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Abstract: The Carbon Intensity Index (CII) exerts a substantial impact on the operations and valuation
of international shipping vessels. Accurately predicting the CII of ships could help ship operators
dynamically evaluate the possible CII grate of a ship at the end of the year and choose appropriate
methods to improve its CII grade to meet the IMO requirement with minimum cost. This study
developed and compared five CII predicting models with multiple data sources. It integrates diverse
data sources, including Automatic Identification System (AIS) data, sensor data, meteorological data,
and sea state data from 2022, and extracts 21 relevant features for the vessel CII prediction. Five
machine learning methods, including Artificial Neural Network (ANN), Support Vector Regression
(SVR), Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient Boosting (XG-
Boost), and Random Forest (RF), are employed to construct the CII prediction model, which is then
applied to a 2400 TEU container ship. Features such as the mean period of total swell, mean period of
wind waves, and seawater temperature were considered for inclusion as inputs in the model. The
results reveal significant correlations between cumulative carbon emissions intensity and features
like cumulative distance, seawater temperature, wave period, and swell period. Among these, the
strongest correlations are observed with cumulative distance and seawater temperature, having
correlation coefficients of 0.45 and 0.34, respectively. Notably, the ANN model demonstrates the
highest accuracy in CII prediction, with an average absolute error of 0.0336, whereas the LASSO
model exhibits the highest error of 0.2817. Similarly, the ANN model provides more accurate annual
CII ratings for the vessel. Consequently, the ANN model proves to be the most suitable choice for
cumulative CII prediction.

Keywords: water transport; carbon intensity prediction of ship; machine learning; fuel consumption
of ship; data fusion

1. Introduction

The IMO Marine Environment Protection Committee (MEPC 76), which took place
in June 2021, introduced the Carbon Intensity Indicator (CII). This indicator is defined as
the total amount of CO; emissions divided by the deadweight and the distance traveled
per year. According to the requirements of the International Maritime Organization (IMO),
starting from 1 January 2023, ships of 5000 GT or above on international voyages will be
required to determine their operational carbon intensity indicator (CII) rating, and the
CII rating requirement will be increased by 2% per year until 2026. After that time, the
CII rating requirement is likely to be further increased to meet the requirements of the
IMO 2023 international shipping greenhouse gas emission reduction strategy [1]. The CII
ratings of ships are categorized into five classes from high to low: A, B, C, D, and E. Ships

J. Mar. Sci. Eng. 2023, 11, 2249. https:/ /doi.org/10.3390/jmse11122249

https:/ /www.mdpi.com/journal /jmse


https://doi.org/10.3390/jmse11122249
https://doi.org/10.3390/jmse11122249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-8027-3209
https://doi.org/10.3390/jmse11122249
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11122249?type=check_update&version=1

J. Mar. Sci. Eng. 2023, 11, 2249

20f18

need to have a CIl rating of at least C. If a ship is rated E, or if a ship has been rated D for
three consecutive years, a corrective action plan needs to be developed as part of the ship’s
energy efficiency management plan [2].

In addition, as CII rating starts affecting the price and contract of ship chartering,
a number of ClI-related clauses have been added to the charter party. For example, the
burden of CII is solely with the charterer [3]. If a chartered vessel does not have a CII
rating of C, it may result in a breach of contract, leading to financial loss for the charterer.
Increased waiting time in port, vessel idling, and charter suspension may have a negative
impact on a ship’s carbon intensity [4]. It is important for shipowner or operators to
dynamically monitor and manage ship CII rating.

It is prudent for shipowners to monitor and assess the ship’s actual CII in real time in
order to determine how close it is to the required CII and to take appropriate measures and
actions to avoid getting into a situation that would result in a lower CII rating [4]. Accurate
prediction of the carbon intensity of a ship is an important basis for the future control of the
ClIl rating of a ship. Previous studies are mainly focused on calculating and predicting ship
fuel consumption, and very few studies investigate the prediction of ship CII prediction
and upgrading.

Accurate prediction of the CII of a ship enables the assessment of the year-to-year
change in CII grade of the ship. This foresight allows proactive measures to be taken,
ensuring compliance with the annual carbon intensity qualification. Such proactive man-
agement not only aids in reducing carbon emissions and energy consumption but is also
crucial in chartering contracts. Precise CII prediction prevents shipowners from incurring
liquidated damage costs by ensuring the ship’s carbon intensity level is maintained within
the contractual requirements.

The main purpose of this work is to investigate the performance of five machine
learning models for carbon intensity prediction using multiple data sources, including AIS
data, fuel flow sensor data, meteorological data and sea state data, to identify the most
suitable models for carbon intensity prediction. The best model will be utilized to further
predict the CII rating at the end of the year. One container ship is taken as an example to
illustrate the development process. This work first analyzes the change in carbon intensity
of ships over a one-year period by using a carbon intensity assessment methodology.
Second, the carbon intensity obtained from this assessment method is used as a prediction
target to compare different machine learning models for carbon intensity prediction. This
paper also analyzes the correlation between factors affecting fuel consumption and carbon
intensity. The ultimate goal of this paper is to assess the accuracy of the carbon intensity
classes obtained from the prediction using machine learning models.

