Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,576)

Search Parameters:
Keywords = rainfall trend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1235 KiB  
Article
Assessing Rainfall and Temperature Trends in Central Ethiopia: Implications for Agricultural Resilience and Future Climate Projections
by Teshome Girma Tesema, Nigussie Dechassa Robi, Kibebew Kibret Tsehai, Yibekal Alemayehu Abebe and Feyera Merga Liben
Sustainability 2025, 17(15), 7077; https://doi.org/10.3390/su17157077 - 5 Aug 2025
Abstract
In the past three decades, localized research has highlighted shifts in rainfall patterns and temperature trends in central Ethiopia, a region vital for agriculture and economic activities and heavily dependent on climate conditions to sustain livelihoods and ensure food security. However, comprehensive analyses [...] Read more.
In the past three decades, localized research has highlighted shifts in rainfall patterns and temperature trends in central Ethiopia, a region vital for agriculture and economic activities and heavily dependent on climate conditions to sustain livelihoods and ensure food security. However, comprehensive analyses of long-term climate data remain limited for this area. Understanding local climate trends is essential for enhancing agricultural resilience in the study area, a region heavily dependent on rainfall for crop production. This study analyzes historical rainfall and temperature patterns over the past 30 years and projects future climate conditions using downscaled CMIP6 models under SSP4.5 and SSP8.5 scenarios. Results indicate spatial variability in rainfall trends, with certain areas showing increasing rainfall while others experience declines. Temperature has shown a consistent upward trend across all seasons, with more pronounced warming during the short rainy season (Belg). Climate projections suggest continued warming and moderate increases in annual rainfall, particularly under SSP8.5 by the end of the 21st century. It is concluded that both temperature and rainfall are projected to increase in magnitude by 2080, with higher Sen’s slope values compared to earlier periods, indicating a continued upward trend. These findings highlight potential breaks in agricultural calendars, such as shifts in rainfall onset and cessation, shortened or extended growing seasons, and increased risk of temperature-induced stress. This study highlights the need for localized adaptation strategies to safeguard agriculture production and enhance resilience in the face of future climate variability. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 217
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 185
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 - 31 Jul 2025
Viewed by 250
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

33 pages, 2962 KiB  
Review
Evolution of Data-Driven Flood Forecasting: Trends, Technologies, and Gaps—A Systematic Mapping Study
by Banujan Kuhaneswaran, Golam Sorwar, Ali Reza Alaei and Feifei Tong
Water 2025, 17(15), 2281; https://doi.org/10.3390/w17152281 - 31 Jul 2025
Viewed by 430
Abstract
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in [...] Read more.
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in this field, methodological approaches, evaluation practices and geographical distribution of studies. The study revealed that meteorological and hydrological factors constitute approximately 76% of input variables, with rainfall/precipitation and water level measurements forming the core predictive basis. Long Short-Term Memory (LSTM) networks emerged as the dominant algorithm (21% of implementations), whilst hybrid and ensemble approaches showed the most dramatic growth (from 2% in 2019 to 10% in 2024). The study also revealed a threefold increase in publications during this period, with significant geographical concentration in East and Southeast Asia (56% of studies), particularly China (36%). Several research gaps were identified, including limited exploration of graph-based approaches for modelling spatial relationships, underutilisation of transfer learning for data-scarce regions, and insufficient uncertainty quantification. This SMS provides researchers and practitioners with actionable insights into current trends, methodological practices, and future directions in data-driven flood forecasting, thereby advancing this critical field for disaster management. Full article
Show Figures

Figure 1

22 pages, 22134 KiB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Viewed by 421
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 243
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 4497 KiB  
Article
Impact Assessment of Climate Change on Climate Potential Productivity in Central Africa Based on High Spatial and Temporal Resolution Data
by Mo Bi, Fangyi Ren, Yian Xu, Xinya Guo, Xixi Zhou, Dmitri van den Bersselaar, Xinfeng Li and Hang Ren
Land 2025, 14(8), 1535; https://doi.org/10.3390/land14081535 - 26 Jul 2025
Viewed by 200
Abstract
This study investigates the spatio-temporal dynamics of Climate Potential Productivity (CPP) in Central Africa during 1901–2019 using the Thornthwaite Memorial model coupled with Mann–Kendall tests based on high spatial and temporal resolution data. The results demonstrate the climate–vegetation interactions under global warming: (1) [...] Read more.
This study investigates the spatio-temporal dynamics of Climate Potential Productivity (CPP) in Central Africa during 1901–2019 using the Thornthwaite Memorial model coupled with Mann–Kendall tests based on high spatial and temporal resolution data. The results demonstrate the climate–vegetation interactions under global warming: (1) Central Africa exhibited a statistically significant warming trend (r2 = 0.33, p < 0.01) coupled with non-significant rainfall reduction, suggesting an emerging warm–dry climate regime that parallels meteorological trends observed in North Africa. (2) Central Africa exhibited an overall increasing trend in CPP, with temporal fluctuations closely aligned with precipitation variability. Specifically, the CPP in Central Africa has undergone three distinct phases: an increasing phase (1901–1960), a decreasing phase (1960–1980), and a slow recovery phase (1980–2019). The multiple intersection points between the UF and UB curves indicate that Central Africa’s CPP has been significantly affected by climate change under global warming. (3) The correlation of CPP–Temperature was mainly positive, mainly distributed in the Lower Guinea Plateau and the northern part of the Congo Basin (r2 = 0.26, p < 0.1). The relationship of CPP–Precipitation showed predominantly a very strong positive correlation (r2 = 0.91, p < 0.01). Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

