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Abstract: We demonstrate the successful implementation of an artificial neural network (ANN) to
eliminate detrimental spectral shifts imposed in the measurement of laser absorption spectrometers
(LASs). Since LASs rely on the analysis of the spectral characteristics of biological and chemical
molecules, their accuracy and precision is especially prone to the presence of unwanted spectral
shift in the measured molecular absorption spectrum over the reference spectrum. In this paper, an
ANN was applied to a scanning grating-based mid-infrared trace gas sensing system, which suffers
from temperature-induced spectral shifts. Using the HITRAN database, we generated synthetic gas
absorbance spectra with random spectral shifts for training and validation. The ANN was trained
with these synthetic spectra to identify the occurrence of spectral shifts. Our experimental verification
unambiguously proves that such an ANN can be an excellent tool to accurately retrieve the gas
concentration from imprecise or distorted spectra of gas absorption. Due to the global shift of the
measured gas absorption spectrum, the accuracy of the retrieved gas concentration using a typical
least-mean-squares fitting algorithm was considerably degraded by 40.3%. However, when the gas
concentration of the same measurement dataset was predicted by the proposed multilayer perceptron
network, the sensing accuracy significantly improved by reducing the error to less than ±1% while
preserving the sensing sensitivity.

Keywords: spectral analysis; artificial neural network; quantitative gas analysis; trace gas sensing;
mid-infrared; absorption spectroscopy; supercontinuum source

1. Introduction

Photonic sensing systems in the mid-infrared (MIR) wavelength range have recently
attracted substantial attention from the optical community due to their outstanding ca-
pability to detect minute traces of molecules in complex gas mixtures. This is possible
because the fingerprint of rotational and vibrational resonances of gas molecules originat-
ing from biological and chemical activities along this spectral window is a few orders of
magnitude stronger than other spectral ranges. Therefore, MIR spectroscopy systems have
been extensively employed for various applications, such as air quality monitoring, health
diagnostics, and scientific research [1–6]. In this context, the generation of MIR light sources
emitting in the wavelength range of 2–10 µm has been effectively demonstrated using vari-
ous techniques, such as quantum cascade lasers [7,8], optical parametric oscillators [9,10],
and supercontinuum lasers [11–14]. Among them, the high-brightness supercontinuum
light source, associated with a high-resolution diffractive grating spectrometer, shows high
performance in the accurate detection of minute traces of multispecies gas molecules [5].

However, we observed that any presence of thermal fluctuation of the gaseous analyte
can lead to detrimental thermally induced mechanical stresses to optical components in
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the system, causing beam steering. Therefore, unwanted spectral shifts may occur in
the measured absorption spectrum, which, in turn, results in a non-negligible amount of
error for the gas concentration computation, traditionally performed by the least-squares
fitting process between the measured spectrum and the database reference spectrum [11].
Such a spectral calibration issue has already been addressed in a similar grating-based
gas sensing system [14] and has been solved by cross-correlation calculation between the
measured absorbance spectrum and the reference spectrum to estimate the exact amount
of the spectral shift caused by mechanical disturbances in the system. Yet, this solution
requires a heavy mathematical computation that slows down the measurement speed and
the clear presence of known gas species to precisely compare with the reference, which
might limit the sensing performance for ambient air quality monitoring.

Over the last decade, ANNs have been applied to multiple scientific research do-
mains and engineering applications due to their relevance for complex nonlinear problems.
For instance, the intrinsic cross-sensitivity of multiple physical parameters and harmful
nonlinear effects in a sensing system could be precisely resolved thanks to a properly
trained machine learning algorithm [15–18]. Even a deep learning-based machine learning
algorithm can significantly enhance the performance of optical microscopy in terms of
resolution and sensitivity through a thorough analysis of the statistical features of input
signals [19–21]. Recently, an ANN has been applied to a MIR gas spectrometer to accelerate
the estimation of gas concentration in complex gas matrix conditions, with it showing
promising results [22,23]. In this paper, we propose to use a multilayer perceptron (MLP) to
provide an accurate prediction of the gas concentration from the measured gas absorption
spectra that suffer from a random spectral shift that is induced by inevitable mechanical
stress imposed onto optical components of our MIR trace gas analyzer, explicitly providing
quantitative analysis based on the experimental data.

