Use of Sawdust Fibers for Soil Reinforcement: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Article Selection Criteria
2.2. Search Result
2.3. Information Analysis
3. Soil Stabilization with Fibers
3.1. Mercerization of Natural Fibers
3.2. Sawdust
3.2.1. Soil Stabilization with Sawdust
3.2.2. Sawdust-Based Biocomposites
4. Results
4.1. Sawdust Shavings
4.2. Sawdust Powder
4.3. Sawdust Ash
5. Discussion
5.1. Types of Waste from Sawdust Fibers
5.2. Year and Country of Publication
5.3. Types of Soils Treated
5.4. Fiber Orientation
5.5. Fiber Length and Size
5.6. Added Percentage of Fibers
5.7. Component Mixing Method
5.8. Fiber Surface Treatment
5.9. Additives to the Soil/Fiber Mixture
5.10. Results of Improvement of Soil Properties
6. Conclusions
Other Research Priorities
- –
- Encourage the use of materials of natural origin more respectful of the environment, which contribute to the reduction of greenhouse gas emissions produced, in many cases, by the techniques currently used in soil reinforcement.
- –
- Analysis of the different sources of supply and procurement of sawdust fibers as one of the residues of the wood industry. Based on the underestimation of the actual volume of sawdust produced by an appreciable number of sawmills not officially registered.
- –
- Study of the biodegradability of sawdust as a drawback for its use and analysis of the efficiency of the different chemical treatment alternatives before its addition to soils.
- –
- The validation and standardization of the experimental results obtained for the mechanical properties of sawdust fibers after alkaline treatment are necessary to optimize the pretreatment processes and the methodology of application of the fiber in the soil reinforcement.
- –
- More detailed analysis of the effects of curing time on the parameters of mechanical strength of soils reinforced with sawdust fibers previously subjected to alkaline treatments.
- –
- More thorough analysis of factors that may affect the strength of sawdust-reinforced soils, for example, fiber length, the ratio of fiber percentage to soil mass, and coefficient of friction between fiber and soil,
- –
- More detailed study of variables such as age, type of wood species, soil moisture, the climate in the chemical composition (cellulose, lignin, and hemicellulose content), and mechanical properties of sawdust fibers, and their impact on the engineering improvement of soils.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yarbaşı, N.; Kalkan, E. Stabilization of Clayey Soils by Using the Organic Waste-Material. Int. J. Sci. Eng. Appl. 2020, 9, 129–132. [Google Scholar] [CrossRef]
- Brahmachary, T.K. Rokonuzzaman Investigation of random inclusion of bamboo fiber on ordinary soil and its effect CBR value. Int. J. Geo-Eng. 2018, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Duque Escobar, G.; Escobar Potes, C.E. Geomecánica. In Ingeniería Civil; Universidad Nacional de Colombia: Bogotá, Colombia, 2016. [Google Scholar]
- Khan, A.N.; Ansari, Y.; Mahvi, S.; Junaid, M.; Iqbal, K. Different Soil Stabilization Techniques. Int. J. Adv. Sci. Technol. 2020, 29, 7778–7791. Available online: https://www.researchgate.net/publication/350630921 (accessed on 26 August 2022).
- Ale, T.O. Effect of drying temperature on the engineering properties of stabilised and natural soils for road construction. Eng. Herit. J. 2020, 6, 19–26. [Google Scholar] [CrossRef]
- Das, B.M.; Sivakugan, N. Fundamentals of Geotechnical Engineering; Cengage Learning: Boston, MA, USA, 2020. [Google Scholar]
- Garg, R.; Biswas, T.; Alam, D.; Kumar, A.; Siddharth, A.; Singh, D.R. Stabilization of expansive soil by using industrial waste. J. Phys. Conf. Ser. 2021, 2070, 012238. [Google Scholar] [CrossRef]
- Amakye, S.Y.; Abbey, S.J. Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: A review. Clean. Eng. Technol. 2021, 4, 100159. [Google Scholar] [CrossRef]
- Dayioglu, M.; Cetin, B.; Nam, S. Stabilization of expansive Belle Fourche shale clay with different chemical additives. Appl. Clay Sci. 2017, 146, 56–69. [Google Scholar] [CrossRef]
- Al-Kalili, A.; Ali, A.S.; Al-Taie, A.J. A Review on Expansive Soils Stabilized with Different Pozzolanic Materials. J. Eng. 2022, 28, 1–18. [Google Scholar] [CrossRef]
- Wani, I.Y.; Khurshid, M.T.; Sharma, N. Analysis of Geotechnical Properties of an Expansive Soil Mixed with Polypropylene, Saw Dust Ash and Egg Shell Powder. Int. J. Eng. Appl. Sci. Technol. 2019, 4, 376–381. [Google Scholar] [CrossRef]
- Niyomukiza, J.B.; Wardani, S.P.R.; Setiadji, B.H. The influence of Keruing Sawdust on the geotechnical properties of expansive Soils. IOP Conf. Ser. Earth Environ. Sci. 2020, 448, 012040. [Google Scholar] [CrossRef]
