Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = random grating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8059 KiB  
Article
Monitoring Nasal Breathing Using an Adjustable FBG Sensing Unit
by Xiyan Yan, Yan Feng, Min Xu and Hua Zhang
Sensors 2025, 25(13), 4060; https://doi.org/10.3390/s25134060 - 29 Jun 2025
Viewed by 291
Abstract
We have developed an adjustable optical fiber Bragg grating (FBG) sensing unit for monitoring nasal breathing. The FBG sensing unit can accommodate individuals with varying facial dimensions by adjusting the connecting holes of the ear hangers. We employed two FBG configurations: an encapsulated [...] Read more.
We have developed an adjustable optical fiber Bragg grating (FBG) sensing unit for monitoring nasal breathing. The FBG sensing unit can accommodate individuals with varying facial dimensions by adjusting the connecting holes of the ear hangers. We employed two FBG configurations: an encapsulated FBG within a silicon tube (FBG1) and a bare FBG (FBG2). Calibration experiments show the temperature sensitivities of 6.77 pm/°C and 6.18 pm/°C, respectively, as well as the pressure sensitivities of 2.05 pm/N and 1.18 pm/N, respectively. We conducted breathe monitoring tests on male and female volunteers under the resting and the motion states. For the male volunteer, the breathing frequency is 13.48 breaths per minute during the rest state and increases to 23.91 breaths per minute during the motion state. For the female volunteer, the breathing frequency is 14.12 breaths per minute during rest and rises to 24.59 breaths per minute during motion. Experimental results show that the FBG sensing unit can effectively distinguish breathing rate for the same person in different states. In addition, we employed a random forest algorithm to assess the importance of two sensors in breathing monitoring applications. The findings indicate that FBG1 outperforms FBG2 in monitoring performance, highlighting that pressure plays a positive impact in enhancing the accuracy of breathing monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 3798 KiB  
Article
High-Speed Directly Modulated Laser Integrated with SOA
by Jia Chen, Dechao Ban, Ya Jin, Jinhua Bai, Keqi Cao, Xinyan Zhang, Hang Yu, Wei Lin, Xiaonan Chen, Ming Li, Ninghua Zhu and Yu Liu
Photonics 2025, 12(5), 450; https://doi.org/10.3390/photonics12050450 - 6 May 2025
Viewed by 561
Abstract
In this paper, we present a directly modulated laser (DML) using a partially corrugated grating (PCG) and integrated with a semiconductor optical amplifier (SOA). The influence of the quasi-high-pass filter properties of the SOA on the bandwidth was explored, resulting in high optical [...] Read more.
In this paper, we present a directly modulated laser (DML) using a partially corrugated grating (PCG) and integrated with a semiconductor optical amplifier (SOA). The influence of the quasi-high-pass filter properties of the SOA on the bandwidth was explored, resulting in high optical power output at lower current levels, with a bandwidth surpassing 25 GHz and an output power above 25 mW. The PCG design boosts the lasing mode’s resistance to random phase fluctuations at the rear facet, hence boosting the mode stability of the laser with a side-mode suppression ratio (SMSR) of over 44 dB. Furthermore, we performed back-to-back (BTB) 26.5625 Gbps NRZ data transmission experiments at room temperature (25 °C) with a modulation current of 60 mA. The results reveal that the transmitter and dispersion eye closure (TDEC) of the fabricated DML is lower than that of a conventional laser when the SOA area current reaches a specific threshold, demonstrating the enhanced signal transmission capabilities of our design. This laser structure offers a fresh strategy for the development of high-power, high-speed DMLs. Full article
Show Figures

