Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = random amplification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1575 KiB  
Article
Entropy Accumulation Under Post-Quantum Cryptographic Assumptions
by Ilya Merkulov and Rotem Arnon
Entropy 2025, 27(8), 772; https://doi.org/10.3390/e27080772 - 22 Jul 2025
Abstract
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell [...] Read more.
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell inequality violations. Recently, a new class of DI protocols has emerged that requires only a single device. In this setting, the assumption of no communication is replaced by a computational one: the device cannot solve certain post-quantum cryptographic problems. Protocols developed in this single-device computational setting—such as for randomness certification—have relied on ad hoc techniques, making their guarantees difficult to compare and generalize. In this work, we introduce a modular proof framework inspired by techniques from the non-local DI literature. Our approach combines tools from quantum information theory, including entropic uncertainty relations and the entropy accumulation theorem, to yield both conceptual clarity and quantitative security guarantees. This framework provides a foundation for systematically analyzing DI protocols in the single-device setting under computational assumptions. It enables the design and security proof of future protocols for DI randomness generation, expansion, amplification, and key distribution, grounded in post-quantum cryptographic hardness. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 159
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

23 pages, 1755 KiB  
Article
An Efficient Continuous-Variable Quantum Key Distribution with Parameter Optimization Using Elitist Elk Herd Random Immigrants Optimizer and Adaptive Depthwise Separable Convolutional Neural Network
by Vidhya Prakash Rajendran, Deepalakshmi Perumalsamy, Chinnasamy Ponnusamy and Ezhil Kalaimannan
Future Internet 2025, 17(7), 307; https://doi.org/10.3390/fi17070307 - 17 Jul 2025
Viewed by 219
Abstract
Quantum memory is essential for the prolonged storage and retrieval of quantum information. Nevertheless, no current studies have focused on the creation of effective quantum memory for continuous variables while accounting for the decoherence rate. This work presents an effective continuous-variable quantum key [...] Read more.
Quantum memory is essential for the prolonged storage and retrieval of quantum information. Nevertheless, no current studies have focused on the creation of effective quantum memory for continuous variables while accounting for the decoherence rate. This work presents an effective continuous-variable quantum key distribution method with parameter optimization utilizing the Elitist Elk Herd Random Immigrants Optimizer (2E-HRIO) technique. At the outset of transmission, the quantum device undergoes initialization and authentication via Compressed Hash-based Message Authentication Code with Encoded Post-Quantum Hash (CHMAC-EPQH). The settings are subsequently optimized from the authenticated device via 2E-HRIO, which mitigates the effects of decoherence by adaptively tuning system parameters. Subsequently, quantum bits are produced from the verified device, and pilot insertion is executed within the quantum bits. The pilot-inserted signal is thereafter subjected to pulse shaping using a Gaussian filter. The pulse-shaped signal undergoes modulation. Authenticated post-modulation, the prediction of link failure is conducted through an authenticated channel using Radial Density-Based Spatial Clustering of Applications with Noise. Subsequently, transmission occurs via a non-failure connection. The receiver performs channel equalization on the received signal with Recursive Regularized Least Mean Squares. Subsequently, a dataset for side-channel attack authentication is gathered and preprocessed, followed by feature extraction and classification using Adaptive Depthwise Separable Convolutional Neural Networks (ADS-CNNs), which enhances security against side-channel attacks. The quantum state is evaluated based on the signal received, and raw data are collected. Thereafter, a connection is established between the transmitter and receiver. Both the transmitter and receiver perform the scanning process. Thereafter, the calculation and correction of the error rate are performed based on the sifting results. Ultimately, privacy amplification and key authentication are performed using the repaired key via B-CHMAC-EPQH. The proposed system demonstrated improved resistance to decoherence and side-channel attacks, while achieving a reconciliation efficiency above 90% and increased key generation rate. Full article
Show Figures