This paper focuses on the urgent need for an annual rating of CII of ship operation.
Taking a container ship with a capacity of about 2400 TEU as an example, this study uses
the ship’s AIS data, real-time fuel consumption data, sensor data, and meteorological data
from 2022 to compare and analyze the accuracy of the different machine learning methods
for predicting the CII of the ship to provide support for the prediction of CII for the ship
and the ship’s annual rating.

The remainder of this paper is organized as follows. Section 2 reviews related works
on the prediction of fuel consumption and carbon intensity, while Section 3 introduces
the main datasets used in our study and describes the processes and methods used to
predict CII. Section 4 presents and discusses the results of the study. Finally, conclusions,
limitations, and future work are presented in Section 5.

2. Related Work

Currently, related research in the same field consists of studies on the prediction of
fuel consumption of ships, the prediction of resistance, and how to improve the carbon
intensity level. However, there are fewer studies on the prediction of carbon intensity of
ships, while most scholars have conducted studies on the prediction of fuel consumption
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and resistance of ships, and machine learning models have been frequently used for
the prediction.

Wang carried out feature compression of the ship energy consumption data by means
of the LASSO regression algorithm, and the results showed that the prediction effect of
LASSO is better than neural network, support vector regression, and other models [5].
Jeon proposed a regression model based on an artificial neural network that adjusted the
hyperparameters of the neural network, such as hidden layer, neuron, activation function
and other hyperparameters. And the results showed that ANN has a higher prediction
accuracy than the polynomial regression and support vector machine in fuel consumption
prediction [6]. Ren compared the prediction results under different data sources using a
ridge regression model based on AIS data, MRV data, and MRV-normalized data, respec-
tively, and found that the model based on MRV report achieved the best results [7]. Li
investigated the results of various prediction models with different combinations of data
sources based on a variety of data sources, such as logbooks, meteorological data, and AIS
data [8-10]. Uyanik proposed the methods of kernel ridge regression, Bayesian ridge regres-
sion, and Adaboost, and found that the ridge regression model had a higher accuracy [11].
In summary, different models are used to study the prediction of ship fuel consumption.
The research methods are mainly based on neural networks, support vector machines,
LASSO regression, and integrated learning models [12,13]. Under different scenarios and
datasets, the best prediction models are different. In the area of resistance prediction, Yidiz
presented a method for predicting the residual drag coefficient of a trimaran using artificial
neural networks that had parameters such as lateral and longitudinal positions of the side
hulls, longitudinal buoyancy centers, and Froude number [14]. Marti¢ successfully applied
artificial neural networks to the assessment of additional resistance on container ships [15].

In terms of carbon intensity, previous studies are mainly focused on how to upgrade
ships to make them more efficient and attractive to charterers and to increase their compet-
itiveness in the market [16]. Wang analyzes the effectiveness of four current CII metrics
and considers designing an average CII calculation method for shipping companies rather
than individual vessels [17]. Gianni considered a 180,000 GRT cruise ship as a case ship
and designed seven scenarios to calculate the CII with reference to its power plant, then
analyzed the impact of solid oxide fuel cells (SOFC) on the CII [18]. Hoffmann analyzed
the connection between biofouling and ship CII and provided insights and strategies for
improving hull performance related to the use of antifouling coatings [19]. During the
gap period when the industry was waiting for alternative fuel solutions [20], Bayrakta
designed seven different scenarios to test the EEXI and CII values of different vessels with
different engine configurations and analyzed the impact of the utilization of two alternative
fuels, LNG and methanol, on the EEXI and CII by calculating the EEXI and CII values
of the vessels for the years 2019 to 2026 [21]. In addition, some studies have developed
mathematical models to analyze the factors affecting carbon intensity. Elkafas found that
carbon intensity values depend on the number of trips per year, the number of passengers
carried, and the amount of fuel consumed, and that proper deceleration reduces the ship’s
emission rate [22]. Sun modeled the speed of a time-chartered vessel with CII penalties
included and found that the larger the vessel, the more carbon emissions, and that carbon
intensity and CII penalties are reduced when the charter speed is reduced for the same
amount of time [23].

In general, compared with studies on fuel consumption, research on carbon intensity
and CII grating are relatively rare; those that exist are mainly focused on factors that affect
CII grading and how to upgrade CllI level. Studies on how to predict CII and CII grating are
still very limited. Although the fuel consumption of ships is closely related to the carbon
intensity of a ship’s operation, it is still rare to find studies that use the carbon intensity of
ships as a direct prediction target.
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3. Data and Methodology
3.1. Data
3.1.1. Case Ship Data

This study takes a container ship of 2400 TEU as an example. The information related to
this container ship is listed in Table 1. The case ship has one main engine and two auxiliary
engines. The main engine provides propulsion power, and the auxiliary engines provide
electricity to the ship.

Table 1. Main information of the analyzed container ship.

Vessel Type Container
Built 2019
Gross tonnage 26,771
Deadweight 35,337
Length 185
Breadth 32
Number of main engines 1
Main engine power 13,700 kW
Number of auxiliary engines 2
Auxiliary engine power 1370 kW, 1840 kW

The data sources for this study mainly include AIS data, sensor data, meteorological
data, and sea state data.

