Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = randomly reinforced soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8709 KiB  
Article
Effect of Flax By-Products on the Mechanical and Cracking Behaviors of Expansive Soil
by Georgy Lazorenko, Anton Kasprzhitskii, Vasilii Mischinenko, Alexandr Fedotov and Ekaterina Kravchenko
Materials 2024, 17(22), 5659; https://doi.org/10.3390/ma17225659 - 20 Nov 2024
Cited by 2 | Viewed by 873
Abstract
Expansive soils, prone to significant volume changes with moisture fluctuations, challenge engineering infrastructure due to their swelling and shrinking. Traditional stabilization methods, including mechanical and chemical treatments, often have high material and environmental costs. This study explores fibrous by-products of flax processing, a [...] Read more.
Expansive soils, prone to significant volume changes with moisture fluctuations, challenge engineering infrastructure due to their swelling and shrinking. Traditional stabilization methods, including mechanical and chemical treatments, often have high material and environmental costs. This study explores fibrous by-products of flax processing, a sustainable alternative, for reinforcing expansive clay soil. Derived from the Linum usitatissimum plant, flax fibers offer favorable mechanical properties and environmental benefits. The research evaluates the impact of flax tow (FT) reinforcement on enhancing soil strength and reducing cracking. The results reveal that incorporating up to 0.6% randomly distributed FTs, consisting of technical flax fibers and shives, significantly improves soil properties. The unconfined compressive strength (UCS) increased by 29%, with 0.6% FT content, reaching 525 kPa, compared to unreinforced soil and further flax tow additions, which led to a decrease in UCS. This reduction is attributed to diminished soil–fiber interactions and increased fiber clustering. Additionally, flax tows effectively reduce soil cracking. The crack length density (CLD) decreased by 6% with 0.4% FTs, and higher concentrations led to increased cracking. The crack index factor (CIF) decreased by 71% with 0.4% flax tows but increased with higher FT concentrations. Flax tows enhance soil strength and reduce cracking while maintaining economic and environmental efficiency, offering a viable solution for stabilizing expansive clays in geotechnical applications. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

24 pages, 5295 KiB  
Article
Lunar Rover Collaborated Path Planning with Artificial Potential Field-Based Heuristic on Deep Reinforcement Learning
by Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao
Aerospace 2024, 11(4), 253; https://doi.org/10.3390/aerospace11040253 - 24 Mar 2024
Cited by 10 | Viewed by 3120
Abstract
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encountering obstacles in a limited time due to [...] Read more.
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encountering obstacles in a limited time due to the short day, especially near the south pole. Traditional planning methods, such as uploading instructions from the ground, can hardly handle many rovers moving on the moon simultaneously with high efficiency. Therefore, we propose a new collaborative path-planning method based on deep reinforcement learning, where the heuristics are demonstrated by both the target and the obstacles in the artificial potential field. Environments have been randomly generated where small and large obstacles and different waypoints are created to collect resources, train the deep reinforcement learning agent to propose actions, and lead the rovers to move without obstacles, finish rovers’ tasks, and reach different targets. The artificial potential field created by obstacles and other rovers in every step affects the action choice of the rover. Information from the artificial potential field would be transformed into rewards in deep reinforcement learning that helps keep distance and safety. Experiments demonstrate that our method can guide rovers moving more safely without turning into nearby large obstacles or collision with other rovers as well as consuming less energy compared with the multi-agent A-Star path-planning algorithm with improved obstacle avoidance method. Full article
(This article belongs to the Special Issue Heuristic Planning for Space Missions)
Show Figures