- Asuri, S.; Keshavamurthy, P. Expansive Soil Characterisation: An Appraisal. INAE Lett. 2016, 1, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Mahima, D.; Sini, T. Effect of Sawdust Ash and Coir Fibre on the Strength Characteristics of Kaolinite Clay. Int. J. Eng. Res. Technol. 2019, 8, 1269–1272. [Google Scholar]
- Afrin, H. A Review on Different Types Soil Stabilization Techniques. Int. J. Transp. Eng. Technol. 2017, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Dang, L.C. Enhancing the Engineering Properties of Expansive Soil Using Bagasse Ash and Hydrated Lime. GEOMATE J. 2016, 11, 2447–2454. [Google Scholar] [CrossRef]
- Charis, G.; Danha, G.; Muzenda, E. A review of timber waste utilization: Challenges and opportunities in Zimbabwe. Procedia Manuf. 2019, 35, 419–429. [Google Scholar] [CrossRef]
- Sun, S.; Liu, B.; Wang, T. Improvement of Expansive Soil Properties Using Sawdust. J. Solid Waste Technol. Manag. 2018, 44, 78–85. [Google Scholar] [CrossRef]
- Akinwumi, I.I.; Ojuri, O.O.; Ogbiye, S.A.; Booth, C.A. Engineering properties of tropical clay and bentonite modified with sawdust. Acta Geotech. Slov. 2017, 14, 47–56. [Google Scholar]
- Puppala, A.J.; Pedarla, A. Innovative ground improvement techniques for expansive soils. Innov. Infrastruct. Solut. 2017, 2, 24. [Google Scholar] [CrossRef]
- James, J. Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation. J. Rock Mech. Geotech. Eng. 2020, 12, 395–402. [Google Scholar] [CrossRef]
- Gomes Correia, A.; Winter, M.G.; Puppala, A.J. A review of sustainable approaches in transport infrastructure geotechnics. Transp. Geotech. 2016, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ikeagwuani, C.C.; Agunwamba, J.C.; Nwankwo, C.M.; Eneh, M. Additives optimization for expansive soil subgrade modification based on Taguchi grey relational analysis. Int. J. Pavement Res. Technol. 2021, 14, 138–152. [Google Scholar] [CrossRef]
- Hamzah, N.; Yusof, N.M.; Rahimi, M.I.H.M. Assessment of compressive strength of peat soil with sawdust and Rice Husk Ash (RHA) with hydrated lime as additive. MATEC Web Conf. 2019, 258, 01014. [Google Scholar] [CrossRef] [Green Version]
- Faezehossadat, K.; Jeff, B. Expansive Soil: Causes and Treatments. I-Manager’s J. Civ. Eng. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Nwonu, D.C. Emerging trends in expansive soil stabilisation: A review. J. Rock Mech. Geotech. Eng. 2019, 11, 423–440. [Google Scholar] [CrossRef]
- Oluremi, J.R.; Elsaigh, W.A.; Ikotun, B.D.; Osuolale, O.M.; Adedokun, S.I.; Oyelakin, S.E.; Ayodele, O.P. Strength enhancement in high silica wood ash stabilized lateritic soil using sodium tetraoxosulphate VI (Na2SO4) as activator. Int. J. Pavement Res. Technol. 2020, 14, 410–420. [Google Scholar] [CrossRef]
- Patel, S.K.; Singh, B. Strength and Deformation Behavior of Fiber-Reinforced Cohesive Soil Under Varying Moisture and Compaction States. Geotech. Geol. Eng. 2017, 35, 1767–1781. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Guney Olgun, C.; Firoozi, A.A.; Baghini, M.S. Fundamentals of soil stabilization. Int. J. Geo Eng. 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Selvakumar, S.; Soundara, B. Swelling behaviour of expansive soils with recycled geofoam granules column inclusion. Geotext. Geomembr. 2019, 47, 1–11. [Google Scholar] [CrossRef]
- Bordoloi, S.; Yamsani, S.; Garg, A.; Sreedeep, S.; Borah, S. Study on the efficacy of harmful weed species Eicchornia crassipes for soil reinforcement. Ecol. Eng. 2015, 85, 218–222. [Google Scholar] [CrossRef]
- Owamah, H.; Atikpo, E.; Oluwatuyi, O.; Oluwatomisin, A. Geotechnical properties of clayey soil stabilized with cement-sawdust ash for highway construction. J. Appl. Sci. Environ. Manag. 2017, 21, 1378. [Google Scholar] [CrossRef] [Green Version]
- Chittoori, B.; Neupane, S. Evaluating the Application of Microbial Induced Calcite Precipitation Technique to Stabilize Expansive Soils. In Proceedings of the Tunneling in Soft Ground, Ground Conditioning and Modification Techniques: Proceedings of the 5th GeoChina International Conference 2018–Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, Hangzhou, China, 23–25 July 2018; pp. 10–19. [Google Scholar] [CrossRef]
- Kang, X.; Kang, G.-C.; Chang, K.-T.; Ge, L. Chemically Stabilized Soft Clays for Road-Base Construction. J. Mater. Civ. Eng. 2015, 27, 04014199. [Google Scholar] [CrossRef] [Green Version]
- Mahedi, M.; Cetin, B.; White, D.J. Performance Evaluation of Cement and Slag Stabilized Expansive Soils. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 164–173. [Google Scholar] [CrossRef]
- Miao, S.; Shen, Z.; Wang, X.; Luo, F.; Huang, X.; Wei, C. Stabilization of Highly Expansive Black Cotton Soils by Means of Geopolymerization. J. Mater. Civ. Eng. 2017, 29, 04017170. [Google Scholar] [CrossRef]
