC (HR 2.8, 95% CI 2.88–2.9, p < 0.001). The 5-year OS rates increased steadily for FBC from 2004–2015; however, the survival rates did not improve for MBC over the last decade. Conclusions: Our study shows that MBC patients continue to have poor OS compared with patients with FBC and no significant improvement in survival of MBC patients over the past decade. These results underscore the need to investigate personalized treatment interventions for patients with MBC to improve outcomes. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

14 pages, 704 KiB  
Review
From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies
by Ana Belen Garcia-Ruano, Elena Sola-Garcia, Maria Martin-Istillarty and Jose Angel Urbano-Moral
J. Cardiovasc. Dev. Dis. 2025, 12(7), 274; https://doi.org/10.3390/jcdd12070274 - 17 Jul 2025
Viewed by 1521
Abstract
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests [...] Read more.
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests that this model does not fully capture the full spectrum and complexity of disease expression. Many patients do not harbor identifiable pathogenic variants, while others carrying well-known disease-causing variants remain unaffected. This highlights the role of incomplete penetrance, likely modulated by additional genetic modifiers. Recent advances in genomics have revealed a broader view of the genetic basis of cardiomyopathies, introducing new players such as common genetic variants identified as risk alleles, as well as intermediate-effect variants. This continuum of genetic risk, reflecting an overall genetic influence, interacts further with environmental and lifestyle factors, likely contributing together to the observed variability in clinical presentation. This model offers a more realistic framework for understanding genetic inheritance and helps provide a clearer picture of disease expression and penetrance. This review explores the evolving genetic architecture of cardiomyopathies, spanning from a monogenic foundation to intermediate-risk variants and complex polygenic contribution. Recognizing this continuum is essential for enhancing diagnostic accuracy, guiding family screening strategies, and enabling personalized patient management. Full article
(This article belongs to the Section Genetics)
Show Figures

Figure 1

Back to TopTop