3.1.2. AIS Data

AIS data provided by shipping companies. The ship’s AIS data include dynamic and
static data, and the update frequency differs according to the ship’s speed and position.
In addition to vessel identification and specific information (MMSI, Call Sign, Name,
Draught, Length, Breadth), AIS data also contains specific navigational data, including
Date, Longitude, Latitude, Speed, Course, ROT. AIS data useful for this paper are listed in
Table 2.

Table 2. Main columns and sample data of the AIS data.

Course Speed ROT Draught
Date Lon Lat ©) (kn) ©ls) (m)
2022-01-01 00:26:16 123.3059 30.9999 357.0 16.2 348.0 8.7
2022-01-01 00:28:21 123.3048 31.0051 345.0 16.1 340.0 8.7
2022-01-01 00:39:02 123.2830 31.0502 337.0 16.5 335.0 8.7
2022-01-01 00:43:50 123.2739 31.0711 342.0 16.6 339.0 8.7

The generation of missing data is necessary due to large amounts of missing infor-
mation in some areas due to weather and location, which may make it impossible to fully
calculate the distance traveled by the case vessel. This paper uses the linear interpolation
method to interpolate the information in Table 2 with a time interval of 5 min. According
to the change of latitude and longitude of neighboring AIS points, the sailing distance of
the ship can be calculated. Data containing sailing distances are listed in Table 3.

Table 3. AIS data with 5 min sampling and sailing distances.

Date Lon Lat Distance (m)
2022-01-01 00:25:00 123.3054 31.0025 294.5
2022-01-01 00:26:16 123.3059 30.9999 588.9
2022-01-01 00:28:21 123.3048 31.0051 2570.4

2022-01-01 00:30:00 123.2942 31.0263 2858.5
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Since the frequency of the collected meteorological data and sea state data is hourly, to
maintain a uniform time resolution, the ship’s AIS data is aggregated according to the hour
in this study [9]. In this paper, the sum of the distances traveled by the case ships and the
average of the other data in the AIS data are calculated at intervals of one hour.

The speed and range data are distributed as shown in Figures 1 and 2 below.
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Figure 1. Distribution of the speed of the case ship.
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Figure 2. Distribution of the distance of the case ship.

From Figures 1 and 2, it can be found that the data processing ensures the consistency
of the distribution of the speed and range data under one hour of data collection frequency.
Because of the deviation between the voyage calculated by latitude and longitude in AIS
data and the actual voyage, the speed and voyage data in the range of 20~25 do not
correspond exactly.

3.1.3. Sensor Data

The case ship is equipped with various sensors to obtain real-time data about the ship.
The main engine fuel consumption rate (MEActFOCons), generator fuel consumption rate
(DGACctFOCons), and boiler fuel consumption rate (BlrActFOCons) are recorded using
mass flow meters. The main engine rotational speed (MERpm) and trim of the case ship
(Trim) are recorded using the corresponding sensor data. The sensor data used in this paper
are listed in Table 4.
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Table 4. Main columns and sample data of sensor data.
. MEActFOCons DGACctFOCons  BlrActFOCons MERpm Trim
PCDate PCTime (kg/h) (kg/h) (kg/h) (t/min) (m)
2022-01-01 00:00:03 1256.8874 114.7474 0 81 3.97
2022-01-01 00:00:13 1251.0776 115.6824 0 81 3.06
2022-01-01 00:00:26 1239.1414 116.1036 0 82 3.1
2022-01-01 00:00:36 1238.5380 117.4958 0 82 3.69

The original unit of the fuel consumption of the main engine, auxiliary engine, and
boiler is kg/h, which needs to be converted into kg according to the time interval of each
data point. The converted fuel consumption data are listed in Table 5.

Table 5. Sensor data with converted fuel consumption data.

PCDate PCTime MEACctFOCons DGACctFOCons BlrActFOCons

(kg) (kg) (kg)
2022-01-01 00:00:03 1.0474 0.0956 0
2022-01-01 00:00:13 3.4752 0.3213 0
2022-01-01 00:00:26 4.4746 0.4192 0
2022-01-01 00:00:36 3.4403 0.3263 0
2022-01-01 00:00:36 3.4403 0.3263 0

To maintain a uniform time resolution for data fusion, the data collected through
the sensors also needs to be aggregated on an hourly basis. In this paper, the sum of the
fuel consumption and the average of the other data in the sensor data are calculated at
intervals of one hour. It was observed that the processed data was found to be less than 8760
(24 x 365) data, so there were also missing values in the sensor data. In this paper, linear
interpolation is also taken for the data in the sensor to generate the missing data with a
time interval of 1 h. On this basis, the total amount of heavy fuel and light fuel in each
hour was calculated, and the total amount of carbon dioxide in each hour was calculated
according to the emission factor. Carbon dioxide data are listed in Table 6.

Table 6. Carbon dioxide emissions at different times.

