Association of NCOA6 Gene Polymorphism with Milk Production Traits in Chinese Holstein Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Data Collection
2.2. DNA Isolation and SNP Profiling
2.3. DNA Sequencing, Amplification, and SNP Genotyping of Individual Samples
2.4. Statistical Analysis
3. Results
3.1. SNP Analysis of the Bovine NCOA6 Gene: Genotypic and Allelic Frequencies with Evaluation of the Hardy–Weinberg Equilibrium
3.2. Haplotype Analysis of the NCOA6 Gene in Chinese Holstein Cows
3.3. Impact of Various Non-Genetic Factors on Milking Characteristics, 305-Day Milk Yield, and Somatic Cell Score (SCS)
3.4. Connection of SNPs in the NCOA6 Gene with Lactation Performance and Somatic Cell Score (SCS) in Holstein Cattle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barua, K.; Akter, N.; Alam, M.; Bari, M.S.; Sultan, M.N.; Islam, S.; Hossain, M.E. Effects of Genotype, Parity, Season and Their Interactions on Milk Yield in Crossbred Dairy Cattle. J. Anim. Physiol. Anim. Nutr. 2022, 106, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, M.; Motmain, Z.; Ekinci, K.; Saygılı, E. Associations Between BLG, CSN3, DGAT1, GH, PIT1, and PRL Gene Polymorphisms and Milk Production Traits in Holstein Dairy Cows: A Meta-Analysis. Biochem. Genet. 2024, 63, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Andrew, W.; Gao, J.; Mullan, S.; Campbell, N.; Dowsey, A.W.; Burghardt, T. Visual Identification of Individual Holstein-Friesian Cattle via Deep Metric Learning. Comput. Electron. Agric. 2021, 185, 106133. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Cant, J.P.; Brito, L.F.; Feitosa, F.L.B.; Chud, T.C.S.; Fonseca, P.A.S.; Jamrozik, J.; Silva, F.F.; Lourenco, D.A.L.; Schenkel, F.S. Genome-Wide Association for Milk Production Traits and Somatic Cell Score in Different Lactation Stages of Ayrshire, Holstein, and Jersey Dairy Cattle. J. Dairy Sci. 2019, 102, 8159–8174. [Google Scholar] [CrossRef]
- Anggraeni, A.; Sumantri, C.; Saputra, F.; Praharani, L. Association between GH (g.1456_1457insT), GHRH (g.4474 C>a), and Pit-1 (g.244G>A) Polymorphisms and Lactation Traits in Holstein Friesian Cattle. Trop. Anim. Sci. J. 2020, 43, 291–299. [Google Scholar] [CrossRef]
- Thuy, N.T.D.; Thu, N.T.; Cuong, N.H.; Ty, L.V.; Nguyen, T.T.B.; Khoa, D.V.A. Polymorphism of PIT-1 and Prolactin Genes and Their Effects on Milk Yield in Holstein Frisian Dairy Cows Bred in Vietnam. Russ. J. Genet. 2018, 54, 346–352. [Google Scholar] [CrossRef]
- Jattawa, D.; Koonawootrittriron, S.; Elzo, M.A.; Suwanasopee, T. Somatic Cells Count and Its Genetic Association with Milk Yield in Dairy Cattle Raised under Thai Tropical Environmental Conditions. Asian Australas. J. Anim. Sci. 2012, 25, 1216–1222. [Google Scholar] [CrossRef]
- Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Farre, M.; Halasa, T. Economic and Epidemiological Impact of Different Intervention Strategies for Subclinical and Clinical Mastitis. Prev. Vet. Med. 2019, 166, 78–85. [Google Scholar] [CrossRef]
- Rupp, R.; Boichard, D. Genetic Parameters for Clinical Mastitis, Somatic Cell Score, Production, Udder Type Traits, and Milking Ease in First Lactation Holsteins. J. Dairy Sci. 1999, 82, 2198–2204. [Google Scholar] [CrossRef]
- Akers, R.M. A 100-Year Review: Mammary Development and Lactation. J. Dairy Sci. 2017, 100, 10332–10352. [Google Scholar] [CrossRef]
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and Genetic Selection of Economically Important Traits in Dairy Cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef]
- Bobbo, T.; Tiezzi, F.; Penasa, M.; De Marchi, M.; Cassandro, M. Short Communication: Association Analysis of Diacylglycerol Acyltransferase (DGAT1) Mutation on Chromosome 14 for Milk Yield and Composition Traits, Somatic Cell Score, and Coagulation Properties in Holstein Bulls. J. Dairy Sci. 2018, 101, 8087–8091. [Google Scholar] [CrossRef] [PubMed]
- Clancey, E.; Kiser, J.N.; Moraes, J.G.N.; Dalton, J.C.; Spencer, T.E.; Neibergs, H.L. Genome-Wide Association Analysis and Gene Set Enrichment Analysis with SNP Data Identify Genes Associated with 305-Day Milk Yield in Holstein Dairy Cows. Anim. Genet. 2019, 50, 254–258. [Google Scholar] [CrossRef]
- Brookes, A.J. Single Nucleotide Polymorphism (SNP). Encycl. Life Sci. 2005, 1–4. [Google Scholar] [CrossRef]
- Olsen, H.G.; Knutsen, T.M.; Kohler, A.; Svendsen, M.; Gidskehaug, L.; Grove, H.; Nome, T.; Sodeland, M.; Sundsaasen, K.K.; Kent, M.P.; et al. Genome-Wide Association Mapping for Milk Fat Composition and Fine Mapping of a QTL for de Novo Synthesis of Milk Fatty Acids on Bovine Chromosome 13. Genet. Sel. Evol. 2017, 49, 20. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J. Identification and Characterization of the Alternatively Spliced Nuclear Receptor Coactivator-6 Isoforms. Int. J. Biol. Sci. 2011, 7, 505–516. [Google Scholar] [CrossRef]
- Lemay, D.G.; Lynn, D.J.; Martin, W.F.; Neville, M.C.; Casey, T.M.; Rincon, G.; Kriventseva, E.V.; Barris, W.C.; Hinrichs, A.S.; Molenaar, A.J.; et al. The Bovine Lactation Genome: Insights into the Evolution of Mammalian Milk. Genome Biol. 2009, 10, R43. [Google Scholar] [CrossRef]
- Mahajan, M.A.; Samuels, H.H. Nuclear Receptor Coactivator/Coregulator NCoA6(NRC) Is a Pleiotropic Coregulator Involved in Transcription, Cell Survival, Growth and Development. Nucl. Recept. Signal. 2008, 6, e002. [Google Scholar] [CrossRef]
- Qi, C.; Kashireddy, P.; Zhu, Y.T.; Rao, S.M.; Zhu, Y.J. Null Mutation of Peroxisome Proliferator-Activated Receptor-Interacting Protein in Mammary Glands Causes Defective Mammopoiesis. J. Biol. Chem. 2004, 279, 33696–33701. [Google Scholar] [CrossRef]
- Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional Regulation of Metabolism. Physiol. Rev. 2006, 86, 465–514. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene Networks Driving Bovine Milk Fat Synthesis during the Lactation Cycle. BMC Genomics 2008, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Lemay, D.G.; Neville, M.C.; Rudolph, M.C.; Pollard, K.S.; German, J.B. Gene Regulatory Networks in Lactation: Identification of Global Principles Using Bioinformatics. BMC Syst. Biol. 2007, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gao, Q.; Zhang, Q.; Adam, A.; Arbab, I.; Li, M.; Yang, Z.; Karrow, N.A.; Mao, Y. Polymorphisms of the ACSL1 Gene Influence Milk Holstein Cows. Animals 2020, 10, 2282. [Google Scholar] [CrossRef]
- Hill, W.G.; Robertson, A. Linkage Disequilibrium in Finite Populations. Theor. Appl. Genet. 1968, 38, 226–231. [Google Scholar] [CrossRef]
- Shi, Y.Y.; He, L. SHEsis, a Powerful Software Platform for Analyses of Linkage Disequilibrium, Haplotype Construction, and Genetic Association at Polymorphism Loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef]
- Mao, Y.; Zhu, X.; Xing, S.; Zhang, M.; Zhang, H.; Wang, X.; Karrow, N.; Yang, L.; Yang, Z. Polymorphisms in the Promoter Region of the Bovine Lactoferrin Gene Influence Milk Somatic Cell Score and Milk Production Traits in Chinese Holstein Cows. Res. Vet. Sci. 2015, 103, 107–112. [Google Scholar] [CrossRef]
- Taylor, J.F.; Taylor, K.H.; Decker, J.E. Holsteins Are the Genomic Selection Poster Cows. Proc. Natl. Acad. Sci. USA 2016, 113, 7690–7692. [Google Scholar] [CrossRef]
- Lee, Y.M.; Dang, C.G.; Alam, M.Z.; Kim, Y.S.; Cho, K.H.; Park, K.D.; Kim, J.J. The Effectiveness of Genomic Selection for Milk Production Traits of Holstein Dairy Cattle. Asian Australas. J. Anim. Sci. 2020, 33, 382–389. [Google Scholar] [CrossRef]
- KASAKOLU, A.; KONCAGÜL, S. Effects of Different Methods and Genomic Relationship Matrices on Reliabilities of Genomic Selection in Dairy Cattle. Livest. Stud. 2022, 62, 58–64. [Google Scholar] [CrossRef]
- Sharko, F.S.; Khatib, A.; Prokhortchouk, E.B. Genomic Estimated Breeding Value of Milk Performance and Fertility Traits in the Russian Black-and-White Cattle Population. Acta Naturae 2022, 14, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Kadri, N.K.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Genetic Dissection of Milk Yield Traits and Mastitis Resistance Quantitative Trait Loci on Chromosome 20 in Dairy Cattle. J. Dairy Sci. 2015, 98, 9015–9025. [Google Scholar] [CrossRef]
Component
Ingredient | Composition (%) |
---|---|
Lucerne hay | 20.00 |
Silage (corn) | 25.00 |
Wheat straw | 8.00 |
Barley grain | 15.50 |
Canola meal | 7.00 |
Sunflower meal | 5.00 |
Beet pulp | 4.50 |
Soya hulls | 5.50 |
Limestone | 0.40 |
Sodium bicarbonate (NaHCO3) | 0.35 |