Figure 1

8 pages, 3258 KiB  
Article
High-Spatial-Resolution High-Accuracy OFDR Distributed Sensors Based on Seamless fs-WFBG Array
by Zhengze Jin, Wenzhu Huang, Yuanjing Zhao and Wentao Zhang
Photonics 2025, 12(4), 352; https://doi.org/10.3390/photonics12040352 - 8 Apr 2025
Viewed by 384
Abstract
In optical frequency domain reflectometry (OFDR), the random optical noise in Rayleigh backscattering and the sliding window length in the algorithm cause a trade-off between sensing spatial resolution and accuracy. This paper proposes a novel high-spatial-resolution high-accuracy OFDR distributed sensor based on a [...] Read more.
In optical frequency domain reflectometry (OFDR), the random optical noise in Rayleigh backscattering and the sliding window length in the algorithm cause a trade-off between sensing spatial resolution and accuracy. This paper proposes a novel high-spatial-resolution high-accuracy OFDR distributed sensor based on a seamless femtosecond weak fiber Bragg grating (WFBG) array. Using femtosecond laser point-by-point (PbP) inscription technology, a 5 cm long seamless weak grating array was successfully fabricated on a polyimide fiber, consisting of ten 5 mm long WFBGs. The experimental results demonstrate that a sensing spatial resolution of 533 μm and a wavelength demodulation accuracy of ±2.05 pm were achieved for the first time. Full article
(This article belongs to the Special Issue Recent Advances and Applications in Optical Fiber Sensing)
Show Figures

Figure 1

20 pages, 15996 KiB  
Article
Erbium-Doped Fibers Designed for Random Single-Frequency Lasers Operating in the Extended L-Band
by Denis Lipatov, Alexey Abramov, Alexey Lobanov, Denis Burmistrov, Sergei Popov, Dmitry Ryakhovsky, Yuriy Chamorovskiy, Alexey Bazakutsa, Liudmila Iskhakova, Olga Egorova and Andrey Rybaltovsky
Photonics 2024, 11(12), 1175; https://doi.org/10.3390/photonics11121175 - 13 Dec 2024
Viewed by 996
Abstract
The paper presents the results of developing Er-doped optical fibers for creating random single-frequency lasers in the wavelength range of 1570–1610 nm. The possibility of broadening the luminescence band of Er3+ ions in silicate glasses in the long-wavelength region of the spectrum [...] Read more.
The paper presents the results of developing Er-doped optical fibers for creating random single-frequency lasers in the wavelength range of 1570–1610 nm. The possibility of broadening the luminescence band of Er3+ ions in silicate glasses in the long-wavelength region of the spectrum by introducing a high concentration of P2O5, as well as by additional doping with Sb2O3, is investigated. It is found that both approaches do not improve the dynamics of luminescence decay in the L-band. In addition, Er2O3-GeO2-Al2O3-SiO2 and Er2O3-GeO2-Al2O3-P2O5-SiO2 glasses were studied as the core material for L-band optical fibers. The developed fibers exhibited high photosensitivity and a high gain of 5 and 7.2 dB/m, respectively. In these fibers, homogeneous arrays of extended weakly reflecting Bragg gratings were recorded directly during the fiber drawing process. Samples of arrays 5 m long and with a narrow reflection maximum at ~1590 nm were used as the base for laser resonators. Narrow-band random laser generation in the wavelength region of 1590 nm was recorded for the first time. At a temperature of 295 K, the laser mode was strictly continuous wave and stable in terms of output power. The maximal power exceeded 16 mW with an efficiency of 16%. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 6716 KiB  
Article
Hybrid Sparse Array Design Based on Pseudo-Random Algorithm and Convex Optimization with Wide Beam Steering
by Pan Gao and Zhongquan Chen
Electronics 2024, 13(22), 4422; https://doi.org/10.3390/electronics13224422 - 12 Nov 2024
Viewed by 1171
Abstract
In this paper, a hybrid optimization method utilizing a pseudo-random algorithm and convex optimization is proposed to avoid grating lobe and achieve lower side lobe level (SLL) of a planar sparse array when the minimum inter-element distance is one wavelength. The pseudo-random algorithm [...] Read more.
In this paper, a hybrid optimization method utilizing a pseudo-random algorithm and convex optimization is proposed to avoid grating lobe and achieve lower side lobe level (SLL) of a planar sparse array when the minimum inter-element distance is one wavelength. The pseudo-random algorithm is utilized to distribute the positions of elements. The convex algorithm is utilized to optimize the excitations of elements. The results show that a planar sparse array with no grating lobe and peak side lobe level (PSLL) of 17 dB can be obtained with a minimum inter-element distance of one wavelength, which indicates the effectiveness of the hybrid optimization method. In addition, beam steering can be achieved within an 80 field of view range. Full article
Show Figures