Figure 1

20 pages, 4040 KiB  
Article
The Influence of Different Curing Environments on the Mechanical Properties and Reinforcement Mechanism of Dredger Fill Stabilized with Cement and Polypropylene Fibers
by Ying Wang, Chaojie Wang, Zhenhua Hu and Rong Sun
Materials 2023, 16(21), 6827; https://doi.org/10.3390/ma16216827 - 24 Oct 2023
Cited by 6 | Viewed by 1458
Abstract
An effective method widely used in geotechnical engineering to solve the shrinkage and cracking issues in cement-stabilized soil (CS) is evenly mixing randomly distributed fibers into it. Dredger fills stabilized with cement and polypropylene fibers (PFCSs) are exposed to rainwater immersion and seawater [...] Read more.
An effective method widely used in geotechnical engineering to solve the shrinkage and cracking issues in cement-stabilized soil (CS) is evenly mixing randomly distributed fibers into it. Dredger fills stabilized with cement and polypropylene fibers (PFCSs) are exposed to rainwater immersion and seawater erosion in coastal areas, influencing their mechanical performance and durability. In this study, direct shear and consolidation compression tests were conducted to investigate the influence of different curing environments on the mechanical properties and compressive behavior of PFCSs. Dominance and regression analyses were used to study the impact of each factor under different curing regimes. The reinforcement mechanism of different curing environments was also explored using scanning electron microscopy (SEM) imaging. The results show that the cohesion and elastic modulus of the specimens cured in seawater were reduced compared with those cured in freshwater and standard curing environments. The best fiber content for the strength and compressive modulus of PFCSs was determined to be 0.9% of the mass of dredged fill. The results of value-added contributions and the relative importance of each factor in different curing environments show that the overall average contribution of cement content in the seawater curing environment is reduced by 6.79% compared to the freshwater environment. Multiple linear regression models were developed, effectively describing the quantitative relationships of different properties under different curing conditions. Further, the shear strength was improved by the coupling effect of soil particles, a C-S-H gel, and polypropylene fibers in the PFCSs. However, the shear strength of the PFCSs was reduced due to the structural damage of the specimens in the freshwater and seawater curing environments. Full article
Show Figures

Figure 1

29 pages, 20985 KiB  
Article
The Effect of Different Fiber Reinforcement on Bearing Capacity under Strip Foundation on the Sand Soil: An Experimental Investigation
by Bilge Aksu Alcan and Semet Çelik
Appl. Sci. 2023, 13(17), 9769; https://doi.org/10.3390/app13179769 - 29 Aug 2023
Cited by 5 | Viewed by 2275
Abstract
The aim of this study is to investigate the bearing capacity-settlement behavior of strip footing settling on sand soil randomly reinforced with glass fiber, basalt fiber, macromesh fiber, and four different hybrid fiber additives in which these fibers are used together. Model tests [...] Read more.
The aim of this study is to investigate the bearing capacity-settlement behavior of strip footing settling on sand soil randomly reinforced with glass fiber, basalt fiber, macromesh fiber, and four different hybrid fiber additives in which these fibers are used together. Model tests were carried out in the laboratory on the strip footing and placed on the unreinforced and reinforced sand with different fibers. In the study, model tests were carried out on seven types of randomly reinforced soils by using glass, basalt, macrame, and mixtures of these fibers as reinforcement. In the model tests, two different fiber contents, 1% and 2%, and two different fiber lengths, 24 mm and 48 mm, were used. Tests were carried out with Dr = 30% and 50% relative density, and reinforcement depths 1B, 2B, and 3B were selected. In addition, the photographs taken during the test were analyzed with the particle image velocimetry (PIV) method and the displacements on the soil were examined. As a result of the reinforced and unreinforced model tests, the highest ultimate bearing capacity was measured as 680 kPa from the tests with Dr = 50% relative density, 48 mm length, 2% contents, and 3B depth macromesh fiber reinforced. In hybrid fibers, the highest ultimate bearing capacity was measured as 495 kPa, with Dr = 50% relative density, 48 mm length, 2% contents, and 2D depth micromesh and basalt fiber-reinforced tests. In the reinforced tests, it was concluded that the most effective fiber on bearing capacity is macromesh fiber. It can be seen that in the PIV analysis, as the fiber additive increased, the settlements made by the foundation decreased under the same pressure. It has also been observed that adding reinforcement to the soil transfers the stresses occurring in the soil to a wider area. Full article
(This article belongs to the Special Issue Mechanical Properties and Engineering Applications of Special Soils)
Show Figures