Salt (NaCl) | 0.30 |
Magnesium oxide (MgO) | 0.20 |
Vitamin mineral premix | 1.25 |
Primer | (5′-3′) Primer Sequences | Production Size (Base Pair) | Position | Exon | Annealing Temperature (°C) |
---|---|---|---|---|---|
P1 | F: TAGTTATGTTCTTCTTGTGCTTC R: TTATTCAGTTCTACTTCCAACAC | 649 | 53,773–54,421 | 5′UTR +Exon 1 | 50.5 |
P2 | F: ATGAGATTGGGAAGGAGTAGGAG R: AATTCTTGGTTATGGAGGAGCAG | 608 | 61,210–61,817 | Exon 2 + Intron 2 | 58 |
P3 | F: TGCTCACAAACATTAAATGATACC R: CATTTCACTCCCTCCTTTAACTC | 1080 | 62,143–63,222 | Exon 3 + Intron 3 | 55.6 |
P4 | F: CCTCAGATCACATTTAGGGAGCAG R: CGTCTATGGCTACTTTGGTGCTAC | 765 | 64,895–65,659 | Exon 4 + Intron 4 | 53 |
P5 | F: ACATCTGTTTATGCTGATCACTGG R: GATTTCAGACAAGACTATCACAACC | 1274 | 67,749–69,022 | Exon 5 + Intron 5 | 55.2 |
P6 | F: GGTTGAATTTGATAGCTACCC R: CTGACAAGAATAAAGAGGCAC | 798 | 71,207–72,004 | Exon 6 + Intron 6 | 48.6 |
P7 | F: GATTTTGGGGGCTCGTTTTAG R: AGAATCTAATTTGTGAGTCTGTGGG | 1013 | 75,206–76,218 | Exon 7,1 + Intron 7,1 | 56.7 |
P8 | F: CCAGAAAGACTCAATGCCTCC R: GTCCCTCAGAAACCATAACCTTG | 1210 | 76,015–77,224 | Exon 7,2 + Intron 7,2 | 54.7 |
P9 | F: CCAATCCCATCACAACTTCAG R: CTTCCTCCAAGTAGAAAAGGAG | 1177 | 77,102–78,278 | Exon 7,3 + Intron 7,3 | 54.7 |
P10 | F: CTGAAAGAGGTTTGGGTTGCC R: GAGATGCCCTTCTTGAGTTCC | 664 | 80,748–81,411 | Exon 8 + Intron 8 | 52.4 |
P11 | F: ACGGGATTATTTCACAGTATGG R: AGTGAGGTCGAAGCTACAGTTG | 764 | 83,185–83,948 | Exon 9 + Intron 9 | 52.2 |
P12 | F: GTATTGGTTCTGCCATGTATC R: CTAAGCAGCAGAAGTCAAAGC | 604 | 86,966–87,569 | Exon 10 + Intron 10 | 52.3 |
P13 |
F: CAGTCACTCGCTTGTAGCATC R: GATTCTCTTTATTCACTGGTCC | 904 | 95,425–96,328 | Exon 11 + 3′ UTR | 51.4 |
SNP Locus | Genotype | Genotype Frequency | Sample Number | Allele | Allele Frequency | H-W Value | Pearson’s p-Value |
---|---|---|---|---|---|---|---|
NCOA6-71544C > T | CC | 0.87 | 798 | C | 0.93 | 0.69 | 0.40 |
CT | 0.87 | 108 | T | 0.06 | |||
TT | 0.00 | 2 | |||||
NCOA6-87310A > G | AA | 0.35 | 342 | A | 0.58 | 1.41 | 0.23 |
AG | 0.46 | 455 | G | 0.41 | |||
GG | 0.18 | 177 |
Factor | Milking Trait and SCS | F-Value | Sig. |
---|---|---|---|
Cow farm | Milk yield (kg) | 9.032 ** | 0.000 |
Milk fat content (%) | 7.083 ** | 0.000 | |
Protein content (%) | 16.277 ** | 0.000 | |
Somatic cell fraction | 14.452 ** | 0.000 | |
305-day milk yield (kg) | 15.858 ** | 0.000 | |
Parity | Milk yield (kg) | 1.938 | 0.144 |
Milk fat content (%) | 1.125 | 0.325 | |
Protein content (%) | 3.098 | 0.045 | |
Somatic cell fraction | 10.188 ** | 0.000 | |
305-day milk yield (kg) | 12.478 ** | 0.000 | |
Test year | Milk yield (kg) | 4.201 * | 0.015 |
Milk fat content (%) | 0.390 | 0.677 | |
Protein content (%) | 1.088 | 0.337 | |
Somatic cell fraction | 0.573 | 0.564 | |
305-day milk yield (kg) | 29.506 ** | 0.000 | |
Calving season | Milk yield (kg) | 2.918 | 0.033 |