Date CO; (kg)
2022-01-01 00:00:00 4180.33
2022-01-01 01:00:00 4208.82
2022-01-01 02:00:00 4172.76
2022-01-01 03:00:00 4137.75

3.1.4. Meteorological and Sea State Data and Processing

In this paper, meteorological and sea state data are obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF) and the Copernicus Marine Service
(Copernicus). The data from ECMWEF cover a wide range of meteorological data sets
from 1979 to present, including wind component at 10 m sea level, temperature, humidity,
characteristic wave height, and cycle frequency. The scope of ECMWF data covers several
meteorological datasets from 1979 to the present, including the wind component at 10 m
above sea level, temperature, humidity, characteristic wave height, and cycle frequency,
etc. The scope of Copernicus data covers several sea state datasets for each year, including
seawater temperature, the current velocity component at different seawater depths, etc.
The meteorological dataset used in this paper was collected at a frequency of 1 h, and the
data are downloaded in the form of a grid divided according to latitude and longitude.
The collected data information is recorded at each grid point, and there is a wide range of
choices for the grid size; the minimum grid density is 0.125° x 0.125°, the maximum grid
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density is 1° x 1°, and the grid density selected in this paper is 0.25° x 0.25°. The sea state
dataset used in this paper was also collected at a frequency of 1 h, and the current velocity
component of seawater at a depth of 0.5 m was selected as the basis.

For the processing of meteorological data and sea state data, the latitude and longitude
in the AIS data are first utilized to obtain the environmental data corresponding to the
ship’s position [8]. Eastward wind speed at 10 m above sea level (u10), northward wind
speed at 10 m above sea level (v10), mean direction of total swell (mdts), mean direction
of wind waves (mdww), mean period of total swell (mpts), mean period of wind waves
(mpww), mean wave direction (mwd), mean wave period (mwp), sea surface temperature
(sst), significant_height of combined wind waves and swell (swh), significant height of
total swell (shts) and significant height of wind waves (shww) are recorded u ECMWE.
Eastward sea water velocity (uo) and northward sea water velocity (vo) are recorded from
Copernicus. The environmental data used in this paper are listed in Table 7.

Table 7. Meteorological data and sea state data from time—space matching acquisition.

Data Name Sample 1 Sample 2
date 2022-01-01 00:00:00 2022-01-01 01:00:00
ul0 —2.4207 —2.6627
v10 0.3611 0.5708
mdts 14.6175 14.2658

mdww 70.0711 91.5424
mpts 6.0399 6.0044
mpww 2.8725 2.1009
mwd 14.6768 14.4249
mwp 6.0288 5.9816
sst 289.3203 288.498
swh 0.9627 0.9532
shts 0.9616 0.9507
shww 0.0295 0.0578
vo 0.1896 0.1587
uo —0.0190 —0.0428

Since the collected wind speed data and flow velocity data are east-west and north—
south components, vector synthesis is needed to obtain the actual wind speed, wind
direction, current speed, and current direction. The schematic of direction synthesis is
shown in Figure 3.

true direction
Ve — — — —

u
Figure 3. Schematic of vector synthesis.

Finally, it is necessary to convert the directions in the meteorological data into the
relative directions of the ship in combination with the actual heading of the ship, and
further fuse the preprocessed AIS data, sensor data, meteorological data, and sea state data
according to the time [9,10].
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3.1.5. Calculation of Cumulative Carbon Intensity of Ships

Finally, it is necessary to calculate the cumulative carbon intensity of the ships up to
each point of the data, as well as the ratio of the total cumulative CO, mass of the ship at
each moment in time to the total transport workload it carries out, by using the following
formula [16]:

M;
Cll; = —— 1
= M)
where M; is the total amount of carbon dioxide emission of the ship at the time, in kg and
W; is the total transportation workload accomplished by the ship at the time, in t-n mile.

The formula for calculating the total amount of carbon dioxide emission M; at the
time of the ship is as follows:

M; = ) FCj x CF; ()
where j is the fuel type; FCj; is the total fuel consumption of the ship at the time, kg; and
CF; is the fuel mass to carbon dioxide mass conversion factor for fuel j.

The formula for calculating the total transportation workload of the ship at the time is

as follows:
Wt =Cx Dt (3)

where C is the DWT of the ship and Dy is the distance sailed by the ship at the time, n mile.
Equation (1) shows that CII could be calculated from carbon emission, deadweight
tons, and sailing distance. Carbon emission could be directly computed by fuel consump-
tion, which is collected through the mass flow meter on the case ship.
In addition, the variation of CII with time for the ships studied in this paper is shown
in Figure 4.

11
_10-
9
k=
s 97
@]
7_
6_

T T T T T
2022-01 2022-03 2022-05 2022-08 2022-10
Date

Figure 4. Time distribution of carbon intensity data.

Figure 4 shows that the fluctuations are large in January, but gradually stabilize in
the range of 7 to 8 in the time that follows, which occurs because ships start with small
voyages and relatively large carbon dioxide emissions, and as the cumulative value of the
voyage increases, the calculation of the cumulative CII in conjunction with the deadweight
tonnage leads to a certain degree of decrease and stabilization of its future value.