- Adedokun, S.I.; Oluremi, J.R. A review of the stabilization of lateritic soils with some agricultural waste products. Int. J. Eng. 2019, 17, 63–74. [Google Scholar]
- Niyomukiza, J.B.; Wardani, S.P.R.; Setiadji, B.H. The Effect of Curing Time on the Engineering Properties of Sawdust and Lime Stabilized Expansive Soils. In Proceedings of the 2nd International Symposium on Transportation Studies in Developing Countries (ISTSDC 2019), Kendari, Indonesia, 1–3 November 2019; pp. 157–161. [Google Scholar] [CrossRef] [Green Version]
- Agaiby, S.; Hassan, A.W.; Dakhli, A.H.; Elhakim, A. Sawdust Effect on Compressibility and Shear Strength Characteristics of Highly Organic Clay. ERJ. Eng. Res. J. 2022, 45, 379–387. [Google Scholar] [CrossRef]
- Afolayan, O.D.; Olofinade, O.M.; Akinwumi, I.I. Use of some agricultural wastes to modify the engineering properties of subgrade soils: A review. J. Phys. Conf. Ser. 2019, 1378, 022050. [Google Scholar] [CrossRef]
- Garg, A.; Bordoloi, S.; Mondal, S.; Ni, J.-J.; Sreedeep, S. Investigation of mechanical factor of soil reinforced with four types of fibers: An integrated experimental and extreme learning machine approach. J. Nat. Fibers 2018, 17, 650–664. [Google Scholar] [CrossRef]
- Dauda, D.; Dominic, M. Effectiveness of agricultural wastes in soil stabilization. Sustain. Agric. Food Environ. Res. 2022, 10, 14. [Google Scholar] [CrossRef]
- Amin, M.N.; Ahmad, W.; Khan, K.; Ahmad, A. A Comprehensive Review of Types, Properties, Treatment Methods and Application of Plant Fibers in Construction and Building Materials. Materials 2022, 15, 4362. [Google Scholar] [CrossRef]
- Darvishi, A.; Vosoughifar, H.; Saeidijam, S.; Torabi, M.; Rahmani, A. An experimental and prediction study on the compaction and swell–expansion behavior of bentonite clay containing various percentages of two different synthetic fibers. Innov. Infrastruct. Solut. 2020, 5, 31. [Google Scholar] [CrossRef]
- Irani, N.; Ghasemi, M. Effect of scrap tyre on strength properties of untreated and lime-treated clayey sand. Eur. J. Environ. Civ. Eng. 2019, 25, 1609–1626. [Google Scholar] [CrossRef]
- Saberian, M.; Khotbehsara, M.M.; Jahandari, S.; Vali, R.; Li, J. Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat. Int. J. Geotech. Eng. 2018, 12, 347–356. [Google Scholar] [CrossRef]
- Danso, H.; Martinson, B.; Ali, M.; Williams, J. Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Constr. Build. Mater. 2015, 101, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Jayasree, P.K.; Balan, K.; Peter, L.; Nisha, K.K. Volume Change Behavior of Expansive Soil Stabilized with Coir Waste. J. Mater. Civ. Eng. 2015, 27, 04014195. [Google Scholar] [CrossRef]
- Vardhan, H.; Bordoloi, S.; Garg, A.; Garg, A. Compressive strength analysis of soil reinforced with fiber extracted from water hyacinth. Eng. Comput. 2017, 34, 330–342. [Google Scholar] [CrossRef]
- Irani, N.; Ghasemi, M. Effects of the inclusion of industrial and agricultural wastes on the compaction and compression properties of untreated and lime-treated clayey sand. SN Appl. Sci. 2020, 2, 1660. [Google Scholar] [CrossRef]
- Wei, L.; Chai, S.X.; Zhang, H.Y.; Shi, Q. Mechanical properties of soil reinforced with both lime and four kinds of fiber. Constr. Build. Mater. 2018, 172, 300–308. [Google Scholar] [CrossRef]
- Bastasaa, J.D.; Roxasa, A.J.B.; Sagayapa, K.D.; Salurioa, R.R.L.; Sampayana, J.O.; Taniñasa, H.L.; Amatosa, T.A., Jr. Swell Classification Analysis for Re-engineering Expansive Soil using Agricultural Waste Materials. Int. J. Appl. Eng. Res. 2019, 14, 2399–2404. Available online: https://www.researchgate.net/publication/333770206 (accessed on 18 August 2022).
- Kumar, J.K.; Kumar, V.P. Experimental analysis of soil stabilization using e-waste. Mater. Today Proc. 2019, 22, 456–459. [Google Scholar] [CrossRef]
- Chaugule, M.; Deore, S.; Gawade, K.; Tijare, A.; Banne, S. Improvement of Black Cotton Soil Properties Using E-waste. IOSR J. Mech. Civ. Eng. 2017, 14, 76–81. [Google Scholar] [CrossRef]
- Veylon, G.; Ghestem, M.; Stokes, A.; Bernard, A. Quantification of mechanical and hydric components of soil reinforcement by plant roots. Can. Geotech. J. 2015, 52, 1839–1849. [Google Scholar] [CrossRef]
- Wang, F.; Han, J.; Khatri, D.K.; Parsons, R.L.; Brennan, J.J.; Guo, J. Field Installation Effect on Steel-Reinforced High-Density Polyethylene Pipes. J. Pipeline Syst. Eng. Pract. 2016, 7, 04015013. [Google Scholar] [CrossRef]
- European Commission. Environment, Green Growth, Raw Materials. Available online: https://ec.europa.eu/environment/green-growth/raw-materials/index_en.htm (accessed on 25 August 2022).