Graphical abstract

30 pages, 4492 KiB  
Article
Hard Preloaded Duplex Ball Bearing Dynamic Model for Space Applications
by Pablo Riera, Luis Maria Macareno, Igor Fernandez de Bustos and Josu Aguirrebeitia
Machines 2025, 13(7), 581; https://doi.org/10.3390/machines13070581 - 4 Jul 2025
Viewed by 291
Abstract
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic [...] Read more.
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic behaviour under vibration, simulations and experimental tests are performed. However, published models for space applications fail to capture the variations observed in test responses. This study presents a multi-degree-of-freedom nonlinear multibody model of a hard-preloaded duplex space ball bearing, particularized for this work to the case in which the outer ring is attached to a shaker and the inner ring to a test dummy mass. The model incorporates the Hunt and Crossley contact damping formulation and employs quaternions to accurately represent rotational dynamics. The simulated model response is validated against previously published axial test data, and its response under step, sine, and random excitations is analysed both in the case of radial and axial excitation. The results reveal key insights into frequency evolution, stress distribution, gapping phenomena, and response amplification, providing a deeper understanding of the dynamic performance of space-grade ball bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

17 pages, 1619 KiB  
Article
Predicting Nitrous Oxide Emissions from China’s Upland Fields Under Climate Change Scenarios with Machine Learning
by Tong Li, Yunpeng Li, Wenxin Cheng, Jufeng Zheng, Lianqing Li and Kun Cheng
Agronomy 2025, 15(6), 1447; https://doi.org/10.3390/agronomy15061447 - 13 Jun 2025
Viewed by 692
Abstract
Upland fields are a significant source of N2O emissions. Thus, an accurate estimation of these emissions is essential. This study employed four classical modeling approaches—the Stepwise Regression Model, Decision Tree Regression, Support Vector Machine, and Random Forest (RF)—to simulate soil N [...] Read more.
Upland fields are a significant source of N2O emissions. Thus, an accurate estimation of these emissions is essential. This study employed four classical modeling approaches—the Stepwise Regression Model, Decision Tree Regression, Support Vector Machine, and Random Forest (RF)—to simulate soil N2O emissions from Chinese upland fields. The upland crops considered in this study covered food crops, oil crops, cash crops, sugar crops, fruits, and vegetables, excluding flooded rice. Comparative analysis revealed that the RF algorithm performed the best, with the highest R2 at 0.66 and the lowest root mean square error at 0.008 kg N2O ha−1 day−1. The application rate of mineral nitrogen fertilizers, mean temperature during the growing season, and soil organic carbon content were the key driving factors in the N2O emission model. Utilizing the RF model, total N2O emissions from Chinese upland fields in 2020 were estimated at 183 Gg. Future projections under Representative Concentration Pathway (RCP) scenarios indicated a 2.80–5.92% increase in national N2O emissions by 2050 compared to 2020. The scenario analysis demonstrated that the proposed nitrogen reduction strategies fail to counteract climate-driven emission amplification. Under the combined scenarios of RCP8.5 and nitrogen reduction strategies, a net 4% increase in national N2O emissions was projected, highlighting the complex interplay between anthropogenic interventions and climate feedback mechanisms. This study proposes that future attention should be paid to the development of nitrogen optimization strategies under the impact of climate change. Full article
(This article belongs to the Special Issue New Pathways Towards Carbon Neutrality in Agricultural Systems)
Show Figures