Figure 1

13 pages, 6903 KiB  
Article
Inverse-Designed Ultra-Compact Passive Phase Shifters for High-Performance Beam Steering
by Tianyang Fu, Mengfan Chu, Ke Jin, Honghan Sha, Xin Yan, Xueguang Yuan, Yang’an Zhang, Jinnan Zhang and Xia Zhang
Sensors 2024, 24(21), 7055; https://doi.org/10.3390/s24217055 - 1 Nov 2024
Viewed by 1319
Abstract
Ultra-compact passive phase shifters are inversely designed by the multi-objective particle swarm optimization algorithm. The wavelength-dependent phase difference between two output beams originates from the different distances of the input light passing through the 4 μm × 3.2 μm rectangular waveguide with random-distributed [...] Read more.
Ultra-compact passive phase shifters are inversely designed by the multi-objective particle swarm optimization algorithm. The wavelength-dependent phase difference between two output beams originates from the different distances of the input light passing through the 4 μm × 3.2 μm rectangular waveguide with random-distributed air-hole arrays. As the wavelength changes from 1535 to 1565 nm, a phase difference tuning range of 6.26 rad and 6.95 rad is obtained for TE and TM modes, respectively. Compared with the array waveguide grating counterpart, the phase shifters exhibit higher transmission with a much smaller footprint. By combining the inverse-designed phase shifter and random-grating emitter together, integrated beam-steering structures are built, which show a large scanning range of ±25.47° and ±27.85° in the lateral direction for TE and TM mode, respectively. This work may pave the way for the development of ultra-compact high-performance optical phased array LiDARs. Full article
(This article belongs to the Special Issue Recent Advances in LiDAR Sensor)
Show Figures

Figure 1

30 pages, 13607 KiB  
Article
Grating Coupler Design for Low-Cost Fabrication in Amorphous Silicon Photonic Integrated Circuits
by Daniel Almeida, Paulo Lourenço, Alessandro Fantoni, João Costa and Manuela Vieira
Photonics 2024, 11(9), 783; https://doi.org/10.3390/photonics11090783 - 23 Aug 2024
Cited by 2 | Viewed by 3039
Abstract
Photonic circuits find applications in biomedicine, manufacturing, quantum computing and communications. Photonic waveguides are crucial components, typically having cross-section orders of magnitude inferior when compared with other photonic components (e.g., optical fibers, light sources and photodetectors). Several light-coupling methods exist, consisting of either [...] Read more.
Photonic circuits find applications in biomedicine, manufacturing, quantum computing and communications. Photonic waveguides are crucial components, typically having cross-section orders of magnitude inferior when compared with other photonic components (e.g., optical fibers, light sources and photodetectors). Several light-coupling methods exist, consisting of either on-plane (e.g., adiabatic and end-fire coupling) or off-plane methods (e.g., grating and vertical couplers). The grating coupler is a versatile light-transference technique which can be tested at wafer level, not requiring specific fiber terminations or additional optical components, like lenses, polarizers or prisms. This study focuses on fully-etched grating couplers without a bottom reflector, made from hydrogenated amorphous silicon (a-Si:H), deposited over a silica substrate. Different coupler designs were tested, and of these we highlight two: the superimposition of two lithographic masks with different periods and an offset between them to create a random distribution and a technique based on the quadratic refractive-index variation along the device’s length. Results were obtained by 2D-FDTD simulation. The designed grating couplers achieve coupling efficiencies for the TE-like mode over −8 dB (mask overlap) and −3 dB (quadratic variation), at a wavelength of 1550 nm. The coupling scheme considers a 220 nm a-Si:H waveguide and an SMF-28 optical fiber. Full article
(This article belongs to the Special Issue Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