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Pehme, K.-M.; Kriipsalu, M. Full-scale project–From landfill to recreational area. Detritus 2018, 1, 174–179. [Google Scholar] [CrossRef]
- Urbinati, A.; Chiaroni, D.; Chiesa, V. Towards a new taxonomy of circular economy business models. J. Clean. Prod. 2017, 168, 487–498. [Google Scholar] [CrossRef]
- Khan, S.; Khan, H. Improvement of Mechanical Properties by Waste Sawdust Ash Addition into Soil. Jordan J. Civ. Eng. 2016, 10, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, P.; Singh, Y. Soil Stabilization Using Natural Fiber Coir. Int. Res. J. Eng. Technol. 2017, 4, 1808–1812. [Google Scholar]
- Qu, J.; Zhao, D. Stabilising the cohesive soil with palm fibre sheath strip. Road Mater. Pavement Des. 2016, 17, 87–103. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, P.; Dai, F.; Li, X.; Zhao, Y.; Liu, Y. Behavior and Modeling of Fiber-Reinforced Clay under Triaxial Compression by Combining the Superposition Method with the Energy-Based Homogenization Technique. Int. J. Geomech. 2018, 18, 04018172. [Google Scholar] [CrossRef]
- Owoyemi, O.O. Effect of Sawdust on the Geotechnical Properties of a Lateritic Soil. J. Min. Geol. 2021, 57, 127–139. Available online: https://www.researchgate.net/publication/351094727 (accessed on 28 August 2022).
- Sani, J.E.; Afolayan, J.O.; Chukwujama, I.A.; Yohanna, P. Effects of wood saw dust ash admixed with treated sisal fibre on the geotechnical properties of lateritic soil. Leonardo Electron. J. Pract. Technol. 2017, 31, 59–76. [Google Scholar]
- Mwango, A.; Kambole, C. Engineering Characteristics and Potential Increased Utilisation of Sawdust Composites in Construction—A Review. J. Build. Constr. Plan. Res. 2019, 7, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Assiamah, S.; Agyeman, S.; Adinkrah-Appiah, K.; Danso, H. Utilization of sawdust ash as cement replacement for landcrete interlocking blocks production and mortarless construction. Case Stud. Constr. Mater. 2022, 16, e00945. [Google Scholar] [CrossRef]
- Niyomukiza, J.B.; Wardani, S.P.R.; Setiadji, B.H. Recent advances in the stabilization of expansive soils using waste materials: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 623, 012099. [Google Scholar] [CrossRef]
- De Castrillo, M.C.; Ioannou, I.; Philokyprou, M. Reproduction of traditional adobes using varying percentage contents of straw and sawdust. Constr. Build. Mater. 2021, 294, 123516. [Google Scholar] [CrossRef]
- Khtou, O.; Aalil, I.; Aboussaleh, M.; EL Wardi, F.Z. Mechanical Analysis of Fiber Reinforced Adobe. Civ. Eng. Arch. 2021, 9, 2160–2168. [Google Scholar] [CrossRef]
- Jannat, N.; Al-Mufti, R.L.; Hussien, A.; Abdullah, B.; Cotgrave, A. Influence of Sawdust Particle Sizes on the Physico-Mechanical Properties of Unfired Clay Blocks. Designs 2021, 5, 57. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater. 2012, 30, 100–116. [Google Scholar] [CrossRef]
- Vidal, H. The principle of reinforced earth. Highw. Res. Rec. 1969, 282, 1–16. Available online: http://onlinepubs.trb.org/Onlinepubs/hrr/1969/282/282-001.pdf (accessed on 25 August 2022).
- Gowthaman, S.; Nakashima, K.; Kawasaki, S. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials 2018, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Kielė, A.; Vaičiukynienė, D.; Tamošaitis, G.; Pupeikis, D.; Bistrickaitė, R. Wood shavings and alkali-activated slag bio-composite. Eur. J. Wood Wood Prod. 2020, 78, 513–522. [Google Scholar] [CrossRef]
- Sharma, V.; Vinayak, H.K.; Marwaha, B.M. Enhancing compressive strength of soil using natural fibers. Constr. Build. Mater. 2015, 93, 943–949. [Google Scholar] [CrossRef]
- Medina-Martinez, C.J.; Sandoval-Herazo, L.C.; Zamora-Castro, S.A.; Vivar-Ocampo, R.; Reyes-Gonzalez, D. Natural Fibers: An Alternative for the Reinforcement of Expansive Soils. Sustainability 2022, 14, 9275. [Google Scholar] [CrossRef]
- Jairaj, C.; Kumar, M.T.P.; Raghunandan, M.E. Compaction characteristics and strength of BC soil reinforced with untreated and treated coir fibers. Innov. Infrastruct. Solut. 2018, 3, 21. [Google Scholar] [CrossRef]
- Qu, J.; Zhu, H. Function of Palm Fiber in Stabilization of Alluvial Clayey Soil in Yangtze River Estuary. J. Renew. Mater. 2021, 9, 767–787. [Google Scholar] [CrossRef]
- Oderah, V.; Kalumba, D. Laboratory Investigation of Sugarcane Bagasse as Soil Reinforcement Material. In Proceedings of the Fourth Geochina International Conference, Shandong, China, 25–27 July 2016; pp. 61–68. [Google Scholar] [CrossRef]
- Hashim, M.Y.; Amin, A.M.; Marwah, O.M.F.; Othman, M.H.; Yunus, M.R.M.; Huat, N.C. The effect of alkali treatment under various conditions on physical properties of kenaf fiber. J. Phys. Conf. Ser. 2017, 914, 012030. [Google Scholar] [CrossRef]
- Vettorelo, P.V.; Clariá, J.J. Suelos Reforzados con Fibras: Estado del Arte y Aplicaciones. Rev. Fac. Cienc. Exactas FÍSicas Nat. 2014, 1, 27–34. [Google Scholar]
- Hassan, M.M.; Wagner, M.H. Surface Modification of Natural Fibers for Reinforced Polymer Composites: A Critical Review. Rev. Adhes. Adhes. 2016, 4, 1–46. [Google Scholar] [CrossRef]