Figure 1

23 pages, 3024 KiB  
Review
Use of Sawdust Fibers for Soil Reinforcement: A Review
by Carlos J. Medina-Martinez, Luis Carlos Sandoval Herazo, Sergio A. Zamora-Castro, Rodrigo Vivar-Ocampo and David Reyes-Gonzalez
Fibers 2023, 11(7), 58; https://doi.org/10.3390/fib11070058 - 3 Jul 2023
Cited by 11 | Viewed by 8918
Abstract
A frequent problem in geotechnics is soils with inadequate physical–mechanical properties to withstand construction work, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent. The most common current alternatives are binders such [...] Read more.
A frequent problem in geotechnics is soils with inadequate physical–mechanical properties to withstand construction work, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent. The most common current alternatives are binders such as cement and lime. The climate change observed in recent decades and the uncontrolled emission of greenhouse gases have motivated geotechnical and geoenvironmental researchers to seek mechanisms for soil reinforcement from a more sustainable and environmentally friendly approach by proposing the use of recycled and waste materials. An alternative is natural fibers, which can be obtained as waste from many agro-industrial processes, due to their high availability and low cost. Sawdust, as a by-product of wood processing, has a rough texture that can generate high friction between the fiber and the matrix of the soils, leading to a significant increase in its shearing strength and bearing capacity. This concept of improving the properties of soils using natural fibers distributed randomly is inspired by the natural phenomenon of grass and/or plants that, when growing on a slope, can effectively stabilize the said slope. Full article
(This article belongs to the Special Issue Natural Fiber Competitiveness and Sustainability)
Show Figures

Graphical abstract

18 pages, 10131 KiB  
Article
A Novel Modeling Approach for Soil and Rock Mixture and Applications in Tunnel Engineering
by Xiujie Zhang, Hongzhong Li, Kaiyan Xu, Wenwei Yang, Rongtao Yan, Zhanwu Ma, Yonghong Wang, Zhihua Su and Haizhi Wu
Sustainability 2023, 15(4), 3077; https://doi.org/10.3390/su15043077 - 8 Feb 2023
Cited by 1 | Viewed by 1808
Abstract
Soil and rock mixtures are complicated geomaterials that are characterized by both continuity and discontinuity. A homogeneous model cannot take into consideration the interactions between rocks and soil, which could lead to misjudgments of the mechanical properties. To simulate the mechanical responses of [...] Read more.
Soil and rock mixtures are complicated geomaterials that are characterized by both continuity and discontinuity. A homogeneous model cannot take into consideration the interactions between rocks and soil, which could lead to misjudgments of the mechanical properties. To simulate the mechanical responses of soil and rock mixtures accurately, a stochastic generation approach to soil and rock mixtures was developed systematically in this study. The proposed approach includes the following three major steps: (1) a combined image filtering technique and multi-threshold binarization method were developed to extract rock block files from raw images. (2) The shapes and sizes of block profiles were controlled and reconstructed randomly using Fourier analysis. (3) A fast-overlapping detection strategy was proposed to allocate the rock blocks efficiently. Finally, models of soil and rock mixtures with a specific rock proportion can be generated. To validate the proposed approach, numerical models were established in tunnel engineering using the conventional homogeneous method and the proposed numerical method, respectively. In addition, a series of field tests on tunnel deformation and stress were conducted. The results showed that the proposed heterogeneous numerical model can model the mechanical response of the soil and rock mixtures well and is much more effective and accurate than the conventional homogeneous approach. Using the proposed numerical approach, the failure mechanism of a tunnel in a soil and rock mixture is discussed, and a reinforcement strategy for the surrounding rocks is proposed. The field tests results indicate that tunnel lining stress can be well controlled within the strength criterion by the proposed reinforcement strategy. Full article
(This article belongs to the Special Issue The Development of Underground Projects in Urban Areas)
Show Figures