9 pages, 1712 KiB  
Article
An Organic Microcavity Laser Amplifier Integrated on the End Facet of an Optical Fiber
by Meng Wang, Zhuangzhuang Xu, Yaqi Ren, Xiaolei Bai and Xinping Zhang
Nanomaterials 2024, 14(15), 1314; https://doi.org/10.3390/nano14151314 - 4 Aug 2024
Viewed by 1745
Abstract
We report a thin-film optical amplifier integrated on a fiber facet based on polymer-coated distributed feedback (DFB) microcavities, which are fabricated on a planar substrate and then transferred onto fiber tips by means of a flexible transfer technique. The amplified light directly couples [...] Read more.
We report a thin-film optical amplifier integrated on a fiber facet based on polymer-coated distributed feedback (DFB) microcavities, which are fabricated on a planar substrate and then transferred onto fiber tips by means of a flexible transfer technique. The amplified light directly couples into the fiber and is detected when coupled out at the other end after propagating along the fiber for about 20 cm. A prominently amplification factor of about 4.33 at 578.57 nm is achieved by sending supercontinuum pulses into the hundreds of micrometers’ DFB microcavities along the normal direction, which is also the axis direction of the fiber. The random distortions of grating lines generated during the transfer process result in a larger amplification spectral range and a less strict polarization dependence for injected light. Benefitting from the device size of hundreds of micrometers and the ease of integration, polymer amplifiers based on DFB microcavities demonstrate significant application potentials in optical communication systems and miniaturized optical devices. Full article
Show Figures

Figure 1

15 pages, 1147 KiB  
Article
Impact of Grating Duty-Cycle Randomness on DFB Laser Performance
by Manpo Yang, Xiangpeng Kong and Xun Li
Photonics 2024, 11(6), 574; https://doi.org/10.3390/photonics11060574 - 19 Jun 2024
Cited by 4 | Viewed by 1938
Abstract
The duty-cycle randomness (DCR) of the Bragg grating of the distributed feedback (DFB) lasers introduced by the fabrication process is inevitable, even with state-of-the-art technologies such as electron beam lithography and dry or wet etching.This work investigates the impact of grating DCR on [...] Read more.
The duty-cycle randomness (DCR) of the Bragg grating of the distributed feedback (DFB) lasers introduced by the fabrication process is inevitable, even with state-of-the-art technologies such as electron beam lithography and dry or wet etching.This work investigates the impact of grating DCR on DFB laser performance through numerical simulations. The result reveals that such randomness causes a reduction in the side mode suppression ratio (SMSR), and deteriorates the noise characteristics, i.e., broadens the linewidth and increases the relative intensity noise (RIN). With the grating DCR, the effective grating coupling coefficient decreases as evidenced by the reduced Bragg stopband width. However, the longitudinal spatial hole burning (LSHB) effect in the DFB lasers can somewhat be diminished by the grating DCR. The seriousness of these effects depends on different grating structures and their coupling strengths. Our simulation shows that a degradation of 17 dB can be brought to the SMSR of the uniform grating DFB lasers with their duty cycles taking a deviation of ±25% in a uniformly distributed random fashion. It also broadens the linewidth of the quarter-wavelength phase-shifted DFB lasers by more than 2.5 folds. The impact of this effect on the RIN is moderate—less than 2%. All the performance deteriorations can partially be attributed to the effective reduction in the grating coupling coefficient of around 20% by such a DCR. Full article
(This article belongs to the Special Issue On-Chip Photonics)
Show Figures