- Deshmukh, G.; Singh, I. A Review on Effect of Pretreatment of Fibers on Physical and Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Int. J. Eng. Res. Curr. Trends 2020, 2, 34–40. [Google Scholar]
- Matykiewicz, D.; Barczewski, M.; Mysiukiewicz, O.; Skórczewska, K. Comparison of Various Chemical Treatments Efficiency in Relation to the Properties of Flax, Hemp Fibers and Cotton trichomes. J. Nat. Fibers 2021, 18, 735–751. [Google Scholar] [CrossRef]
- Adams, R.H.; Cerecedo-López, R.A.; Alejandro-Álvarez, L.A.; Domínguez-Rodríguez, V.I.; Nieber, J.L. Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. Int. J. Environ. Sci. Technol. 2016, 13, 2249–2260. [Google Scholar] [CrossRef] [Green Version]
- Koohestani, B.; Darban, A.K.; Mokhtari, P.; Yilmaz, E.; Darezereshki, E. Comparison of different natural fiber treatments: A literature review. Int. J. Environ. Sci. Technol. 2019, 16, 629–642. [Google Scholar] [CrossRef]
- Jaramillo-Quiceno, N.; Vélez, R.J.M.; Cadena Ch, E.M.; Restrepo-Osorio, A.; Santa, J.F. Improvement of Mechanical Properties of Pineapple Leaf Fibers by Mercerization Process. Fibers Polym. 2018, 19, 2604–2611. [Google Scholar] [CrossRef]
- Girijappa, Y.G.T.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Cruz, J.; Fangueiro, R. Surface Modification of Natural Fibers: A Review. Procedia Eng. 2016, 155, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2019, 55, 829–892. [Google Scholar] [CrossRef]
- Rippon, J.A.; Evans, D.J. Improving the properties of natural fibres by chemical treatments. Handb. Nat. Fibres 2020, 2, 245–321. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar] [CrossRef]
- Mallakpour, S.; Sirous, F.; Hussain, C.M. Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies. Adv. Colloid Interface Sci. 2021, 295, 102492. [Google Scholar] [CrossRef]
- Fregoso-Madueño, J.N.; Goche-Télles, J.R.; Rutiaga-Quiñones, J.G.; González-Laredo, R.F.; Bocanegra-Salazar, M.; Chávez-Simental, J.A. Alternative uses of sawmill industry waste. Rev. Chapingo Ser. Cienc. For. Ambiente 2017, 23, 243–260, ISSN 2007-3828. Available online: https://www.redalyc.org/articulo.oa?id=62950747001 (accessed on 26 August 2022).
- Butt, W.A.; Gupta, K.; Jha, J.N. Strength behavior of clayey soil stabilized with saw dust ash. Int. J. Geo Eng. 2016, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Okedere, O.; Fakinle, B.; Sonibare, J.; Elehinafe, F.; Adesina, O. Particulate matter pollution from open burning of sawdust in Southwestern Nigeria. Cogent Environ. Sci. 2017, 3, 1367112. [Google Scholar] [CrossRef]
- Khan, A.; Jasim, O.H.; Umar, D. Effect of Sawdust-Lime and Sawdust Ash-Lime on the Geotechnical the Geotechnical Properties of an Expansive. 2020. Available online: https://www.researchgate.net/publication/343600730 (accessed on 6 January 2023).
- Ikeagwuani, C.; Obeta, I.; Agunwamba, J. Stabilization of black cotton soil subgrade using sawdust ash and lime. Soils Found. 2019, 59, 162–175. [Google Scholar] [CrossRef]
- Singh, P.; Singh, B. Assessment of Mechanical Properties of Biocomposite Material by using Sawdust and Rice Husk. INCAS Bull. 2019, 11, 147–156. [Google Scholar] [CrossRef]
- Mouissa, F.; Benyahia, A.; Djehiche, M.; Belmokre, K.; Deghfel, N.; Redjem, A.; Rahmouni, Z.E.A. The effect of chemical treatment on the mechanical and thermal properties of composite materials based on clay reinforced with sawdust. Matériaux Tech. 2021, 109, 101. [Google Scholar] [CrossRef]
- Jangid, A.K.; Khatti, J.; Bindlish, A. Stabilization of black cotton soil by 15% Kota stone slurry with wooden saw dust. Int. J. Adv. Res. Sci. Eng. 2018, 7, 108–114. [Google Scholar]
- Keramatikerman, M.; Chegenizadeh, A.; Nikraz, H. Effect of sawdust on Cohesion of Sand-Sawdust mixture. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 14–16. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, K.; Sharma, J.K. Experimental Study of Stabilization of Expansive Soil Mixed with Sawdust and Marble Dust. In Proceedings of the Indian Geotechnical Conference 2019: IGC-2019; Springer: Singapore, 2021; Volume III, pp. 535–547. [Google Scholar] [CrossRef]
- Karteek, G.S. An Investigation on the Influence of Lime on Marine Clay Treated with Sawdust for Flexible Pavement Subgrade. Int. J. Recent Innov. Trend Technol. 2018, 4, 7–21. [Google Scholar]
- Johnson, S.; Gopinath, B. A Study on the Swell Behaviour of Expansive Clays Reinforced with Saw Dust, Coir Pith Marble Dust. Int. J. Eng. Res. 2016, 5, 565–570. [Google Scholar] [CrossRef]
- Yarbaşı, N.; Kalkan, E. Investigation of Wet-Dry Cycle Effect on Swelling Behavior of Stabilized Expansive Soils. Int. J. Sci. Eng. Appl. 2020, 9, 153–157. [Google Scholar]
- Kalkan, E.; Yarba, N. The Effects of Pine Tree Sawdust on the Volume Compressibility of Expansive Soils. Int. J. Sci. Eng. Appl. 2020, 10, 29–33. [Google Scholar] [CrossRef]
- Jasim, O.H.; Çetin, D. Effect of the Time on the Undrained Shear Strength and Permeability of Clay-Wooden Sawdust Mixtures Used to Improve Landfills Liner. Key Eng. Mater. 2020, 857, 311–318. [Google Scholar] [CrossRef]
- Jasim, O.H.; Çetin, D. Effect of sawdust usage on the shear strength behavior of clayey silt soil. Sigma J. Eng. Nat. Sci. 2016, 34, 31–41. Available online: https://www.researchgate.net/publication/299285436 (accessed on 6 January 2023).