Figure 1

17 pages, 4579 KiB  
Article
Multiple Regression-Based Dynamic Amplification Factor Investigation of Monorail Tourism Transit Systems
by Hong Zhang, Changxing Wu, Wenlong Liu, Shiqi Wei and Yonggang Wang
Buildings 2025, 15(11), 1881; https://doi.org/10.3390/buildings15111881 - 29 May 2025
Viewed by 265
Abstract
The monorail tourism transit system (MTTS) is a large-scale amusement facility. Currently, there is limited theoretical research on the vehicle–bridge coupling vibration and dynamic amplification factor (DAFs) of this system. The values specified in relevant standards are not entirely reasonable; for instance, the [...] Read more.
The monorail tourism transit system (MTTS) is a large-scale amusement facility. Currently, there is limited theoretical research on the vehicle–bridge coupling vibration and dynamic amplification factor (DAFs) of this system. The values specified in relevant standards are not entirely reasonable; for instance, the calculated value of the DAFs in the “Large-scale amusement device safety code (GB 8408-2018)” only takes speed into account and is set at 0.44 when the speed is between 20 and 40 km/h. This is overly simplistic and obviously too large. This paper aims to establish a reasonable expression of the DAFs for the MTTS and improve the design code of the industry. Firstly, using on-site trials of the project and the dynamics numerical simulation method, the dynamic response characteristics of the MTTS and the influencing factors of the DAFs were systematically analyzed. The rationality and accuracy of the model were verified. Secondly, combined with the joint simulation model, the dynamic influence mechanism of multifactor coupling on the DAFs was revealed. On this basis, the key regression parameters were selected by using the Pearson correlation coefficient method and the random forest algorithm, and the DAFs prediction model was constructed based on the least absolute shrinkage and selection operator (LASSO) regression theory. Finally, through cross-comparison of simulation data and specification verification, a recommended calculation expression of the DAFs for the MTTS was proposed. The research results show that the established prediction model can predict 94.50% of the variation information of the DAFs of the MTTS and pass the 95% confidence level and 0.05 significance test. The accuracy is high and relatively reasonable and can provide a reference for the design of the MTTS. Full article
Show Figures

Figure 1

29 pages, 3694 KiB  
Article
Enhanced Detection of Mitochondrial Heteroplasmy and DNA Hypomethylation in Adipose-Derived Mesenchymal Stem Cells Using a Novel Adaptive Sampling Protocol
by Antonina Gospodinova, Yuliia Mariienko, Diana Pendicheva-Duhlenska, Soren Hayrabedyan and Krassimira Todorova
Appl. Sci. 2025, 15(11), 5822; https://doi.org/10.3390/app15115822 - 22 May 2025
Viewed by 602
Abstract
Objective: Mitochondria drive cellular energy production and regulate key biological processes. High levels of heteroplasmic in mitochondrial DNA (mtDNA) variants can cause mitochondrial dysfunction and clinical symptoms. Third-generation sequencing overcomes the limitations of traditional mtDNA analysis methods, offering improved cost, throughput, and sensitivity. [...] Read more.
Objective: Mitochondria drive cellular energy production and regulate key biological processes. High levels of heteroplasmic in mitochondrial DNA (mtDNA) variants can cause mitochondrial dysfunction and clinical symptoms. Third-generation sequencing overcomes the limitations of traditional mtDNA analysis methods, offering improved cost, throughput, and sensitivity. We developed an integrated approach for analyzing methylation patterns and genetic variations in mtDNA and ADME genes. Methods: We implemented Oxford Nanopore’s long-read sequencing with adaptive sampling (AS) to enrich enzymatically linearized mtDNA and absorption, distribution, metabolism, and excretion (ADME) genes without PCR amplification, enabling native sequencing in adipose-derived mesenchymal stem cells (AdMSC). Our custom algorithm preserved phase relationships between base modifications and sequence polymorphisms. Results: We identified differential methylation patterns in ADME genes correlating with specific genetic variants, suggesting epigenetic regulation of drug response. Adaptive sampling identifies a wider range of variant diversity, while whole genome sequencing (WGS) uncovers higher-frequency hotspots. Both methods offer complementary insights into mitochondrial heteroplasmy. In mtDNA, direct sequencing showed extensive hypomethylation, and low levels of non-CpG methylation were detected regardless of sequencing coverage depth. These sparse methylation patterns showed non-random distribution, correlating with functional regions and heteroplasmic sites. Conclusions: This study demonstrates the utility of adaptive sampling for the integrated analysis of mtDNA heteroplasmy and native base modifications, revealing widespread hypomethylation independent of coverage depth. The approach showcases the potential for combined pharmacoepigenomic and mitochondrial profiling in precision medicine, disease modeling, and therapeutic development. Full article
(This article belongs to the Special Issue Cell Biology: Latest Advances and Prospects)
Show Figures