Figure 1

15 pages, 5216 KiB  
Article
Study on Stress–Strain Relationship of Coir Fiber-Reinforced Red Clay Based on Duncan–Chang Model
by Xueliang Jiang, Jiahui Guo, Hui Yang, Shufeng Bao, Changping Wen and Jiayu Chen
Appl. Sci. 2023, 13(1), 556; https://doi.org/10.3390/app13010556 - 30 Dec 2022
Cited by 8 | Viewed by 2749
Abstract
Compared with other natural fibers, coir fiber has good strength characteristics and long-term anti-biodegradation ability. At present, most studies on randomly distributed coir fiber-reinforced soil have focused on cohesionless soil or granular soil. In this paper, the influence of randomly distributed coir fiber [...] Read more.
Compared with other natural fibers, coir fiber has good strength characteristics and long-term anti-biodegradation ability. At present, most studies on randomly distributed coir fiber-reinforced soil have focused on cohesionless soil or granular soil. In this paper, the influence of randomly distributed coir fiber on the deviatoric stress and shear strength index of red clay with different fiber content was assessed by a consolidated undrained (CU) triaxial compression test. Since the hyperbolic variational character of the stress–strain relation of the samples conformed to the hyperbolic hypothesis of the Duncan–Chang model of nonlinear elastic model, the Duncan–Chang model was used to fit it, and the influences of fiber content and confining pressure on the parameters of the Duncan–Chang model were studied. The fiber content was determined by testing to be 0%, 0.2%, 0.25%, 0.3%, 0.35% and 0.4% of the dry soil mass. It has been found that coir fiber distributed in a random radial manner can significantly increase the deviatoric stress of red clay, and thus can be effectively used in the case of soil and fiber mixing. The cohesion of the red clay first increases and then decreases with the increase in fiber content, with an optimum content of 0.3%. The internal friction angle changes little with increasing fiber content. Full article
Show Figures

Figure 1

13 pages, 2513 KiB  
Article
Improving Very High Plastic Clays with the Combined Effect of Sand, Lime, and Polypropylene Fibers
by Abdelaziz Meddah, Abd Elmalik Goufi and Lysandros Pantelidis
Appl. Sci. 2022, 12(19), 9924; https://doi.org/10.3390/app12199924 - 2 Oct 2022
Cited by 10 | Viewed by 3758
Abstract
Improving the mechanical properties of low-strength soils (e.g., high plasticity clays) is one of the main branches of geotechnical engineering. The adoption of stabilization techniques for ensuring that structures will be founded on an adequately strong soil base is a common practice. Stabilization [...] Read more.
Improving the mechanical properties of low-strength soils (e.g., high plasticity clays) is one of the main branches of geotechnical engineering. The adoption of stabilization techniques for ensuring that structures will be founded on an adequately strong soil base is a common practice. Stabilization techniques for clay soils may include inert materials (cohesionless soils), chemical substances (cement, lime, or industrial additives), or the use of randomly distributed fibers. While all of these additives are added to low-strength soils by mixing, the question remains whether an optimal combination of stabilization techniques can be achieved for maximizing soil strength. Besides, each one of these additives contributes to an increase in soil strength in a different manner (soil replacement, chemical bonding of soil particles, and soil reinforcement respectively), while, according to the literature, each technique has its limitations. The latter refers to a limited effect on strength improvement and a maximum possible percentage, beyond which an additive has an adverse effect on strength; it also refers to other factors, such as brittleness failure, material availability, overall cost, and environment-related issues. Hence, in the present study, the efficiency of improving the basic geotechnical properties of a very high plasticity clay (liquid limit ωl = 86%) with a coupled effect between dune sand, lime, and polypropylene (PP) fibers has been investigated. The samples prepared by combining the three aforementioned soil improvement techniques were compared in terms of plasticity, compaction characteristics, unconfined compressive strength (UCS), and California Bearing Ratio (CBR) index. The experimental results show that the combination of these additives may lead to a considerable improvement in the strength and ductility of soils, even with a small amount of lime additive. Also, it was observed that 20% of sand, 3.4% of lime and 0.9% of fibers (by wt%) offers the best performance in terms of strength improvement for the clay tested (i.e., 12.75 times improvement compared to the untreated clay). Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 5391 KiB  
Article
The Triaxial Test of Polypropylene Fiber Reinforced Fly Ash Soil
by Lihua Li, Xin Zhang, Henglin Xiao, Jiang Zhang, Na Chen and Wentao Li
Materials 2022, 15(11), 3807; https://doi.org/10.3390/ma15113807 - 26 May 2022
Cited by 10 | Viewed by 2913
Abstract
Recently, soil reinforcement using arranged or randomly distributed fibers has attracted increasing attention in geotechnical engineering. In this study, polypropylene (PP) fibers with three lengths (6, 12, and 24 mm) and three mass percentages (0.5%, 1%, and 1.5%) were used to reinforce a [...] Read more.
Recently, soil reinforcement using arranged or randomly distributed fibers has attracted increasing attention in geotechnical engineering. In this study, polypropylene (PP) fibers with three lengths (6, 12, and 24 mm) and three mass percentages (0.5%, 1%, and 1.5%) were used to reinforce a coal fly ash soil (FAS) mixture. Unconsolidated, undrained triaxial tests were carried out in order to study the mechanical properties of the polypropylene fiber-reinforced FAS mixture and evaluate the impact of fiber on the shear strength of the FAS mixture. It is found that the fiber length of 12 mm could significantly improve the shear strength of the polypropylene fiber reinforced FAS mixture, and little effect is shown on the shear strength while using a fiber length of 24 mm. Additional fibers enhance the energy absorption capacity of the FAS specimens and therefore the highest energy absorption capacity occurs when the fiber content is 1% and the fiber length is 12 mm. The peak deviator stress enhances impressively with the addition of polypropylene fiber. The impact of fiber on the peak deviator stress is the largest when fiber content is within 1.0%. The fiber length has little effect on the peak deviator stress when it exceeds 12 mm. Full article
Show Figures