- Farooq, M.U.; Mujtaba, H.; Farooq, K.; Sivakugan, N.; Das, B.M. Evaluation of Stability and Erosion Characteristics of Soil Embankment Slope Reinforced with Different Natural Additives. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 515–524. [Google Scholar] [CrossRef]
- Tong, Y.; Seibou, A.-O.; Li, M.; Kaci, A.; Ye, J. Bamboo Sawdust as a Partial Replacement of Cement for the Production of Sustainable Cementitious Materials. Crystals 2021, 11, 1593. [Google Scholar] [CrossRef]
- Yousefi, R.; Amooei, A.A.; Amel Sakhi, M.; Karimi, A. Experimental Study on Influence of Using Urease Enzyme on Stabilized Sandy Soil’s Engineering Property by Zeolite and Sawdust. Int. J. Marit. Technol. 2021, 15, 17–27. [Google Scholar]
- Oriaje, A.T.; Adeyemo, K.; Ojo, O. Stabilization of Lateritic Soil with Mahogany (Hardwood) Sawdust Ash. J. Eng. Environ. Sci. 2021, 3, 8–11. [Google Scholar] [CrossRef]
- Ayodele, A.; Oketope, O.; Olatunde, O. Effect of sawdust ash and eggshell ash on selected engineering properties of lateralized bricks for low cost housing. Niger. J. Technol. 2019, 38, 278. [Google Scholar] [CrossRef]
- Obeta, I.; Ikeagwuani, C.; Attama, C.; Okafor, J. Stability and durability of sawdust ash-lime stabilised black cotton soil. Niger. J. Technol. 2019, 38, 75. [Google Scholar] [CrossRef]
- Kolo, S.S.; Jimoh, Y.A.; Yusuf, I.; Adeleke, O.O.; Balarebe, F.; Shehu, M. Sawdust ash stabilization of weak lateritic soil. In Proceedings of the 3rd International Engineering Conference (IEC 2019), Minna, Nigeria, 24–26 September 2019. [Google Scholar]
- Fapohunda, C.A.; Amu, O.O.; Babarinde, O.F. Evaluation of Geotechnical and Structural Performance of Cement-Stabilized Soil with Saw Dust Ash (SDA). Arid. Zone J. Eng. Technol. Environ. 2019, 15, 628–637. Available online: https://www.azojete.com.ng/index.php/azojete/article/view/43 (accessed on 6 January 2023).
- Ogundipe, O.M.; Adekanmi, J.S.; Akinkurolere, O.O.; Ale, P.O. Effect of Compactive Efforts on Strength of Laterites Stabilized with Sawdust Ash. Civ. Eng. J. 2019, 5, 2502–2514. [Google Scholar] [CrossRef]
- Etim, E.; Ikeagwuani, C.C.; Ambrose, E.E.; Attah, I.C. Influence of sawdust disposal on the geotechnical properties of soil. EJGE 2017, 22, 4769–4780. Available online: https://www.researchgate.net/publication/319468685 (accessed on 6 January 2023).
- Nnochiri, E.S.; Emeka, H.O.; Tanimola, M. Geotechnical Characteristics of Lateritic Soil Stabilized with Sawdust Ash-Lime Mixtures. Civ. Eng. J. 2017, 26, 66–76. [Google Scholar] [CrossRef]
- Ikeagwuani, C. Compressibility Characteristics of Black Cotton Soil Admixed WITH Sawdust Ash and Lime. Niger. J. Technol. 2016, 35, 718. [Google Scholar] [CrossRef] [Green Version]
- Ilori, A.O.; Udo, E.A. Investigation of geotechnical properties of a lateritic soil with saw dust ash. IOSR J. Mech. Civ. Eng. 2015, 12, 11–14. [Google Scholar] [CrossRef]
- Adetoro, A.E.; Oladapo, S.A. Effects of Sawdust and Palm Kernel Shell Ashes on Geotechnical Properties of Emure/Ise-orun Local Government Areas Soil, Nigeria. Sci. Res. J. 2015, 3, 35–38. [Google Scholar]
- Rai, H. Effect on Maximum Dry Density and Optimum Moisture Content of Expansive Soil on Addition of Sawdust Ash. Int. J. Appl. Eng. Res. 2019, 14, 1–5. [Google Scholar]
- Kale, R.Y.; Chaudhari, K.; Bhadange, K.; Chune, V.; Kadu, G.; Tidke, A. Effect of saw dust ash and lime on expansive soil (black cotton soil). Int. Res. J. Eng. Technol. 2019, 6, 3916–3921. [Google Scholar]
- Venkatesh, A.; Reddy, G.S. Effect of Waste Saw Dust Ash on Compaction and Permeability Properties of Black Cotton Soil. Int. J. Civ. Eng. Res. 2016, 7, 27–32. [Google Scholar]
- Naranagowda, M.J.; Nithin, N.S.; Maruthi, K.S.; Mosin Khan, D.S. Effect of saw dust ash and fly ash on stability of expansive soil. Int. J. Res. Eng. Technol. 2015, 4, 83–86. [Google Scholar]
- Karim, H.; Al-Recaby, M.; Nsaif, M. Stabilization of soft clayey soils with sawdust ashes. MATEC Web Conf. 2018, 162, 01006. [Google Scholar] [CrossRef] [Green Version]
Criterion | Eligibility | Exclusion |
---|---|---|
Literature type | Research article journal | Review article journal, book, book chapter |
Language | English | Non-English |
Timeline | ≥2015 | <2015 |
Countries and region | All the world | None |