Figure 1

10 pages, 214 KiB  
Article
Association of NCOA6 Gene Polymorphism with Milk Production Traits in Chinese Holstein Cows
by Muhammad Talha Bin Tahir, Sahar Ghulam Mohyuddin, Yiyang Yao, Yanru Wang, Yan Liang, Niel A. Karrow and Yongjiang Mao
Animals 2025, 15(10), 1461; https://doi.org/10.3390/ani15101461 - 19 May 2025
Viewed by 360
Abstract
Nuclear receptor coactivator 6 is a gene that produces a protein that regulates transcriptional activity. It is also involved in many processes like cell survival, metabolism, homeostasis, and embryonic development. This study focused on studying the genetic influence of single-nucleotide polymorphisms (SNPs) within [...] Read more.
Nuclear receptor coactivator 6 is a gene that produces a protein that regulates transcriptional activity. It is also involved in many processes like cell survival, metabolism, homeostasis, and embryonic development. This study focused on studying the genetic influence of single-nucleotide polymorphisms (SNPs) within the NCOA6 gene on lactation performance characteristics. The objective of this study was to determine the genetic impact of SNPs of the NCOA6 gene on milk production traits. After the random selection of twenty cows, PCR amplification and sequencing were performed from their blood samples to find the SNPs present in the bovine NCOA6 gene. As a result, two SNPs, g.71544C > T and g.87310A > G, were found. Then, the genotyping of the cows (n = 985) was conducted using a Sequenom MassARRAY based on previously identified SNP information. The least-square method was applied to study the links between lactation traits, somatic cell score (SSC), and 305-day milk output. The results indicated that the SNP g.87310A > G was strongly associated with g.71544C > T in linkage disequilibrium. The single-nucleotide polymorphism g.87310A > G showed a very strong association with daily milk yield and 305-day milk production. Individuals with the AA genotype exhibited a notable increase in daily milk production by 1.64 kg, and their 305-day milk yield was approximately 500 kg higher. This variation demonstrated a significant genetic effect on milk output. In brief, the pleiotropic influence of the cattle NCOA6 gene on lactation traits was revealed in this study. However, additional research will provide a basis for further exploring the underlying correlation and theoretical framework of the molecular genetics of milk composition and the production attributes of Holstein cows. Full article
(This article belongs to the Section Cattle)
19 pages, 8363 KiB  
Article
Spatial Characteristic Analysis of Near-Fault Velocity Pulses Based on Simulation of Earthquake Ground Motion Fields
by Zelin Cao, Jia Wei, Zhiyu Sun and Weiju Song
Buildings 2025, 15(8), 1363; https://doi.org/10.3390/buildings15081363 - 19 Apr 2025
Viewed by 330
Abstract
The spatial variation characteristics of near-fault velocity pulses lack in-depth understanding, and it is difficult to consider this feature in probabilistic seismic hazard analysis and the ground motion input for structural seismic analysis. Based on ground motion simulation, this study performs spatial characteristic [...] Read more.
The spatial variation characteristics of near-fault velocity pulses lack in-depth understanding, and it is difficult to consider this feature in probabilistic seismic hazard analysis and the ground motion input for structural seismic analysis. Based on ground motion simulation, this study performs spatial characteristic analysis of velocity pulses. The Mw 6.58 strike-slip Imperial Valley and the Mw 6.8 dip-slip Northridge earthquakes are adopted as the cases, and the simulation method is validated by comparing synthetics with observations. The multi-component broadband ground motion fields are simulated, and the pulse parameters and the pulse area are extracted using the multi-component pulse identification method. The spatial characteristics of various pulse parameters are analyzed. The results show that for a single earthquake, the pulse period is a spatial variable related to source-to-site geometry, the pulse amplification factor has great spatial variation, and the orientation of the maximum pulse component is controlled by the radiation pattern. Finally, the influence of slip distribution on pulse is explored based on two earthquakes, in which the uniform slip, the random slip, and the hybrid slip are combined with different rupture directions. This study contributes to a more reasonable consideration of pulse-like ground motion in seismic risk assessment and earthquake response analysis. Full article
Show Figures