Figure 1

34 pages, 5142 KiB  
Article
Pentagram Arrays: A New Paradigm for DOA Estimation of Wideband Sources Based on Triangular Geometry
by Mohammed Khalafalla, Kaili Jiang, Kailun Tian, Hancong Feng, Ying Xiong and Bin Tang
Remote Sens. 2024, 16(3), 535; https://doi.org/10.3390/rs16030535 - 31 Jan 2024
Cited by 2 | Viewed by 2703
Abstract
Antenna arrays are used for signal processing in sonar and radar direction of arrival (DOA) estimation. The well-known array geometries used in DOA estimation are uniform linear array (ULA), uniform circular array (UCA), and rectangular grid array (RGA). In these geometries, the neighboring [...] Read more.
Antenna arrays are used for signal processing in sonar and radar direction of arrival (DOA) estimation. The well-known array geometries used in DOA estimation are uniform linear array (ULA), uniform circular array (UCA), and rectangular grid array (RGA). In these geometries, the neighboring elements are separated by a fixed distance λ/2 (λ is the wavelength), which does not perform well for d greater than λ/2. Uniform rectangular arrays introduce grating lobes, which cause poor DOA estimation performance, especially for wideband sources. Random sampling arrays are sometimes practically not realizable. Periodic geometries require numerous sensors. Based on the minimization of the number of sensors, this paper developed a novel pentagram array to address the problem of DOA estimation of wideband sources. The array has a fixed number of elements with variable element spacing and is abbreviated as (FNEVES), which offers a new idea for array design. In this study, the geometric structure is designed and mathematically analyzed. Also, a DOA signal model is designed based on a spherical radar coordinate system to derive its steering manifold matrix. The DOA estimation performance comparison with ULA and UCA geometries under the multiple signal classification (MUSIC) algorithm using different wideband scenarios is presented. For further investigation, more simulations are realized using the minimum variance distortionless (MVDR) technique (CAPON) and the subtracting signal subspace (SSS) algorithm. Simulation results demonstrate the effectiveness of the proposed geometry compared to its counterparts. In addition, the SSS, through the simulations, provided better results than the MUSIC and CAPON methods. Full article
(This article belongs to the Special Issue Advanced Array Signal Processing for Target Imaging and Detection)
Show Figures

Graphical abstract

18 pages, 2406 KiB  
Article
Research on Carbon Intensity Prediction Method for Ships Based on Sensors and Meteorological Data
by Chunchang Zhang, Tianye Lu, Zhihuan Wang and Xiangming Zeng
J. Mar. Sci. Eng. 2023, 11(12), 2249; https://doi.org/10.3390/jmse11122249 - 28 Nov 2023
Cited by 11 | Viewed by 1971
Abstract
The Carbon Intensity Index (CII) exerts a substantial impact on the operations and valuation of international shipping vessels. Accurately predicting the CII of ships could help ship operators dynamically evaluate the possible CII grate of a ship at the end of the year [...] Read more.
The Carbon Intensity Index (CII) exerts a substantial impact on the operations and valuation of international shipping vessels. Accurately predicting the CII of ships could help ship operators dynamically evaluate the possible CII grate of a ship at the end of the year and choose appropriate methods to improve its CII grade to meet the IMO requirement with minimum cost. This study developed and compared five CII predicting models with multiple data sources. It integrates diverse data sources, including Automatic Identification System (AIS) data, sensor data, meteorological data, and sea state data from 2022, and extracts 21 relevant features for the vessel CII prediction. Five machine learning methods, including Artificial Neural Network (ANN), Support Vector Regression (SVR), Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), are employed to construct the CII prediction model, which is then applied to a 2400 TEU container ship. Features such as the mean period of total swell, mean period of wind waves, and seawater temperature were considered for inclusion as inputs in the model. The results reveal significant correlations between cumulative carbon emissions intensity and features like cumulative distance, seawater temperature, wave period, and swell period. Among these, the strongest correlations are observed with cumulative distance and seawater temperature, having correlation coefficients of 0.45 and 0.34, respectively. Notably, the ANN model demonstrates the highest accuracy in CII prediction, with an average absolute error of 0.0336, whereas the LASSO model exhibits the highest error of 0.2817. Similarly, the ANN model provides more accurate annual CII ratings for the vessel. Consequently, the ANN model proves to be the most suitable choice for cumulative CII prediction. Full article
(This article belongs to the Special Issue Advanced Research on the Sustainable Maritime Transportation)
Show Figures