The cumulative CII of the ship mainly focuses on the situation when the ship is in
sailing condition. In this paper, it is assumed that a ship is in sailing condition when its
speed is more than 3 knots. Therefore, in this study, only data with speed greater than or
equal to 3 knots are considered [24]. The total number of processed data is 4061, and some
data samples are shown in Table 8.
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Table 8. Sample data of the input for model development.

Data Name Abbreviation Data Sources Unit Sample 1
speed speed AIS kn 16.4911
rate of turning rot AIS °/s 270.0357
wind speed wind speed ECMWEF m/s 2.4476
draught draught AIS m 8.7000
distance distance AIS n mile 10.2731
cumulative value of distance distance sum summation n mile 10.2731
mean period of total swell mpts ECMWEF s 6.0399
mean period of wind waves mpww ECMWF s 2.8726
mean period of wave mwp ECMWEF s 6.0288
height of combined wind waves and swell shww ECMWE m 0.9628
height of total swell swh ECMWEF m 0.9617
height of wind waves wwh ECMWEF m 0.0295
current speed current speed Copernicus m/s 0.1906
wind direction wind direction vector synthesis ° 4.8576
current direction current direction vector synthesis ° 80.6408
swell direction swell direction ECMWEF ° 100.9890
wind waves direction dww ECMWF ° 156.4426
wave direction wd ECMWEF ° 101.0483
sea surface temperature sst ECMWF °C 16.1703
merpm merpm sensors r/min 81.5403
trim trim sensors m 3.4338
cumulative CII cn formula calculation g/t-n mile 11.5154

3.2. Methodology
3.2.1. Research Framework

The main research framework could be divided into several steps. First, the ship AIS
data, sensor data, and meteorological and sea state data are cleaned and preprocessed, and
temporal and spatial fusion are performed. Second, relevant features are extracted, and
the correlation between each feature is analyzed. Third, the data are divided into training
and testing sets in the ratio of 0.75:0.25 (3046 trainset:1015 test set) according to the time
series [25]. Fourth, five machine learning models are used to train and optimize the hyper-
parameters of ANN, XGBoost, and RF models by random search and cross-validation, and
the parameters of LASSO and SVR are optimized by grid search because of their fewer
hyper-parameters. Figure 5 shows the general framework of ship CII prediction.

3.2.2. Model Performance Metrics

In this paper, mean absolute error (MAE), mean square error (MSE), root-mean-
square-error (RMSE), and mean absolute percentage error (MAPE) are used to evaluate the
performance of the model. The evaluation formulas are calculated as follows:

1 (& A
©)
(6)

@)
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Data sources

A
where m is the number of samples; y; is the true value; and y; is the predicted output value
of the model.
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Figure 5. Ship carbon intensity prediction modeling framework.

3.2.3. CII Rating Calculation Model

The carbon intensity rating of a ship must be determined annually using the Carbon
Intensity Index (Required CII) of the ship. This is based on the CII reference baseline for a
specific ship type for the year 2019, and its rating boundaries are then determined based on
the boundary parameters of the ship type. This allows its annual carbon intensity rating to
be found. The specific calculation formula is as follows [16]:

Cll=a-C°¢ 8)

where Cll ¢ is the reference baseline value of CII in 2019, g/(DWT-n mile) or g/(GTn
mile); C is the deadweight tonnage (DWT) of the ship; and a and c are the parameters for
the different ship types. Since the research object of this paper is a container ship, a = 1984
and ¢ = 0.489 [18].

The required CII is calculated as follows [26]:

zZ

where Z is the discount factor of CII for different years; the year of study for this paper is
2022, which has the value of 3 [26]. For the convenience of rating, the rating mechanism
is used to define four boundaries per year, which facilitates the division into five grades.
Accordingly, the rating can be determined by comparing the annual CII of the ship with the
boundary value, and the formula for calculating the boundary value B; is as follows [27]:

Bi = exp(di) . CHReq (10)
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wherei=1, 2, 3,4, and exp(d;) is the boundary parameter of the container ship. As shown
in Table 9 [27].

Table 9. Carbon intensity rating boundary parameters for container ships.

Ship Type Capacity exp(dq) exp(dy) exp(ds) exp(dy)
container ship DWT 0.83 0.94 1.07 1.19

4. Results and Discussion
4.1. Feature Correlation Analysis

Since the carbon intensity of a ship is calculated based on the ship’s fuel consumption,
carbon emission factor, deadweight tonnage, and voyage, this paper extracts 21 relevant
features that affect the fuel consumption as inputs to the cumulative carbon intensity
prediction model based on the past research [8-10,25]. After normalizing all data, the
correlation analysis is carried out, as shown in Figure 6. It was found that the correlation
between the features, such as seawater temperature, wave period, and swell period, and the
cumulative CII of the ship is high, which is different from the results of previous studies. In
previous studies [12,28], it was found that the meteorological data, such as navigation speed,
main engine speed, and wave height, have significant influence on the fuel consumption
of the ship, and the CII of the ship needs to be further calculated according to the fuel
consumption data to be obtained. However, Figure 6 shows that characteristics such as
speed and engine speed do not show strong correlation with the cumulative CII of the ship.
This probably occurs because this paper focuses on the prediction of the cumulative CII,
which is calculated by the cumulative carbon emission and cumulative voyage, making
it impossible to accurately understand the relationship between the cumulative carbon
intensity and characteristics such as speed and engine speed.
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Figure 6. Cumulative carbon intensity and characteristic correlation analysis of ships.