2. Development of the MIR Gas Spectrometer and the Spectral Shift Issue

Figure 1a depicts the simplified schematic diagram of the scanning grating-based MIR
trace gas sensing system that we have developed in our laboratory, using a supercontinuum
(SC) light source that is spectrally broadened from 2 µm to ~4.5 µm. The SC light is sent to
a multipass cell (MPC), which consists of two mirrors with a standard White cell optical
configuration, as shown in Figure 1b. The mirrors are glued on a metal frame at fixed
positions to predetermine the total optical path length of 10 m. Consequently, the interaction
length between light and gas analytes becomes extensively increased through a compact
design, and the wavelength-specific absorption is accordingly enhanced, resulting in a
considerable improvement in the sensing sensitivity. Then, the light emerging from the
cell is directed to a blazed grating with 450 lines/mm. The first-order diffracted light
was focused on a single-pixel detector for the gas absorption analysis. The spectrum of
the SC light was readily resolved by rotating the grating that is mounted on a motorized
rotational stage. When using a free space beam path length of 36 cm between the grating
and the detector and a grating dispersion of 27.9 µm/◦, a grating rotation increment of
0.01◦ induced a rise in the geometrical beam steering of 60 µm. This corresponds to a
spectral shift of 0.51 cm−1 in wavenumber. Based on these parameters, a 50 µm slit was
placed in front of the detector to precisely record the spectral power density of the light
source, resulting in a spectral resolution of 1.15 cm−1 for the sensing system. The grating
was then scanned from 327◦ to 330◦ by steps of 0.01◦ to obtain the partial absorption
spectrum of water vapor contained in the ambient air while the ambient air was pumped
into the cell. Notice that the free space path length from the light source to the detector is
~90 cm, excluding the beam path through the cell, hence proving that the light absorption
inside the cell would be dominant compared to the light absorption occurring in the open
space portions.
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Figure 1. (a) Simplified schematic diagram of the scanning grating-based MIR SC gas spectrometer. 
(b) Photo of the multipass gas cell (MPC) with a standard White cell optical configuration. BME280 
is an electrical sensor to monitor temperature, humidity, and pressure inside the MPC. 

From the measured H2O absorbance spectra, as shown in Figure 2a, a spectral shift 
of water absorption peaks over time is clearly observed. The amount of the spectral shift 
was then compared to the change of temperature inside the MPC, showing a strong cor-
relation, as shown in Figure 2b. The temperature inside the MPC, as well as the humidity 
and pressure, was simultaneously measured by an electrical sensor (BME280, BOSCH) 
embedded inside the MPC. For this reason, we believe that the spectral shift can be mainly 
attributed to the variation of temperature inside the MPC. We suspect that the thermally 
induced movements of the optical components in the system lead to such detrimental 
beam steering, causing the spectral shift in the measurement. However, we did not inves-
tigate further to determine the cause of the beam discrepancies. 

 
Figure 2. (a) Continuous measurement of H2O absorption profile while the gas cell temperature 
changes. (b) Slope coefficient calculated by the ratio of the amount of spectral shift to temperature 
change. (c) H2O absorbance spectra for the first and last measurements, showing a clear spectral 
shift due to the temperature change inside the MPC. (d) Measured slope coefficient defined as the 
ratio of the spectral shift to temperature change. 

Figure 1. (a) Simplified schematic diagram of the scanning grating-based MIR SC gas spectrometer.
(b) Photo of the multipass gas cell (MPC) with a standard White cell optical configuration. BME280 is
an electrical sensor to monitor temperature, humidity, and pressure inside the MPC.