Figure 1

10 pages, 492 KiB  
Article
Two-Year Entomological Survey of Mosquito Fauna in the Attica Region, Greece: Species Composition
by Marina Bisia, Georgios Balatsos, Maria Sakellariou Sofianou, Stavroula Beleri, Nikolaos Tegos, Evangelia Zavitsanou, Vasileios Karras, Dimitra Kollia, Antonios Michaelakis and Eleni Patsoula
Insects 2025, 16(4), 406; https://doi.org/10.3390/insects16040406 - 12 Apr 2025
Viewed by 693
Abstract
Vector-borne diseases significantly impact global public health, with mosquitoes playing a critical role in the transmission of various pathogens. This study focused on the mosquito fauna in the Attica region of Greece, conducting a two-year entomological survey from March 2021 to December 2022 [...] Read more.
Vector-borne diseases significantly impact global public health, with mosquitoes playing a critical role in the transmission of various pathogens. This study focused on the mosquito fauna in the Attica region of Greece, conducting a two-year entomological survey from March 2021 to December 2022 as part of an ongoing mosquito-management program. The research employed stratified random sampling to establish 57 adult traps across the region, with additional traps on the islands of Argosaronikos and Kythira island. The BG-sentinel traps, enhanced with CO2 to attract multiple mosquito species, were utilized for mosquito collection. Morphological identification of the collected mosquitoes revealed the presence of various species, with Aedes albopictus, Culex pipiens s.l., and Culiseta longiareolata being the most prevalent. Notably, all of our traps tested 100% positive for these species. Molecular techniques, including PCR amplification of ITS2 and COI genes, confirmed species identification. The findings highlight significant variations in species composition across different locations and emphasize the presence of invasive species such as Aedes albopictus, posing public health concerns. This study underscores the importance of continuous mosquito surveillance and integrated management strategies to mitigate the risk of mosquito-borne diseases in the Attica region. The results contribute to the development of evidence-based mosquito-control programs, which are essential for safeguarding public health in urban and peri-urban environments. Full article
Show Figures

Figure 1

14 pages, 1979 KiB  
Protocol
Specific Aspects of SELEX Protocol: Different Approaches for ssDNA Generation
by Alexandr Garanin, Andrey Shalaev, Lidia Zabegina, Ekaterina Kadantseva, Tatiana Sharonova and Anastasia Malek
Methods Protoc. 2025, 8(2), 36; https://doi.org/10.3390/mps8020036 - 6 Apr 2025
Cited by 1 | Viewed by 706
Abstract
Background: Synthetic DNA aptamers are a class of molecules with potential applications in medicine, serving as molecular sensors or ligands for targeted drug delivery. Systematic evolution of ligands by exponential enrichment (SELEX) is a technology for selecting functional aptamers that was first reported [...] Read more.
Background: Synthetic DNA aptamers are a class of molecules with potential applications in medicine, serving as molecular sensors or ligands for targeted drug delivery. Systematic evolution of ligands by exponential enrichment (SELEX) is a technology for selecting functional aptamers that was first reported three decades ago and has been actively developed since. SELEX involves multiple iterations of two fundamental steps: (i) target affinity-based partitioning of aptamers from a random library and (ii) amplification of selected aptamers by PCR, followed by isolation of single-stranded DNA (ssDNA). SELEX protocols have diversified considerably, with numerous variations possible for each step. This heterogeneity makes it challenging to identify optimal methods. Comparative analysis of different approaches for the major stages of SELEX is therefore of considerable practical importance. Methods: Four widely used methods for ssDNA generation were performed in parallel: (a) PCR followed by digestion of the antisense strand with exonuclease lambda, (b) PCR with an extended primer followed by size-dependent strand separation using denaturing PAGE, (c) asymmetric PCR, and (d) asymmetric PCR with a primer-blocker. Results: The specificity, efficiency, reproducibility, and duration of each method were compared. Conclusions: Asymmetric PCR with a primer-blocker yielded the most favorable results. Full article
Show Figures