Milk fat content (%) | 0.644 | 0.587 | |
Protein content (%) | 0.594 | 0.619 | |
Somatic cell fraction | 3.380 | 0.017 | |
305-day milk yield (kg) | 8.295 ** | 0.000 | |
Days in milk | Milk yield (kg) | 34.020 ** | 0.000 |
Milk fat content (%) | 8.603 ** | 0.000 | |
Protein content (%) | 48.805 | 0.000 | |
Somatic cell fraction | 1.245 | 0.292 | |
305-day milk yield (kg) | 1.176 | 0.317 | |
Testing season | Milk yield (kg) | 2.183 | 0.088 |
Milk fat content (%) | 1.470 | 0.221 | |
Protein content (%) | 5.744 ** | 0.001 | |
Somatic cell fraction | 0.196 | 0.899 | |
305-day milk yield (kg) | 1.530 | 0.205 |
SNP Locus | Genotype | Number of Records | TDMY (kg) | Fat (%) | Protein in Milk (%) | Somatic Cell Score | 305-Day Milk Production |
---|---|---|---|---|---|---|---|
NCOA6-71544C > T | CC | 7488 | 35.207 ± 0.127 | 3.635 ± 0.010 | 3.229 ± 0.004 | 2.77 ± 0.05 | 10,220.45 ± 28.577 |
CT | 1032 | 34.983 ± 0.351 | 3.569 ± 0.028 | 3.192 ± 0.011 | 2.86 ± 0.0 | 10,366.01 ± 97.404 | |
TT | 4 | 41.000 ± 5.354 | 3.766 ± 0.582 | 3.046 ± 0.078 | 2.75 ± 0.854 | 11,339.00 ± 424.000 | |
Total | 8524 | 34.965 ± 0.019 | 3.643 ± 0.010 | 3.235 ± 0.004 | 2.76 ± 0.02 | 10,189.26 ± 27.745 | |
F-value | |||||||
Sig | |||||||
NCOA6-87310A > G | AA | 3207 | 35.289 ± 0.194 a | 3.650 ± 0.016 ab | 3.230 ± 0.006 | 2.80 ± 0.037 | 10,451.31 ± 46.781 a |
GA | 4230 | 34.915 ± 0.167 ab | 3.621 ± 0.013 b | 3.236 ± 0.006 | 2.68 ± 0.032 | 10,101.19 ± 38.360 b | |
GG | 1588 | 34.605 ± 0.273 b | 3.685 ± 0.023 a | 3.241 ± 0.009 | 2.90 ± 0.054 | 9947.85 ± 60.642 c | |
Total | 9025 | 35.181 ± 0.115 | 3.657 ± 0.010 | 3.224 ± 0.004 | 2.78 ± 0.022 | 10,238.448 ± 26.840 | |
F-value | 4.209 * | 3.247 * | 1.404 | 2.713 | 22.886 ** | ||
Sig | 0.015 | 0.039 | 0.246 | 0.066 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.T.B.; Mohyuddin, S.G.; Yao, Y.; Wang, Y.; Liang, Y.; Karrow, N.A.; Mao, Y. Association of NCOA6 Gene Polymorphism with Milk Production Traits in Chinese Holstein Cows. Animals 2025, 15, 1461. https://doi.org/10.3390/ani15101461
Tahir MTB, Mohyuddin SG, Yao Y, Wang Y, Liang Y, Karrow NA, Mao Y. Association of NCOA6 Gene Polymorphism with Milk Production Traits in Chinese Holstein Cows. Animals. 2025; 15(10):1461. https://doi.org/10.3390/ani15101461
Chicago/Turabian StyleTahir, Muhammad Talha Bin, Sahar Ghulam Mohyuddin, Yiyang Yao, Yanru Wang, Yan Liang, Niel A. Karrow, and Yongjiang Mao. 2025. "Association of NCOA6 Gene Polymorphism with Milk Production Traits in Chinese Holstein Cows" Animals 15, no. 10: 1461. https://doi.org/10.3390/ani15101461
APA StyleTahir, M. T. B., Mohyuddin, S. G., Yao, Y., Wang, Y., Liang, Y., Karrow, N. A., & Mao, Y. (2025). Association of NCOA6 Gene Polymorphism with Milk Production Traits in Chinese Holstein Cows. Animals, 15(10), 1461. https://doi.org/10.3390/ani15101461