From the measured H2O absorbance spectra, as shown in Figure 2a, a spectral shift
of water absorption peaks over time is clearly observed. The amount of the spectral
shift was then compared to the change of temperature inside the MPC, showing a strong
correlation, as shown in Figure 2b. The temperature inside the MPC, as well as the humidity
and pressure, was simultaneously measured by an electrical sensor (BME280, BOSCH)
embedded inside the MPC. For this reason, we believe that the spectral shift can be mainly
attributed to the variation of temperature inside the MPC. We suspect that the thermally
induced movements of the optical components in the system lead to such detrimental beam
steering, causing the spectral shift in the measurement. However, we did not investigate
further to determine the cause of the beam discrepancies.
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Figure 2. (a) Continuous measurement of H2O absorption profile while the gas cell temperature
changes. (b) Slope coefficient calculated by the ratio of the amount of spectral shift to temperature
change. (c) H2O absorbance spectra for the first and last measurements, showing a clear spectral shift
due to the temperature change inside the MPC. (d) Measured slope coefficient defined as the ratio of
the spectral shift to temperature change.
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According to our measurements, the spectral shift of the absorption spectrum seems
to have a complex response to the temperature change since the slope efficiency defined as
the ratio of the spectral shift to temperature change varies, as shown in Figure 2d. However,
the coefficient was estimated to be in the order of 0.01 ◦/K, implying that the measured gas
absorption profile will be spectrally shifted with a coefficient of 0.51 cm−1/K. Figure 2c
illustrates the water absorbance spectra of the first and last measurements, explicitly
showing a spectral shift by 0.03◦ while the temperature was changed by 2.6 ◦C between
these two measurements. On the other hand, the measured absorbance spectrum was
compared to the HITRAN reference absorbance to calculate the amount of the spectral shift,
resulting in a spectral shift of ~1.55 cm−1, showing good agreement with our estimation
of the spectral shift of 0.51 cm−1 by grating rotation of 0.01◦. Furthermore, when we
performed the typical least-squares fitting algorithm to retrieve the gas concentration,
we obtained 11,125 ppm (or 1.113%) and −1435 ppm (or −0.144%) for the first and last
measurements, respectively. Therefore, the sensing system turned out to be severely
impaired since the thermally induced spectral shift invalidated the predefined background
transmission profile and the reference gas absorption profile used for the fitting algorithm.
Moreover, due to the complex response of spectral shift to the temperature change, a fixed
slope coefficient cannot precisely compensate for the adverse thermal effect for practical
applications. More details will be discussed later.

3. Results and Discussion on the Proposed Artificial Neural Networks
3.1. Development of Artificial Neural Networks

To effectively overcome this problem, an MLP was applied to accurately estimate the
gas concentration in the presence of such an inevitable spectral shift. Moreover, to validate
the proof-of-concept, we decided to focus on the measurement of water vapor concentration
since a capacitive relative humidity (RH) sensor embedded inside the multipass cell could
be used as a reference. Due to the limited number of available measured absorbance
spectra, our neural network was trained with synthetic absorbance spectra. First, we
extracted the molecular absorption coefficients for water vapor (H2O) and methane (CH4)
with a Lorentzian profile from the HITRAN database. As the goal was to accurately
estimate the H2O concentration, CH4 was used as a perturbation since the atmospheric
methane absorption is certainly present in the set scanning spectral range. The next step
to generate an absorbance spectrum was to sample a CH4 concentration between 0 and
100 ppm and a H2O concentration between 0 and 10% from a scaled beta distribution with
parameters a = 0.5 and b = 1. In fact, the water vapor concentration of 10% corresponds
to the 100% relative humidity under environmental conditions of 46 ◦C and atmospheric
pressure, which considers harsh environments such as gaseous pollutants monitoring
generated from the incineration plant. The distribution parameters were selected to favor
lower gas concentrations where estimation errors should be lower. In turn, these sampled
concentrations were utilized to generate a transmittance spectrum with a 10 m optical
path length, a convolution with a Gaussian kernel, and a spectral resolution of 1.15 cm−1.
Finally, an absorbance spectrum was computed by taking the logarithm of the transmittance
spectrum. Each synthetic absorbance spectrum spans the band ranging from 3010 cm−1 to
3290 cm−1 in 0.05 cm−1 steps and includes 5601 samples.