4.2. Analysis of Carbon Intensity Prediction Models

In this paper, Windows 11, 12th Gen Intel(R) Core(TM) i7-12700H processor, 16 G
RAM, and python version 3.9 were used as the experimental environment. The study takes
the cumulative carbon intensity value of the ship as the prediction target and conduct
experiments using five machine learning models in both the parameterized and unpa-
rameterized cases. In the case of tuning, this paper uses random search and grid search
combined with 4-fold cross-validation to optimize the hyper-parameters of ANN, XGBoost,
RF and LASSO, SVR models, respectively, in which the search range of the optimizer in the
ANN model is (SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam), denoted by
the abbreviation (S,N), and the search ranges of the remaining hyperparameters, the default
values in the case of no parameter tuning, and the search results are shown in Table 10.
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Table 10. Comparison of hyperparameter optimization results of different models.

Models Hyperparameter Default Search Ranges 1 2 3 4 5
Names Values
optimizer Adam (S,N) RMSprop  Adamax Adamax  RMSprop  Adamax
ANN neurons 100 (10,100) 40 80 30 100 80
epochs 100 (10,200) 50 10 100 200 50
batch_size 32 (10,100) 90 10 40 20 70
C 1 (0.01,10) 0.1
SVR gamma scale (0.0001,10) 1
alpha 1 (0.00001,10) 10
LASSO max_iter 1000 (0,1000) 100
subsample None (0.5,1) 0.7 0.6 0.9 0.7 0.8
n_estimators 100 (0,300) 300 240 233 260 240
min_child_weight None (0,10) 4 7 6 6 7
XGBoost max_depth None (2,10) 5 4 3 4 3
learning_rate None (0.01,0.3) 0.21 0.3 0.21 0.1 0.21
gamma None (0,10) 0 2 7 6 6
colsample_bytree None 0.5,1) 0.9 0.8 0.9 0.6 0.6
n_estimators 100 (0,300) 233 68 68 266 200
RF min_samples_split 2 (1,20) 10 16 17 6 18
max_depth None (2,10) 4 8 4 4 4

The evaluation indexes corresponding to the combination of hyperparameters for each
optimization of each model were calculated by (4)—(7), as shown in Table 11.

Table 11. Comparison of predictive performance of models.

Number of

Models mber MAE MSE RMSE MAPE
Optimizations

1 0.1179 0.0154 0.1243 1.5333

2 0.0568 0.0045 0.0673 0.7432

3 0.0476 0.0034 0.0591 0.6186

ANN 4 0.1375 0.0204 0.1431 1.7895

5 0.0524 0.0040 0.0634 0.6808

None 0.2181 0.5513 0.7424 2.8392

1 0.1037 0.0123 0.1109 1.3489

SVR None 0.4203 0.1946 0.4412 54675

1 0.2817 0.0864 0.2940 3.6654

LASSO None 0.3687 0.1765 0.4201 3.9968

1 0.1050 0.0127 0.1131 1.3667

2 0.1083 0.0144 0.1201 1.4091

3 0.1384 0.0207 0.1439 1.8009

XGBoost 4 0.0981 0.0112 0.1060 1.2770

5+ 0.0968 0.0111 0.1055 1.2599

None 0.1203 0.0161 0.1272 1.5658

1 0.1262 0.0173 0.1317 1.6426

2+ 0.1213 0.0162 0.1275 1.5777

3 0.1266 0.0174 0.1322 1.6471

RF 4 0.1253 0.0171 0.1309 1.6304

5 0.1262 0.0173 0.1317 1.6422

None 0.1267 0.0177 0.1331 1.6487

* Indicates the parameter combination with the best performance of the results in the five replicated experiments.

The results show that, by repeating the experiments with random search, the ANN,
XGBoost and RF models reach the optimum in the third, fifth, and second optimization,
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respectively, and for any kind of evaluation indexes, the error indexes obtained from the
third optimization result of the ANN model are the smallest, and its prediction effect is
better than that of the other models, while the performance of the LASSO is the poorest.

The experiments are carried out without setting the hyperparameters of the model,
and the results are visualized and compared with the tuned models; the specific results are
shown in Figure 7.
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Figure 7. Performance comparison of different models before and after hyperparameter tuning.

Figure 7 shows that the error metrics of each model decreased after hyperparameter
tuning compared to the model with default hyperparameters. Moreover, the tuning has the
least enhancement for the XGboost and RF models.

In addition, in order to verify the influence of data dimensions on modeling [8-10,29,30]
with dataset Set 1 (AIS, sensor, meteorological and sea state data), the above models are
used to repeat the experiments five times in the datasets Set 2 (AIS and sensor data), Set 3
(AIS, sensor, meteorological data), and Set 4 (AIS, sensor and sea state data); the optimal
parameter combination results are shown in Table 12. The comparison results of the optimal
prediction performance of different models corresponding to each dataset are shown in
Table 13.

Table 12. Comparison of model hyperparameter optimization results on different datasets.

Hyperparameter

Models Set1 Set 2 Set 3 Set4
Names
Optimizer Adamax Adamax RMSprop Nadam
Neurons 30 40 80 10
ANN Epochs 100 200 150 200
batch_size 40 40 90 40
C 0.1 10 0.1 0.1
SVR gamma 1 0.0001 1 1
Alpha 10 0.0093 6.5793 0.0107
LASSO max_iter 100 1000 100 300
subsample 0.8 0.7 0.9 0.8
n_estimators 240 200 100 133
min_child_weight 7 0 5 8
XGBoost max_depth 3 5 7 2
learning_rate 0.21 0.11 0.11 0.21
Gamma 6 7 1 1
colsample_bytree 0.6 0.9 0.8 0.5
n_estimators 68 266 233 266
RF min_samples_split 16 3 13 13

max_depth 8 6 6 5
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Table 13. Comparison of best prediction performance of model on different datasets.

Models Data Set MAE MSE RMSE MAPE
Set 1 0.0476 0.0034 0.0591 0.6186

Set 2 0.0336 0.0015 0.0394 0.4377

ANN Set 3 0.0352 0.0016 0.0410 0.4601
Set 4 0.0338 0.0017 0.0424 0.4402

Set 1 0.1037 0.0123 0.1109 1.3489

Set 2 0.1694 0.0302 0.1739 22042

SVR Set 3 0.1037 0.0123 0.1109 1.3489
Set 4 0.1037 0.0123 0.1109 1.3489

Set 1 0.2817 0.0864 0.2940 3.6654

Set 2 0.2655 0.0750 0.2738 34552

LASSO Set 3 0.2677 0.0761 0.2759 3.4828
Set 4 0.2652 0.0748 0.2735 3.4509

Set 1 0.0968 0.0111 0.1055 1.2599

Set 2 0.1293 0.0183 0.1353 1.6828

XGBoost Set 3 0.0943 0.0104 0.1024 1.2273
Set 4 0.1175 0.0155 0.1245 1.5286

Set 1 0.1213 0.0162 0.1275 1.5777

Set 2 0.1188 0.0157 0.1253 1.5452

RE Set 3 0.1169 0.0152 0.1234 1.5207
Set 4 0.1218 0.0163 0.1280 1.5844

Table 13 shows that, by validating different datasets, SVR is less affected by the datasets
and has the same performance on Set 1, Set 3, and Set 4 datasets. The rest of the models
perform better on the Set 3 dataset after dimensionality reduction, which occur because
dimensionality reduction helps the model remove the redundant information, reduces
the learning interference of the model, and improves the generalization ability of the
model. In addition, compared with other models, the ANN model performs optimally in
various situations.

According to the optimal hyper-parameter combinations obtained from each model
experiment and input into the model again, the carbon intensity error curves of the ship
under the five prediction models are depicted, as shown in Figure 8.
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Figure 8. Comparison of the results of the cumulative carbon intensity prediction errors of
the models.

It can be found through Figure 8 that, with each model performing as well as possible,
the ANN model predicts the carbon intensity obtained with an error closest to 0, which is
the smallest error among the five models.
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4.3. Analysis of Carbon Intensity Rating Results

The carbon intensity level boundaries for the case ship can be calculated according to
Equation (10), and the results are presented in Table 14.

Table 14. Carbon intensity rating boundary of container ships.

Boundary Level
<9.5347 A
9.5347~10.7983 B
10.7983~12.2917 C
12.2917~13.6702 D
>13.6702 E

Since this paper divides the training set and test set according to the time series, the
last value in the prediction result of each model is selected as the carbon intensity prediction
result of the year and compared with the boundary parameters to determine the carbon
intensity level achieved in the year, as shown in Table 15.

Table 15. Comparison of annual carbon intensity errors and ratings across models.

Annual Carbon

Models . Errors Level
Intensity

ANN 7.6330 0.1334 A
SVR 7.5734 0.1930 A
LASSO 7.3699 0.3965 A
XGBoost 7.5383 0.2281 A
RF 7.5431 0.2233 A
Real 7.7664 0 A

Table 14 show that the carbon intensity value of the container ship itself for the year
2022 is within the range of 9.5347, and the prediction error value of the model will not be
too large; the result is that the predicted carbon intensity value of each model is within the
range of 9.5347, and therefore, the rating results of each model are in line with the actual
results. In addition, the annual carbon intensity value predicted by the ANN model has the
smallest error with the actual value, so the ANN model is more suitable for predicting the
carbon intensity of ships.

According to the results of the study, all models predicted carbon intensity within
acceptable limits. In addition, since past studies did not analyze the factors affecting
the carbon intensity of ships in depth, and the carbon intensity was calculated from fuel
consumption, this study considers the relevant factors affecting the fuel consumption as
the input features of the models in this paper. Since this paper considers cumulative carbon
intensity as a prediction target, it is difficult to construct a strong correlation between fuel
consumption characteristics and cumulative carbon intensity in terms of feature correlation.