Figure 1

20 pages, 34482 KiB  
Article
Interphase Effect on the Macro Nonlinear Mechanical Behavior of Cement-Based Solidified Sand Mixture
by Fengxue Wang, Yan-Gao Hu, Li Liu, Yongfeng Deng and Shuitao Gu
Materials 2022, 15(5), 1972; https://doi.org/10.3390/ma15051972 - 7 Mar 2022
Cited by 2 | Viewed by 2254
Abstract
This paper investigates the interphase effect on the macro nonlinear mechanical behavior of cement-based solidified sand mixture (CBSSM) using a finite element numerical simulation method. CBSSM is a multiphase composite whose main components are soil, cement, sand and water, often found in soft [...] Read more.
This paper investigates the interphase effect on the macro nonlinear mechanical behavior of cement-based solidified sand mixture (CBSSM) using a finite element numerical simulation method. CBSSM is a multiphase composite whose main components are soil, cement, sand and water, often found in soft soil foundation reinforcement. The emergence of this composite material can reduce the cost of soft soil foundation reinforcement and weaken silt pollution. Simplifying the CBSSM into a three-phase structure can efficiently excavate the interphase effects, that is, the sand phase with higher strength, the cement-based solidified soil phase (CBSS) with moderate strength, and the interphase with weaker strength. The interphase between aggregate and CBSS in the mixture exhibits the weak properties due to high porosity but gets little attention. In order to clarify the mechanical relationship between interphase and CBSSM, a bilinear Cohesive Model (CM) was selected for the interphase, which can phenomenologically model damage behaviors such as damage nucleation, initiation and propagation. Firstly, carry out the unconfined compression experiments on the CBSSM with different artificial gradations and then gain the nonlinear stress–strain curves. Secondly, take the Monte Carlo method to establish the numerical models of CBSSM with different gradations, which can generate geometric models containing randomly distributed and non-overlapping sand aggregates in Python by code. Then, import the CBSSM geometric models into the finite element platform Abaqus and implement the same boundary conditions as the test. Fit experimental nonlinear stress–strain curves and verify the reliability of numerical models. Finally, analyze the interphase damage effect on the macroscopic mechanical properties of CBSSM by the most reliable numerical model. The results show that there is an obviously interphase effect on CBSSM mechanical behavior, and the interphase with greater strength and stiffness ensures the macro load capacity and service life of the CBSSM; a growth in the interphase number can also adversely affect the durability of CBSSM, which provides a favorable reference for the engineering practice. Full article
Show Figures