Figure 1

5 pages, 1824 KiB  
Proceeding Paper
The Design and Application of a Rubber Vibration Isolator for Aerospace Equipment
by Ke Duan and Feng Hou
Eng. Proc. 2024, 80(1), 42; https://doi.org/10.3390/engproc2024080042 - 28 Mar 2025
Viewed by 411
Abstract
In this study, a rubber vibration isolator is designed for certain aerospace equipment, and a finite element simulation is carried out to obtain the modal frequency and random vibration response, and to verify the accuracy of the design. The test verifies that there [...] Read more.
In this study, a rubber vibration isolator is designed for certain aerospace equipment, and a finite element simulation is carried out to obtain the modal frequency and random vibration response, and to verify the accuracy of the design. The test verifies that there is no amplification of vibration within 100 Hz; the damping efficiency values of vertical and horizontal random vibration are, respectively, 42.12% and 40.54%; and the impact isolation rate is more than 80%. The test results show that the vibration isolation buffer effect of the isolator is satisfactory and meets the design requirements. Full article
(This article belongs to the Proceedings of 2nd International Conference on Green Aviation (ICGA 2024))
Show Figures

Figure 1

16 pages, 252 KiB  
Article
How to Be a Copenhagenistic-QBistic Everettist
by Marcin Wieśniak
Entropy 2025, 27(3), 248; https://doi.org/10.3390/e27030248 - 27 Feb 2025
Viewed by 1181
Abstract
The measurement problem in quantum mechanics (QM) is related to the inability to include learning about the properties of a quantum system by an agent in the formalism of quantum theory. It includes questions about the physical processes behind the measurement, uniqueness, and [...] Read more.
The measurement problem in quantum mechanics (QM) is related to the inability to include learning about the properties of a quantum system by an agent in the formalism of quantum theory. It includes questions about the physical processes behind the measurement, uniqueness, and randomness of obtained outcomes and an ontic or epistemic role of the state. These issues have triggered various interpretations of quantum theory. They vary from refusing any connection between physical reality and a measurement process to insisting that a collapse of the wave-function is real and possibly involves consciousness. On the other hand, the actual mechanism of a measurement is not extensively discussed in these interpretations. This essay attempts to investigate the quantum measurement problem from the position of the scientific consensus. We begin with a short overview of the development of sensing in living organisms. This is performed for the purpose of stressing the relation between reality and our experience. We then briefly present different approaches to the measurement problem in chosen interpretations. We then state three philosophical assumptions for further consideration and present a decomposition of the measurement act into four stages: transformation, conversion, amplification and broadcasting, and, finally, perception. Each of these stages provides an intuition about the physical processes contributing to it. These conclusions are then used in a discussion about, e.g., objectivity, the implausibility of reversing a measurement, or the epistemic status of the wave-function. Finally, we argue that those in favor of some of the most popular interpretations can find an overlap between their beliefs and the consequences of considerations presented here. Full article
(This article belongs to the Special Issue Quantum Measurement)
29 pages, 16412 KiB  
Article
Research on the Dynamic Response Patterns of Layered Slopes Considering Non-Homogeneity Under Blast-Induced Vibration Effects
by Yong Zhao, Yanjie Liu, Shihui Jiao, Tianhong Yang, Wenxue Deng and Shuhong Wang
Appl. Sci. 2025, 15(3), 1162; https://doi.org/10.3390/app15031162 - 24 Jan 2025
Viewed by 729
Abstract
To investigate the dynamic wave propagation characteristics and dynamic response of heterogeneous layered slopes under a blasting vibration, a modeling method considering the slope’s layered dip angle and heterogeneity was proposed. Different dip jointed slope models were established using the Weibull random distribution [...] Read more.
To investigate the dynamic wave propagation characteristics and dynamic response of heterogeneous layered slopes under a blasting vibration, a modeling method considering the slope’s layered dip angle and heterogeneity was proposed. Different dip jointed slope models were established using the Weibull random distribution function introduced to realize the stochastic distribution of rock mechanics parameters, representing heterogeneity. Taking the background project of the Sijiaying Yanshan Open-Pit Iron Mine as an example, through numerical simulation, the effects of different joint dip angles and rock hardness on the slope’s dynamic response were analyzed in detail. The sensitivity of the elastic modulus, cohesion, and friction angle to the slope dynamic response was also investigated. A comparative analysis of the amplification effects between a jointed slope and heterogeneous slope was conducted. Finally, the dynamic stability of the jointed slope and heterogeneous slope under a blasting load was analyzed. The results indicate that the Peak Ground Acceleration (PGA) of jointed slopes with dip angles of 45° and 60° is generally higher than that of slopes with a 0° dip angle and without joints. The smaller the rock mass heterogeneity, the smaller the PGA at the measuring points, and the less sensitive the PGA is to variations in the three quantities. Under the same physical and mechanical parameters of the rock, the amplification factor of jointed slopes is generally greater than that of heterogeneous slopes. Under the blasting load, the overall dynamic time-series safety factors of both slopes decrease first and then increase, with the safety factor reaching its lowest value at the location of the strongest blasting vibration wave. This study can provide guidance for the blasting design and safety protection of layered dip slopes and serve as a reference for the analysis of blasting impact laws in similar mines. Full article
(This article belongs to the Special Issue Novel Technology in Landslide Monitoring and Risk Assessment)
Show Figures