Figure 1

9 pages, 2798 KiB  
Article
An Artificial Neural Network to Eliminate the Detrimental Spectral Shift on Mid-Infrared Gas Spectroscopy
by Sanghoon Chin, Jérôme Van Zaen, Séverine Denis, Enric Muntané, Stephan Schröder, Hans Martin, Laurent Balet and Steve Lecomte
Sensors 2023, 23(19), 8232; https://doi.org/10.3390/s23198232 - 3 Oct 2023
Cited by 1 | Viewed by 1621
Abstract
We demonstrate the successful implementation of an artificial neural network (ANN) to eliminate detrimental spectral shifts imposed in the measurement of laser absorption spectrometers (LASs). Since LASs rely on the analysis of the spectral characteristics of biological and chemical molecules, their accuracy and [...] Read more.
We demonstrate the successful implementation of an artificial neural network (ANN) to eliminate detrimental spectral shifts imposed in the measurement of laser absorption spectrometers (LASs). Since LASs rely on the analysis of the spectral characteristics of biological and chemical molecules, their accuracy and precision is especially prone to the presence of unwanted spectral shift in the measured molecular absorption spectrum over the reference spectrum. In this paper, an ANN was applied to a scanning grating-based mid-infrared trace gas sensing system, which suffers from temperature-induced spectral shifts. Using the HITRAN database, we generated synthetic gas absorbance spectra with random spectral shifts for training and validation. The ANN was trained with these synthetic spectra to identify the occurrence of spectral shifts. Our experimental verification unambiguously proves that such an ANN can be an excellent tool to accurately retrieve the gas concentration from imprecise or distorted spectra of gas absorption. Due to the global shift of the measured gas absorption spectrum, the accuracy of the retrieved gas concentration using a typical least-mean-squares fitting algorithm was considerably degraded by 40.3%. However, when the gas concentration of the same measurement dataset was predicted by the proposed multilayer perceptron network, the sensing accuracy significantly improved by reducing the error to less than ±1% while preserving the sensing sensitivity. Full article
(This article belongs to the Special Issue Gas Sensors: Materials, Mechanism and Applications)
Show Figures

Figure 1

24 pages, 10476 KiB  
Article
Slightly Off-Axis Digital Holography Using a Transmission Grating and GPU-Accelerated Parallel Phase Reconstruction
by Hongyi Bai, Jia Chen, Laijun Sun, Liyang Li and Jian Zhang
Photonics 2023, 10(9), 982; https://doi.org/10.3390/photonics10090982 - 28 Aug 2023
Cited by 2 | Viewed by 1940
Abstract
Slightly off-axis digital holography is proposed using transmission grating to obtain quantitative phase distribution. The experimental device is based on an improved 4f optical system in which a two-window input plane is used to form the object beam and reference beam. Then, the [...] Read more.
Slightly off-axis digital holography is proposed using transmission grating to obtain quantitative phase distribution. The experimental device is based on an improved 4f optical system in which a two-window input plane is used to form the object beam and reference beam. Then, the two beams are diffracted into multiple orders by the transmission grating placed at the Fourier plane. By applying a modified Michelson configuration, the interference patterns can be generated by the object and reference beams from different diffraction orders. After translating the grating, a random phase shift can be introduced to the hologram. To demonstrate the feasibility of our method, both thick and thin phase specimens are retrieved using two carrier phase-shifting holograms. Furthermore, we use the phase reconstruction algorithm based on the NVIDIA CUDA programming model to reduce the retrieval time. Meanwhile, we optimize the discrete cosine transform (DCT)-based least-squares unwrapping algorithm to unwrap the phase. By porting the entire phase reconstruction process to the graphics processing unit (GPU), the phase retrieval acceleration and execution efficiency significantly improve. To demonstrate the feasibility of our method, it is found that our method can measure the surface profiles of standard elements, such as a plano-convex cylinder lens and a microlens array, with a relative error of about 0.5%. For holograms with a different phase shift, the root-mean-square (RMS) value of the phase difference for the main imaging region is about 0.2 rad. By accelerating the phase reconstruction with GPU implementation, a speedup ratio of about 20× for the thick phase specimen and a speedup ratio of about 15× for the thin-phase specimen can be obtained for holograms with a pixel size of 1024 × 1024. Full article
(This article belongs to the Special Issue Optical Measurement Systems)
Show Figures