Figure 1

15 pages, 3793 KiB  
Article
Seismic Fragility Analysis of Low-Rise RC Buildings with Brick Infills in High Seismic Region with Alluvial Deposits
by Rabindra Adhikari, Rajesh Rupakhety, Prajwal Giri, Rewati Baruwal, Ramesh Subedi, Rajan Gautam and Dipendra Gautam
Buildings 2022, 12(1), 72; https://doi.org/10.3390/buildings12010072 - 12 Jan 2022
Cited by 16 | Viewed by 5738
Abstract
Most of the reinforced concrete buildings in Nepal are low-rise construction, as this type of construction is the most dominant structural form adopted to construct residential buildings in urban and semi-urban neighborhoods throughout the country. The low-rise residential constructions generally follow the guidelines [...] Read more.
Most of the reinforced concrete buildings in Nepal are low-rise construction, as this type of construction is the most dominant structural form adopted to construct residential buildings in urban and semi-urban neighborhoods throughout the country. The low-rise residential constructions generally follow the guidelines recommended by the Nepal Building Code, especially the mandatory rules of thumb. Although low-rise buildings have brick infills and are randomly constructed, infill walls and soil–structure interaction effects are generally neglected in the design and assessment of such structures. To this end, bare frame models that are used to represent such structures are questionable, especially when seismic vulnerability analysis is concerned. To fulfil this gap, we performed seismic vulnerability analysis of low-rise residential RC buildings considering infill walls and soil–structure interaction effects. Considering four analysis cases, we outline comparative seismic vulnerability for various analysis cases in terms of fragility functions. The sum of observations highlights that the effects of infills, and soil–structure interaction are damage state sensitive for low-rise RC buildings. Meanwhile, the design considerations will be significantly affected since some performance parameters are more sensitive than the overall fragility. We also observed that the analytical fragility models fundamentally overestimate the actual seismic fragility in the case of low-rise RC buildings. Full article
(This article belongs to the Special Issue Seismic Performance of New-Designed and Existing RC Buildings)
Show Figures

Figure 1

19 pages, 2402 KiB  
Study Protocol
Protocol for a Trial Assessing the Impacts of School-Based WaSH Interventions on Children’s Health Literacy, Handwashing, and Nutrition Status in Low- and Middle-Income Countries
by Stephanie O. Sangalang, Shelley Anne J. Medina, Zheina J. Ottong, Allen Lemuel G. Lemence, Donrey Totanes, John Cedrick Valencia, Patricia Andrea A. Singson, Mikaela Olaguera, Nelissa O. Prado, Roezel Mari Z. Ocaña, Rovin James F. Canja, Alfem John T. Benolirao, Shyrill Mae F. Mariano, Jergil Gyle Gavieres, Clarisse P. Aquino, Edison C. Latag, Maria Vianca Jasmin C. Anglo, Christian Borgemeister and Thomas Kistemann
Int. J. Environ. Res. Public Health 2021, 18(1), 226; https://doi.org/10.3390/ijerph18010226 - 30 Dec 2020
Cited by 9 | Viewed by 8743
Abstract
Diarrhea, soil-transmitted helminth infection and malnutrition are leading causes of child mortality in low- and middle-income countries (LMICs). To reduce the prevalence of these diseases, effective interventions for adequate water, sanitation, and hygiene (WaSH) should be implemented. This paper describes the design of [...] Read more.
Diarrhea, soil-transmitted helminth infection and malnutrition are leading causes of child mortality in low- and middle-income countries (LMICs). To reduce the prevalence of these diseases, effective interventions for adequate water, sanitation, and hygiene (WaSH) should be implemented. This paper describes the design of a cluster-randomized controlled trial that will compare the efficacy of four school-based WaSH interventions for improving children’s health literacy, handwashing, and nutrition. Interventions consisted of (1) WaSH policy reinforcement; (2) low-, medium-, or high-volume health education; (3) hygiene supplies; and (4) WaSH facilities (e.g., toilets, urinals, handwashing basins) improvements. We randomly allocated school clusters from the intervention arm to one of four groups to compare with schools from the control arm. Primary outcomes were: children’s health literacy, physical growth, nutrition status, and handwashing prevalence. Secondary outcomes were: children’s self-reported health status and history of extreme hunger, satisfaction with WaSH facilities, and school restrooms’ WaSH adequacy. We will measure differences in pre- and post-intervention outcomes and compare these differences between control and intervention arms. This research protocol can be a blueprint for future school-based WaSH intervention studies to be conducted in LMICs. Study protocols were approved by the ethics committees of the University of Bonn, Germany, and the University of the Philippines Manila. This trial was retroactively registered, ID number: DRKS00021623. Full article
Show Figures