To mimic the practical signal noise and nonlinear spectral behavior, we applied three
perturbations to the generated synthetic spectrum. Firstly, using our measurements, the
level of root-mean-squared noise within a finite spectral window, at which the water vapor
absorption is negligible, was analyzed. More specifically, the window in the vicinity of
the grating rotation angle of 327.5◦, corresponding to 3159.4 cm−1 in wavenumber, as
shown in Figure 2c, was selected for our analysis. As a result, an additive white Gaussian
noise with a standard deviation of 0.025 absorbance units was imposed onto the synthetic
absorbance spectrum. Secondly, a random baseline generated as Legendre polynomials
of degree 4 with coefficients sampled uniformly was also added since SC light sources
typically suffer from intrinsic peak-to-peak random fluctuations in their intensity and
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spectral power density. Such an adverse noise is mainly attributed to the mechanism of the
incoherent nonlinear spectral broadening process during supercontinuum generation [24],
and it varies the baseline of the measured absorbance spectrum, as shown in Figure 2c,
which leads to a non-negligible amount of error in the computed gas concentration. After
analyzing the temporal variation of the baseline over the whole measurements, the range
of each coefficient of the fourth-order polynomial function was thoroughly determined to
generate a random baseline. Thirdly, we added a random spectral shift that is sampled
uniformly between −10 cm−1 and 10 cm−1, covering the temperature change of ±19.6 ◦C.
The last step of synthetic data generation was to scale the absorbance spectra between 0
and 1 to facilitate training. The scaling factor was determined from the maximum possible
concentrations of CH4 and H2O without any perturbation.

Figure 3 illustrates the considered MLP architecture. An MLP is a fully connected feed-
forward ANN, where each neuron is connected to all neurons in neighboring layers. In our
work, the MLP is composed of three layers, namely, two hidden layers with 256 neurons
and ReLU (Rectified Linear Unit) activation and one output layer with a single unit and
linear activation. Our network takes an absorbance spectrum as input and estimates the
H2O concentration as follows:

x1 = ReLU{W1x0 + b1}
x2 = ReLU{W 2x1 + b2}
x3 = W3x2 + b3

(1)

where x0 ∈ R5601 is the input spectrum; x1 ∈ R256, x2 ∈ R256, and x3 ∈ R are the outputs
of each layer; W1 ∈ R256×5601, W2 ∈ R256×256, and W3 ∈ R1×256 are the layer weights; and
b1 ∈ R256, b2 ∈ R256, and b3 ∈ R are the layer biases. The MLP parameters were trained
through back-propagation by minimizing the mean squared error (MSE) with the Adam
optimizer, hence optimizing the weights and bias for each neuron. Finally, the output layer
provided the result of the hidden layers as the gas concentration. The training process
was performed with a learning rate of 0.001 for 500 epochs of 1000 batches, where each
batch was composed of 100 synthetic absorbance spectra. This means that the MLP was
presented with 50 million different spectra over the whole training procedure. At each
epoch, the MLP was evaluated with a validation set of the same size as the training set. In
turn, MLP parameters corresponding to the epoch with the lowest MSE on the validation
set were selected for the evaluation of the real absorbance spectra.
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3.2. Evaluation of the Proposed Artificial Neural Networks

To evaluate the reliability of the fully trained MLP algorithm, a test dataset consisting
of experimentally measured absorbance spectra was applied to the network. To prepare the
test dataset, we used two individual gas bottles filled with a calibration mixture of the gases
of interest: one bottle of 100% nitrogen and the other of a mixed gas of 99.995% nitrogen
and 0.005% (equivalent to 50 ppm) methane. The two bottles were combined before being
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fed into the gas cell. The gas flow rate of each bottle was controlled independently to
vary the water vapor concentration between 0% and an atmospheric level of ~1% with
different levels of CH4 perturbation. The sensing system was operated over 38 h with
a measurement time of 3 min to continuously acquire the gas absorption spectra under
different environmental conditions. The measurement started while the two bottles were
closed and the MPC was under normal atmospheric conditions. Then, during the time
window between time 14 h and 28 h, the methane concentration was set to five different
levels: 0, 0.5, 1, 1.9, and 50 ppm, and each concentration remained constant over 1–2 h.