Figure 1

20 pages, 4883 KiB  
Article
Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor
by Gaoan Zheng, Pu Xu, Tong Wang and Qing Yan
Processes 2025, 13(1), 281; https://doi.org/10.3390/pr13010281 - 20 Jan 2025
Cited by 11 | Viewed by 1259
Abstract
Microreactors have the advantages of high heat and mass transfer efficiency, strict control of reaction parameters, easy amplification, and good safety performance, and have been widely used in various fields such as chip manufacturing, fine chemicals, and biomanufacturing. However, narrow microchannels in microreactors [...] Read more.
Microreactors have the advantages of high heat and mass transfer efficiency, strict control of reaction parameters, easy amplification, and good safety performance, and have been widely used in various fields such as chip manufacturing, fine chemicals, and biomanufacturing. However, narrow microchannels in microreactors often become filled with catalyst particles, leading to blockages. To address this challenge, this study proposes a multiphase flow heat transfer model based on the lattice Boltzmann method (LBM) to investigate the dynamic changes during the bubble collapse process and temperature distribution regularities. Based on the developed three-phase flow dynamics model, this study delves into the shock dynamic evolution process of bubble collapse and analyzes the temperature distribution regularities. Then, the flow patterns under different particle density conditions are explored. The study found that under the action of shock wave, the stable structure of the liquid film of the bubble is destroyed, and the bubble deforms and collapses. At the moment of bubble collapse, energy is rapidly transferred from the potential energy of the bubble to the kinetic energy of the flow field. Subsequently, the kinetic energy is converted into pressure waves. This results in the rapid generation of extremely high pressure in the flow field, creating high-velocity jets and intense turbulent vortices, which can enhance the mass transfer effects of the multiphase flows. At the moment of bubble collapse, a certain high temperature phenomenon will be formed at the collapse, and the high temperature phenomenon in this region is relatively chaotic and random. The pressure waves generated during bubble collapse have a significant impact on the motion trajectories of particles, while the influence on high-density particles is relatively small. The results offer a theoretical basis for understanding mass transfer mechanisms and particle flow patterns in three-phase flow. Moreover, these findings have significant practical implications for advancing technologies in industrial applications, including chip manufacturing and chemical process transport. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop