Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings
Abstract
:1. Introduction
2. Experimental Setup
Principle of Operation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Ngo, N.; Liu, H. Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier. Opt. Commun. 2009, 282, 1598–1601. [Google Scholar] [CrossRef]
- Lopez-Amo, M.; Leandro, D.; de Miguel, V.; Bravo, M.; Fernández-Vallejo, M.; Perez-Herrera, R.A. Random fiber lasers: Application to fiber optic sensors networks. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017. [Google Scholar]
- Song, Q.; Xiao, S.; Xu, Z.; Shalaev, V.M.; Kim, Y.L. Random laser spectroscopy for nanoscale perturbation sensing. Opt. Lett. 2010, 35, 2624–2626. [Google Scholar] [CrossRef] [PubMed]
- Olivi, M.; Olivi, G. The physics of lasers. In Lasers in Endodontics: Scientific Background and Clinical Applications; Olivi, G., De Moor, R., DiVito, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–82. [Google Scholar]
- Gomes, A.S.; Moura, A.L.; de Araújo, C.B.; Raposo, E.P. Recent advances and applications of random lasers and random fiber lasers. Prog. Quantum Electron. 2021, 78, 100343. [Google Scholar] [CrossRef]
- Churkin, D.V.; Sugavanam, S.; Vatnik, I.D.; Wang, Z.; Podivilov, E.V.; Babin, S.A.; Rao, Y.; Turitsyn, S.K. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photon. 2015, 7, 516–569. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Fujii, T.; Kudo, Y.; Li, H.; Painchaud, Y. Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating. Opt. Lett. 2009, 34, 1717–1719. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gao, S.; Zhang, M.; Zhang, J.; Qiao, L.; Wang, T.; Gao, F.; Hu, X.; Li, S.; Zhu, Y. Advances in random fiber lasers and their sensing application. Sensors 2020, 20, 6122. [Google Scholar] [CrossRef] [PubMed]
- Liang, R. Biomedical Optical Imaging Technologies: Design and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Czajkowski, J.; Prykäri, T.; Alarousu, E.; Palosaari, J.; Myllylä, R. Optical coherence tomography as a method of quality inspection for printed electronics products. Opt. Rev. 2010, 17, 257–262. [Google Scholar] [CrossRef]
- Yang, T.-H.; Chen, C.-W.; Jau, H.-C.; Feng, T.-M.; Wu, C.-W.; Wang, C.-T.; Lin, T.-H. Liquid-crystal random fiber laser for speckle-free imaging. Appl. Phys. Lett. 2019, 114, 191105. [Google Scholar] [CrossRef]
- Fotiadi, A.A. An Incoherent Fibre Laser. Nat. Photonics 2010, 4, 204. [Google Scholar] [CrossRef]
- Ji, Z.; Deng, Y.; Wan, H.; Zhang, Z. Tunable multiwavelength Brillouin random fiber laser. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018. [Google Scholar]
- Feng, T.; Jiang, M.; Ren, Y.; Wang, M.; Yan, F.; Suo, Y.; Yao, X.S. High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings. OSA Contin. 2019, 2, 2526–2538. [Google Scholar] [CrossRef]
- Feng, X.; Lu, C.; Tam, H.; Wai, P.; Tang, D.; Guan, B.-O. Mechanism for stable, ultra-flat multiwavelength operation in erbium-doped fiber lasers employing intensity-dependent loss. Opt. Laser Technol. 2012, 44, 74–77. [Google Scholar] [CrossRef]
- Shawki, H.; Kotb, H.; Khalil, D. Single-longitudinal-mode broadband tunable random laser. Opt. Lett. 2017, 42, 3247–3250. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Chen, L.; Bao, X. Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser. Opt. Express 2017, 25, 15828–15837. [Google Scholar] [CrossRef]