Fiber Type | Fiber Information | Optimal Content (%) | Methods | Ref. | |
---|---|---|---|---|---|
Length (mm) | Range Reinforcement (%) | ||||
Bamboo fiber | 10 and 20 | 0.2 to 1.4 | 1.2 | Compaction, Unconfined compression, CBR 1 | [2] |
Jute fiber | 10 and 30 | 0.25 to 1.5 | 1.25 | CBR 1 | [53] |
Coir fiber | 10 and 20 | 0 to 3.0 | 0.5 | Compaction | [79] |
Palm fiber | 5, 10, 15 and 20 | 0.1 to 0.6 | 0.4 | UCS 2 | [80] |
Bagasse fiber | 0.3 to 1.7 | 1.4 | Direct shear | [81] |
Country | Year | Materials Information | Optimal Content (%) | Parameters | Ref. | |
---|---|---|---|---|---|---|
Soil | Fiber | |||||
Algeria | 2021 | Bou-Saâda region | Sawdust treated with NaOH solution; Percentage: 0.5 to 2.5 | Variable | Mechanical tests, SEM, XRD | [102] |
India | 2018 | Black cotton soil, Borkheda, Kota | Wood sawdust; Percentage: 2.5 to 12.5 | 5 | Compaction, unconfined compression | [103] |
Country | Year | Materials Information | Optimal Content (%) | Parameters | Ref. | |
---|---|---|---|---|---|---|
Soil | Fiber | |||||
Australia | 2020 | Sand, the average particle size of 1.2 mm | Sawdust powder; Percentage: 3 to 10 | Variable | Compaction, direct shear | [104] |
Nigeria | 2021 | Ogbomosho | Passing through N° 40 sieve opening; Percentage: 2.5 to 15 | Variable | Plasticity, compaction, CBR, unconfined compression, permeability | [65] |
Nigeria | 2017 | Covenant University, Ota | Passing through N° 40 sieve opening; Percentage: 2 to 8 | Proportional | Compaction, unconfined compression, permeability | [19] |
Egypt | 2022 | Kafr Elsheikh | Sawdust passing through N° 40 sieve opening; Percentage: 10, 15 and 20 | 15 sawdust; 5 cement | Vane shear test, direct shear test, compressibility | [39] |
India | 2021 | Black cotton, Fatehpur Rajasthan | Sawdust and marble dust powder; Percentage: 2 to 10 sawdust; 5 to 15 Marble powder | Variable | Compaction, unconfined compression | [105] |
India | 2018 | Kakinada | Sawdust and lime | 15 sawdust 4 lime | Compaction, CBR | [106] |
India | 2016 | Palakkad | Sawdust and coir pith; Percentage: 2 to 12 | Variable | Compaction, unconfined compression, swelling pressure | [107] |
Turkey | 2020 | CH, Erzurum | Pine, passing through N° 4 sieve opening; Percentage: 0.5 to 1.5 | Proportional | Compaction, unconfined compression | [1] |
Turkey | 2020 | CH, Erzurum | Pine, passing through N° 4 sieve opening; Percentage: 0.5 to 1.5 | Inversely proportional | Swelling Pressure | [108] |
Turkey | 2020 | CH, Erzurum | Pine, passing through N° 4 sieve opening; Percentage: 0.5 to 1.5 | Inversely proportional | Coefficient of volume compressibility | [109] |
Turkey | 2020 | Istanbul | Passing through N° 20 sieve opening; Percentage: 1 to 5 | 3 immediate tests; 2 long-term tests | Triaxial tests UU, permeability, triaxial tests UU | [110] |
Turkey | 2016 | Istanbul | Passing through N° 20 sieve opening; Percentage: 1 to 5 | 3 | Compaction, unconfined compression | [111] |
Pakistan | 2019 | Punjab | Ground sawdust, D50 = 0.25 mm; Percentage: 1 to 7 | 5 | Unconfined compression, triaxial tests UU | [112] |
China | 2021 | Zhejiang, | Particle between 0.037 and 0.16 mm; Percentage: 1 to 7 | Variable | Compressive and flexural strength | [113] |
China | 2018 | CH, Nanjing | Particles smaller than 1 mm; Percentage: 2.5 to 12.5 | 7.5 | Direct shear, unconfined compression, swelling Pressure | [18] |
Indonesia | 2020 | Semarang-Purwodadi road | Keruing sawdust passing through N° 20 sieve opening; Percentage: 3 to 7 | Variable | Compaction, unconfined compression, plasticity, CBR | [12] |
Indonesia | 2019 | Central Java Province | Sawdust-lime; Sawdust Passing through N° 40 sieve opening; Percentage: 3 to 5 | Variable | Compaction, unconfined compression, swell index, plasticity | [38] |
Malaysia | 2019 | Sungai Besar | Sawdust, Rice Husk Ash Percentage: 2 to 5 | 4 | Compaction, unconfined compression | [24] |
Iran | 2021 | Sand, Qom | Sawdust between sieves N° 16 and 30; Percentage: 4 to 12 | Variable | Compaction, unconfined compression | [114] |
Country | Year | Materials Information | Optimal Content (%) | Parameters | Ref. | |
---|---|---|---|---|---|---|
Soil | Fiber | |||||
Nigeria | 2021 | Oke Baale, Osogbo, Osun | Mahogany sawdust ash passing through N° 200 sieve opening; Percentage: 2 to 6 | Variable | Plasticity, CBR | [115] |