Figure 1

12 pages, 2978 KiB  
Article
An Ytterbium-Doped Narrow-Bandwidth Randomly Distributed Feedback Laser Emitting at a Wavelength of 976 nm
by Danila A. Davydov, Andrey A. Rybaltovsky, Svetlana S. Aleshkina, Vladimir V. Velmiskin, Mikhail E. Likhachev, Sergei M. Popov, Dmitry V. Ryakhovskiy, Yuriy K. Chamorovskiy, Andrey A. Umnikov and Denis S. Lipatov
Photonics 2023, 10(8), 951; https://doi.org/10.3390/photonics10080951 - 19 Aug 2023
Cited by 2 | Viewed by 1935
Abstract
All-fiber, polarization maintaining, narrow-bandwidth, Yb-doped fiber lasers with randomly distributed feedback operated near 976 nm were realized for the first time. It was shown that the laser operated in a single, longitudinal mode regime during intervals of a few seconds. At other times, [...] Read more.
All-fiber, polarization maintaining, narrow-bandwidth, Yb-doped fiber lasers with randomly distributed feedback operated near 976 nm were realized for the first time. It was shown that the laser operated in a single, longitudinal mode regime during intervals of a few seconds. At other times, the laser generated a few longitudinal modes, but its bandwidth was always below the resolution of the optical spectrum analyzer (0.02 nm). The linewidth of each single longitudinal mode of the laser was estimated to be below 20 kHz. The reasons for this observed laser behavior were discussed and methods for achieving stable, continuous wave operation in the single-longitudinal-mode regime were proposed. Full article
(This article belongs to the Special Issue Fiber Laser and Their Applications)
Show Figures

Figure 1

10 pages, 2481 KiB  
Communication
Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings
by Airull Azizi Awang Lah, Abdul Hadi Sulaiman, Fairuz Abdullah, Sumiaty Ambran, Eng Khoon Ng, Mohammed Thamer Alresheedi, Mohd Adzir Mahdi and Nelidya Md Yusoff
Photonics 2023, 10(8), 924; https://doi.org/10.3390/photonics10080924 - 11 Aug 2023
Cited by 3 | Viewed by 2018
Abstract
We demonstrate a generation of three lasing wavelengths with the assistance of Rayleigh backscattering as the stabilizer of peak power variations. The proposed laser consists of a combination of the semiconductor optical amplifier (SOA) and erbium-doped fiber amplifier (EDFA) as the amplifying media. [...] Read more.
We demonstrate a generation of three lasing wavelengths with the assistance of Rayleigh backscattering as the stabilizer of peak power variations. The proposed laser consists of a combination of the semiconductor optical amplifier (SOA) and erbium-doped fiber amplifier (EDFA) as the amplifying media. Three fiber Bragg gratings are employed as the selective wavelength selectors at 1544, 1547 and 1550 nm. At 110 mA SOA current and 18 dBm EDFA output power, a flattened output spectrum with 0.9 dB peak power variation is attained. In terms of stability, the maximum peak power fluctuation for the individual laser is 0.24 dB within 120 minutes observation period. Without the Rayleigh backscattering effect, the peak power flatness is severely degraded. This shows that the weakly distributed photons can be utilized as peak power stabilizers in fiber laser systems. Full article
Show Figures

Figure 1

Back to TopTop