- Tovar, P.; Ynoquio, H.L.; Temporão, G.; von der Weid, J.P. Longitudinal modes in random feedback fiber lasers. In Proceedings of the CLEO: Science and Innovations 2019, San Jose, CA, USA, 5–10 May 2019. [Google Scholar]
- Ahmad, H.; Zulkifli, M.Z.; Jemangin, M.H.; Harun, S.W. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band. Laser Phys. Lett. 2013, 10, 055102. [Google Scholar] [CrossRef]
- Huang, C.; Dong, X.; Zhang, S.; Zhang, N.; Shum, P.P. Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains. IEEE Photon. Technol. Lett. 2014, 26, 1287–1290. [Google Scholar] [CrossRef]
- Sugavanam, S.; Zulkifli, M.Z.; Churkin, D.V. Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser. Laser Phys. 2015, 26, 015101. [Google Scholar] [CrossRef]
- Margulis, W.; Das, A.; von der Weid, J.-P.; Gomes, A.S.L. Hybrid electronically addressable random fiber laser. Opt. Express 2020, 28, 23388–23396. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, X.; Jiang, M.; Yu, X.; Shum, P. Multi-wavelength erbium-doped fiber laser based on random distributed feedback. Appl. Phys. B Laser Opt. 2016, 122, 240. [Google Scholar] [CrossRef]
- Pan, H.; Guo, T.; Zhang, A.; Liu, C. Multi-wavelength switchable random fibre laser based on double Sagnac-loop filter. J. Mod. Opt. 2021, 68, 945–952. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Shum, P.P.; Su, H. Tunable erbium-doped fiber laser based on random distributed feedback. IEEE Photon. J. 2014, 6, 1–5. [Google Scholar]
- Pheng, S.; Xiaonan, L.; Wang, Z.; Zhu, Y.; Jiang, Z. Multi-wavelength narrow linewidth random fiber laser based on fiber Bragg grating fabry-perot filter. In Proceedings of the 2020 10th International Conference on Information Science and Technology (ICIST), London, UK, 9–15 September 2020. [Google Scholar]
- Zhu, Y.Y.; Zhang, W.L.; Jiang, Y. Tunable Multi-wavelength fiber laser based on random rayleigh back-scattering. IEEE Photon. Technol. Lett. 2013, 25, 1559–1561. [Google Scholar] [CrossRef]
- Sugavanam, S.; Yan, Z.; Kamynin, V.; Kurkov, A.S.; Zhang, L.; Churkin, D.V. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter. Opt. Express 2014, 22, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tong, Z.; Zhang, W.; Shi, X.; Li, J. Tunable multi-wavelength random distributed feedback fiber laser based on dual-pass MZI. Appl. Phys. B Laser Opt. 2021, 127, 1–9. [Google Scholar] [CrossRef]
- Chen, L.; Ding, Y. Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser. Optik 2014, 125, 3663–3665. [Google Scholar] [CrossRef]
- Leandro, D.; Demiguel-Soto, V.; Lopez-Amo, M. High-resolution sensor system using a random distributed feedback fiber laser. J. Light. Technol. 2016, 34, 4596–4602. [Google Scholar] [CrossRef]
- Zhang, W.L.; Song, Y.B.; Zeng, X.P.; Ma, R.; Yang, Z.J.; Rao, Y.J. Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings. Photon. Res. 2016, 4, 102–105. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, P.; Huang, Y.; Tian, J.; Cai, C.; Li, D.; Yi, Y.; Xiao, Q.; Gong, M. An Efficient 4-Kw level random fiber laser based on a tandem-pumping scheme. IEEE Photon. Technol. Lett. 2019, 31, 817–820. [Google Scholar] [CrossRef]
- Zhang, A.; Hao, L.; Geng, B.; Li, D. Investigation of narrow band random fiber ring laser based on random phase-shift Bragg grating. Opt. Laser Technol. 2019, 116, 1–6. [Google Scholar] [CrossRef]