Nigeria | 2019 | Adamawa State Polytechnic, | Sawdust ash; Percentage: 4 to 20 | 16 | Compaction, CBR, SEM, XRD | [100] |
Nigeria | 2019 | Ile-Ife, Osun state | Sawdust ash and eggshell ash; Percentage: 2 to 16 | 2 to 4 | Compaction | [116] |
Nigeria | 2019 | Adamawa State Polytechnic, Yola | Sawdust ash and lime | 4 lime and 16 sawdust ash | Durability index, unconfined compressive | [117] |
Nigeria | 2019 | Federal University Technology Minna | Sawdust ash passing through N° 200 sieve opening; Percentage: 2 to 10 | 4 | Plasticity, compaction, unconfined compression | [118] |
Nigeria | 2019 | Obafemi Awolowo University, Ile-Ife, Osun state | Sawdust ash Passing through N° 70 sieve opening; Percentage: 2 to 10 | Variable | Compaction, unconfined compression, CBR | [119] |
Nigeria | 2019 | Ado-Ekiti and Ado-Iworoko road | Sawdust ash passing through N° 30 sieve opening; Percentage: 2 to 10 | Variable | Compaction, unconfined compression, CBR | [120] |
Nigeria | 2017 | Zaria | Sawdust ash and sisal; Percentage: 2 to 8 | 0.75 sisal and 6 sawdust ash | Compaction, unconfined compression | [66] |
Nigeria | 2017 | Enugu | Sawdust ash passing through N° 200 sieve opening; Percentage: 1 to 15 | Variable | Plasticity, compaction, permeability | [121] |
Nigeria | 2017 | Federal University of Technology, Akure | Sawdust ash passing through N° 70 sieve opening and lime; Percentage: 2 to 10 | 6 | Compaction, unconfined compression | [122] |
Nigeria | 2016 | black cotton, Numan | Sawdust ash passing through N° 200 sieve opening and lime; Percentage: 2 to 10 | Variable | Plasticity, compaction, Compressibility | [123] |
Nigeria | 2015 | Obafemi Awolowo University. Ile Ife | Sawdust ash passing through N° 40 sieve opening; Percentage: 2 to 20 | 12 | Compaction, unconfined compression | [124] |
Nigeria | 2015 | Emure/Ise, Orun | Palm Kernel Shell and sawdust ash; Percentage: 2 to 8 | Variable | Compaction, plasticity | [125] |
India | 2019 | Sitarganj | Sawdust Ash passing through N° 30 sieve opening; Percentage: 2 to 25 | Variable | Compaction, plasticity | [126] |
India | 2019 | Black cotton soil | Sawdust ash and lime; Percentage: 1 to 5 | 2 | Compaction, unconfined compression, CBR | [127] |
India | 2019 | Thiruvananthapuram, Kerala | Sawdust Ash; Percentage: 4 to 10 | 8 | Compaction, unconfined compression | [14] |
India | 2016 | Rajouri | Sawdust Ash; Percentage: 4 to 12 | 4 | Compaction, unconfined compression, CBR | [97] |
India | 2016 | Kopparthy village, Kadapa | Sawdust Ash; Percentage: 2 to 10 | Variable | Compaction, permeability | [128] |
India | 2015 | Soraba Taluk, Karnataka | Sawdust Ash and fly ash; Percentage: 10, 20 and 30 | Variable | Compaction, unconfined compression, CBR, free swell index test | [129] |
Pakistan | 2020 | CH, Istanbul | Sawdust-lime and sawdust ash-lime; Percentage: 1 to 5 | Variable | Compaction, unconfined compression, plasticity | [99] |
Pakistan | 2016 | Tarnab | Sawdust Ash; Percentage: 2 to 12 | Variable | Permeability, direct shear, plasticity, compaction | [61] |
Iraq | 2018 | Al-Maymunah, Maysan | Sawdust ash passing through N° 200 sieve opening; Percentage: 2 to 10 | 4 to 6 | Compaction, unconfined compression, CBR, | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Martinez, C.J.; Sandoval Herazo, L.C.; Zamora-Castro, S.A.; Vivar-Ocampo, R.; Reyes-Gonzalez, D. Use of Sawdust Fibers for Soil Reinforcement: A Review. Fibers 2023, 11, 58. https://doi.org/10.3390/fib11070058
Medina-Martinez CJ, Sandoval Herazo LC, Zamora-Castro SA, Vivar-Ocampo R, Reyes-Gonzalez D. Use of Sawdust Fibers for Soil Reinforcement: A Review. Fibers. 2023; 11(7):58. https://doi.org/10.3390/fib11070058
Chicago/Turabian StyleMedina-Martinez, Carlos J., Luis Carlos Sandoval Herazo, Sergio A. Zamora-Castro, Rodrigo Vivar-Ocampo, and David Reyes-Gonzalez. 2023. "Use of Sawdust Fibers for Soil Reinforcement: A Review" Fibers 11, no. 7: 58. https://doi.org/10.3390/fib11070058
APA StyleMedina-Martinez, C. J., Sandoval Herazo, L. C., Zamora-Castro, S. A., Vivar-Ocampo, R., & Reyes-Gonzalez, D. (2023). Use of Sawdust Fibers for Soil Reinforcement: A Review. Fibers, 11(7), 58. https://doi.org/10.3390/fib11070058