The water vapor concentration measured by the relative humidity shows an atmo-
spheric concentration of 1.05%, as shown in Figure 4a, which corresponds to 27.75% RH.
However, when the MPC was fed by the sample gas, the water concentration was abruptly
decreased to 0% due to the nitrogen purging effect in the gas cell. Next, the gas flow was
stopped after 28 h, and the atmospheric water vapor started to enter the gas cell, increasing
to about 1.1% at a measurement time of 38 h. It is important to mention that during this test
period, the temperature inside the gas cell varied from 27.00 ◦C to 28.30 ◦C, as shown in
Figure 4b, while the frequency calibration of the grating angle was performed at 27.25 ◦C.
Therefore, we expect that our sensing system would be impaired by the grating angle
deviation of ~0.015◦, equivalent to the spectral shift of ~0.76 cm−1 in wavenumber. It is
noticeable that the water concentration profile shows a perfect match with the temperature
variation profile of the gas cell. Overall, as expected, due to the adverse spectral shift, the
water concentration retrieved by the typical least-mean-squares fitting algorithm shows
a 40.3% error for the atmospheric air sample at the beginning of the test (referring to the
profile in blue (0 m◦/K) in Figure 4a). The apparent spike in the measured water vapor con-
centration and the temperature of the gas cell in Figure 4 was, unfortunately, caused by the
replacement of the nitrogen gas bottle since the bottle became empty. During replacement,
penetration of ambient air into the gas cell was inevitable.
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To evaluate the performance of the manual temperature compensation, the original
absorption spectrum was spectrally corrected using five different slope coefficients at
0.007–0.011◦/K, as shown in Figure 4a. The computed water vapor concentration with the
manual temperature compensation becomes closer to the reference RH profile as the slope
efficiency increases, resulting in a large computation error of −2.8% and −40.3% for slope
efficiencies of 0.011◦/K and 0◦/K, respectively.

Then, all gas absorption spectra, including the original ones and those spectrally
shifted by the manual temperature compensation, were applied to the trained network. To
explicitly evaluate the importance of training on the spectral shift, we developed two MLP
network algorithms. The first network was trained on two features of the system noise and
the baseline of the light transmission spectral profile with the random parameter range, as
previously explained. But, as shown in Figure 5a, the trained network demonstrated nearly
the same results as the typical fitting result, leading to a large error in the computed gas
concentration. This means that the capacity of this network was insufficient to overcome
the complex spectral shift problem. On the contrary, when our second MLP network was
trained, we included the feature of the temperature-induced spectral shift. It is remarkable
that the water vapor concentration predicted by the second network turned out to be
considerably precise, as shown in Figure 5b. All temperature-compensated spectra with
a different slope coefficient converged to an identical pattern of concentration variation
in time. Moreover, this results in good agreement with the reference profile, showing
a marginal error of less than ±1% while preserving the sensing sensitivity, which was
determined by the standard deviation of the concentration fluctuation over the first 12 h
measurements. Therefore, this proves the large potential of completely overcoming such
unpredictable spectral shifts induced in light absorption-based gas spectrometers. In addi-
tion, we believe that the performance of the ANNs for this task could be further improved
by investigating more complex architectures, including convolutional and pooling layers.
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make trace gas sensing systems based on the gas absorption spectrum more robust and 
immune to any variation of environmental conditions. In addition, we believe that ma-
chine learning will also be powerful when applied to any type of spectral distortion once 
they have been properly characterized. 
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Figure 5. H2O concentration estimated by the ANN (a) when MLP training relied on the noise and
baseline and (b) when MLP training relied on the noise, baseline, and spectral shift.
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4. Conclusions

In conclusion, we have identified a temperature-induced spectral shift issue in our
scanning grating-based MIR gas sensing system and have proposed a promising solution
to deal with such a detrimental thermal effect. According to our successful experimental
demonstration, an ANN is a promising approach to unambiguously overcome any presence
of complex spectral distortion imposed on the spectroscopic data. Due to the adverse global
spectral shift imposed onto the measured gas absorption spectrum, the conventional
least-mean-squares fitting algorithm suffers from a severe error in the gas concentration
computation, leading to a severe error as large as 40.3%, which cannot be effectively
improved by a manual temperature compensation method due to the nonlinear response.
However, our proposed MLP algorithm which statistically relates the distorted spectrum
to the pure reference spectrum enables us to significantly improve the accuracy of the
retrieved gas concentration with a marginal error of less than ±1%.

The degradation of the sensing performance by such a spectral shift can occur in
any spectroscopic sensing system that requires an accurate calibration of frequency in the
measurement. So, we can emphasize that the proposed solution has a large potential to
make trace gas sensing systems based on the gas absorption spectrum more robust and
immune to any variation of environmental conditions. In addition, we believe that machine
learning will also be powerful when applied to any type of spectral distortion once they
have been properly characterized.
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