- Popov, S.; Butov, O.; Bazakutsa, A.; Vyatkin, M.; Chamorovskii, Y.; Fotiadi, A. Random lasing in a short Er-doped artificial Rayleigh fiber. Results Phys. 2019, 16, 102868. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Lu, P.; Mihailov, S.; Bao, X. Multi-parameter sensor based on random fiber lasers. AIP Adv. 2016, 6, 095009. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, R.; Zhang, X.; Sun, Z.; Liu, X.; Liu, J.; Xie, K.; Zhang, L. Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating. Opt. Express 2019, 27, 3255–3263. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Al-Khateeb, K.A.S.; Bouzid, B. Comparison of the effect structure on ring and linear cavity lasers of er-doped optical fibers. In Proceedings of the 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 13–15 May 2008. [Google Scholar]
- Yamashita, S.; Hotate, K. Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen. Electron. Lett. 1996, 32, 1298–1299. [Google Scholar] [CrossRef]
- Graydon, O.; Loh, W.; Laming, R.; Dong, L. Triple-frequency operation of an Er-doped twincore fiber loop laser. IEEE Photon- Technol. Lett. 1996, 8, 63–65. [Google Scholar] [CrossRef]
- Sulaiman, A.; Zamzuri, A.; Hitam, S.; Abas, A.; Mahdi, M. Flatness investigation of multiwavelength SOA fiber laser based on intensity-dependent transmission mechanism. Opt. Commun. 2013, 291, 264–268. [Google Scholar] [CrossRef]
- Sulaiman, A.H.; Yusoff, N.M.; Cholan, N.A.; Mahdi, M.A. Multiwavelength Fiber Laser based on Bidirectional Lyot Filter in Conjunction with Intensity Dependent Loss Mechanism. Indones. J. Electr. Eng. Comput. Sci. 2018, 10, 840–846. [Google Scholar] [CrossRef]
- Sulaiman, A.H.; Ismail, A.; Abdullah, F.; Jamaludin, M.Z.; Mahdi, M.A. Stable and broad multiwavelength generation with the assistance of intensity dependent loss mechanism based on bidirectional SOA. J. Phys. Conf. Ser. 2020, 1593, 012030. [Google Scholar] [CrossRef]
- Quan, M.; Li, Y.; Tian, J.; Yao, Y. Multifunctional tunable multiwavelength erbium-doped fiber laser based on tunable comb filter and intensity-dependent loss modulation. Opt. Commun. 2015, 340, 63–68. [Google Scholar] [CrossRef]
- Zhao, Q.; Pei, L.; Zheng, J.; Tang, M.; Xie, Y.; Li, J.; Ning, T. Switchable multi-wavelength erbium-doped fiber laser with adjustable wavelength interval. J. Light. Technol. 2019, 37, 3784–3790. [Google Scholar] [CrossRef]
- Zulkifli, M.; Tamchek, N.; Latif, A.; Harun, S.; Ahmad, H. Flat output and switchable fiber laser using AWG and broadband FBG. Opt. Commun. 2009, 282, 2576–2579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awang Lah, A.A.; Sulaiman, A.H.; Abdullah, F.; Ambran, S.; Ng, E.K.; Alresheedi, M.T.; Mahdi, M.A.; Md Yusoff, N. Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings. Photonics 2023, 10, 924. https://doi.org/10.3390/photonics10080924
Awang Lah AA, Sulaiman AH, Abdullah F, Ambran S, Ng EK, Alresheedi MT, Mahdi MA, Md Yusoff N. Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings. Photonics. 2023; 10(8):924. https://doi.org/10.3390/photonics10080924
Chicago/Turabian StyleAwang Lah, Airull Azizi, Abdul Hadi Sulaiman, Fairuz Abdullah, Sumiaty Ambran, Eng Khoon Ng, Mohammed Thamer Alresheedi, Mohd Adzir Mahdi, and Nelidya Md Yusoff. 2023. "Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings" Photonics 10, no. 8: 924. https://doi.org/10.3390/photonics10080924
APA StyleAwang Lah, A. A., Sulaiman, A. H., Abdullah, F., Ambran, S., Ng, E. K., Alresheedi, M. T., Mahdi, M. A., & Md Yusoff, N. (2023). Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings. Photonics, 10(8), 924. https://doi.org/10.3390/photonics10080924