In terms of carbon intensity prediction, five machine learning models commonly
used in the past are selected for prediction in this paper. Since it is unknown under
which combination of data the model achieves the highest accuracy, this paper divides the
preprocessed data into four categories (Set 1: AIS, sensor, meteorological, and sea state
data, Set 2: AIS and sensor data, Set 3: AIS, sensor, and meteorological data, and Set 4:
AIS, sensor, and sea state data) and analyzes how the weather and sea state data affect the
carbon intensity prediction model. In addition, this paper also gives specific instructions for
setting and adjusting the hyperparameters of the model, and the hyperparameter tuning
also proves to be effective for the carbon intensity prediction model.

This paper diverges from prior studies in several key aspects. First, it focuses on carbon
intensity as the prediction target, in contrast to past studies that predominantly addressed
fuel consumption. Second, in terms of feature selection, this paper incorporates factors such
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as the mean period of total swell, mean period of wind waves, mean period of waves, and
seawater temperature; these features were not extensively explored in previous research.
Third, in model comparison, the study evaluates the impact of different data combination
scenarios on model performance, a consideration often overlooked in prior studies. Unlike
previous research on carbon intensity, this paper introduces a cumulative carbon intensity
assessment methodology. This methodology analyzes the change in carbon intensity for
the selected vessels over a one-year period. Furthermore, the paper successfully applies a
machine learning model to predict a ship’s annual carbon intensity, providing insight into
the carbon intensity level projected by the model.

This study could be beneficial to the shipping industry in several aspects. First, the
proposed predicting method could be used by ship operators to dynamically calculate
and monitor the carbon intensity of their ships. Second, carbon intensity prediction could
further combine with history operation data to dynamically predict the CII grade of each
ship at the end of each year. Third, providing reliable data support allows the ship company
to adjust operation strategy or select decarbonization technologies that can upgrade the CII
level to meet IMO requirements with minimum costs.

5. Conclusions

The CII grades of ships are crucial to international shipping companies. Failing to
meet the CII requirements of IMO or charter contacts will cause dramatical market share
and economic losses. This study investigates the performance of five different machine
learning methods in predicting ship carbon intensity, including SVR, LASSO regression,
XGBoost, and RF models, as well as the ANN model. Multiple data sources, such as AIS
data, fuel flow sensor data, and meteorological and sea state data are considered to develop
these models.

The results show that, compared with SVR, LASSO regression, XGBoost, and RF
models, the ANN model performs the best, and the errors of all four evaluation indexes
are minimized. Through several stochastic search optimization experiments, a better
combination of hyperparameters can be found, which effectively improves the performance
of the ship carbon intensity prediction model. By verifying the performance of the model
on different datasets, appropriate dimensionality reduction can improve the accuracy of the
ship carbon intensity prediction model. In the annual carbon intensity rating, the annual
carbon intensity value predicted by the ANN model is the closest to the real value, while
the error of the LASSO model is the largest, and the rating results are consistent with the
actual results. The findings of this paper can help enterprises analyze the change of carbon
intensity of a ship within a year and determine whether the annual carbon intensity value
of a ship is within the qualified range or not. If the predicted carbon intensity grade of a
ship is lower than C grade, the shipping company may have to take measures in advance
to reduce the carbon intensity.

This is one of the first studies focus on predicting ship CII with multiple machine
learning methods and high temporal and spatial data sources. The contribution of this
study is as follows. First, it proposes a new carbon intensity assessment method to calculate
the carbon intensity of a ship at different time points within a year, which takes new
features such as swell and wind waves into consideration. Second, the ANN model was
identified as the best carbon prediction method among those which are frequently utilized
in studies on fuel consumption prediction. Third, while comparing the models, multiple
data combination scenarios were considered (AIS data, sensor data, and meteorological
data and sea state data). Fourth, this paper divides the training set and test set according to
the time series, which can help to analyze the annual carbon intensity values of the model
and, further, can determine the carbon intensity level.

However, there are some limitations in this study. First, only one sample ship is
used, which may affect the generalization of the findings of this study. This study takes
a relatively small-size container ship as an example, and larger ships are not considered,
which may limit the application of the prediction model. Second, the accuracy of the
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prediction model probably could be further improved by advanced artificial intelligent
models. This study mainly used machine learning models for its investigations, and the
range of models considered is small. For carbon intensity prediction, models may exist
with higher prediction accuracy. In this study, the technical condition of ship engines,
systems, and mechanisms are not completely considered for the following reasons. First,
our model actually included the rpm of the main engine and trim of ship dynamically to
reflect the variance of main engine and ship technical conditions during the research period.
Second, since the current analysis is limited to a single ship and the detailed change of its
technical condition are difficult to obtain, this paper assumes that the mechanical condition
throughout the study period is consistent and will not affect the ship’s fuel consumption
or Carbon Intensity Index (CII) rating. In future work, consideration could be given to
selecting more ships, including larger-size ships, and applying more machine learning or
deep learning models to improve the accuracy of CII prediction.
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