Figure 1

10 pages, 3137 KiB  
Article
Experimental Study on the Influence of Polypropylene Fiber on the Swelling Pressure Expansion Attributes of Silica Fume Stabilized Clayey Soil
by Nitin Tiwari and Neelima Satyam
Geosciences 2019, 9(9), 377; https://doi.org/10.3390/geosciences9090377 - 29 Aug 2019
Cited by 49 | Viewed by 7011
Abstract
Expansive soil shows dual swell–shrink which is not suitable for construction. Several mitigating techniques exist to counteract the problem promulgated by expansive clayey soils. This paper explored the potential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure [...] Read more.
Expansive soil shows dual swell–shrink which is not suitable for construction. Several mitigating techniques exist to counteract the problem promulgated by expansive clayey soils. This paper explored the potential mecho-chemical reinforcement of expansive clayey soil to mitigate the effect of upward swelling pressure and heave. The polypropylene fiber is randomly distributed in the soil for mechanical stabilization, and the industrial residual silica fume is used as a chemical stabilizer. The experimental analysis was made in three phases which involved tests on mechanically-reinforced expansive soil, using randomly distributed polypropylene fibers with different percentages (0.25%, 0.50%, and 1.00%), and which were 12 mm length. The second phase of experiments was carried out on chemical stabilized expansive soil with different percentages (2%, 4%, and 8%) of silica, and the next phase of the experiment focused on the combination of mecho-chemical stabilization of the expansive soil with different combinations of silica (i.e., 2%, 4%, and 8%) and polypropylene fibers (i.e., 0.25%, 0.50%, and 1.00%). Maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plastic index (PI), grain size, and constant volume swelling pressure tests were performed on unreinforced and reinforced expansive soil, to investigate the effects of polypropylene fiber and silica fume on the engineering properties of expansive clayey soil. The experimental results illustrate that the inclusion of polypropylene fiber has a significant effect on the upward swelling pressure and expansion property of expansive soil. The reduction in the upward swelling pressure and expansion is a function of fiber content. These results also indicated that the use of silica fume caused a reduction in upward swelling potential, and its effect was considerably more than the influence of fiber. Full article
(This article belongs to the Special Issue Behavior of Expansive Soils and its Shrinkage Cracking)
Show Figures

Figure 1

23 pages, 5000 KiB  
Review
A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions
by Sivakumar Gowthaman, Kazunori Nakashima and Satoru Kawasaki
Materials 2018, 11(4), 553; https://doi.org/10.3390/ma11040553 - 4 Apr 2018
Cited by 171 | Viewed by 17611
Abstract
Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. [...] Read more.
Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line. Full article
Show Figures

Graphical abstract

Back to TopTop