13 pages, 3270 KiB  
Article
Study on Lateral Water Migration Trend in Compacted Loess Subgrade Due to Extreme Rainfall Condition: Experiments and Theoretical Model
by Xueqing Hua, Yu Xi, Gang Li and Honggang Kou
Sustainability 2025, 17(15), 6761; https://doi.org/10.3390/su17156761 - 24 Jul 2025
Viewed by 258
Abstract
Water migration occurs in unsaturated loess subgrade due to extreme rainfall, making it prone to subgrade subsidence and other water damage disasters, which seriously impact road safety and sustainable development of the Loess Plateau. The study performed a rainfall test using a compacted [...] Read more.
Water migration occurs in unsaturated loess subgrade due to extreme rainfall, making it prone to subgrade subsidence and other water damage disasters, which seriously impact road safety and sustainable development of the Loess Plateau. The study performed a rainfall test using a compacted loess subgrade model based on a self-developed water migration test device. The effects of extreme rainfall on the water distribution, wetting front, and infiltration rate in the subgrade were systematically explored by setting three rainfall intensities (4.6478 mm/h, 9.2951 mm/h, and 13.9427 mm/h, namely J1 stage, J2stage, and J3 stage), and a lateral water migration model was proposed. The results indicated that the range of water content change areas constantly expands as rainfall intensity and time increase. The soil infiltration rate gradually decreased, and the ratio of surface runoff to infiltration rainfall increased. The hysteresis of lateral water migration refers to the physical phenomenon in which the internal water response of the subgrade is delayed in time and space compared to changes in boundary conditions. The sensor closest to the side of the slope changed first, with the most significant fluctuations. The farther away from the slope, the slower the response and the smaller the fluctuation. The bigger the rainfall intensity, the faster the wetting front moved horizontally. The migration rate at the slope toe is the highest. The migration rate of sensor W3 increased by 66.47% and 333.70%, respectively, in the J3 stage compared to the J2 and J1 stages. The results of the model and the measured data were in good agreement, with the R2 exceeding 0.90, which verifies the reliability of the model. The study findings are important for guiding the prevention and control of disasters caused by water damage to roadbeds in loess areas. Full article
Show Figures

Figure 1

27 pages, 1525 KiB  
Article
Understanding Farmers’ Knowledge, Perceptions, and Adaptation Strategies to Climate Change in Eastern Rwanda
by Michel Rwema, Bonfils Safari, Mouhamadou Bamba Sylla, Lassi Roininen and Marko Laine
Sustainability 2025, 17(15), 6721; https://doi.org/10.3390/su17156721 - 24 Jul 2025
Viewed by 553
Abstract
This study investigates farmers’ knowledge, perceptions, and adaptation strategies to climate change in Rwanda’s Eastern Province, integrating social and physical science approaches. Analyzing meteorological data (1981–2021) and surveys from 204 farmers across five districts, we assessed climate trends and adaptation behaviors using statistical [...] Read more.
This study investigates farmers’ knowledge, perceptions, and adaptation strategies to climate change in Rwanda’s Eastern Province, integrating social and physical science approaches. Analyzing meteorological data (1981–2021) and surveys from 204 farmers across five districts, we assessed climate trends and adaptation behaviors using statistical methods (descriptive statistics, Chi-square, logistic regression, Regional Kendall test, dynamic linear state-space model). Results show that 85% of farmers acknowledge climate change, with 54% observing temperature increases and 37% noting rainfall declines. Climate data confirm significant rises in annual minimum (+0.76 °C/decade) and mean temperatures (+0.48 °C/decade), with the largest seasonal increase (+0.86 °C/decade) in June–August. Rainfall trends indicate a non-significant decrease in March–May and a slight increase in September–December. Farmers report crop failures, yield reductions, and food shortages as major climate impacts. Common adaptations include agroforestry, crop diversification, and fertilizer use, though financial limitations, information gaps, and input scarcity impede adoption. Despite limited formal education (53.9% primary, 22.3% no formal education), indigenous knowledge aids seasonal prediction. Farm location, group membership, and farming goal are key adaptation enablers. These findings emphasize the need for targeted policies and climate communication to enhance rural resilience by strengthening smallholder farmer support systems for effective climate adaptation. Full article
Show Figures

Graphical abstract

34 pages, 26037 KiB  
Article
Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
by Jingyuan Ni and Fang Xu
Remote Sens. 2025, 17(15), 2546; https://doi.org/10.3390/rs17152546 - 22 Jul 2025
Viewed by 489
Abstract
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim [...] Read more.
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim of quantitatively evaluating the coupled effects of climate change and land use change on future ecosystem resilience. In the first stage of the study, the SD-PLUS coupled modeling framework was employed to simulate land use patterns for the years 2030 and 2060 under three representative combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Building upon these simulations, ecosystem resilience was comprehensively evaluated and predicted on the basis of three key attributes: resistance, adaptability, and recovery. This enabled a quantitative investigation of the spatio-temporal dynamics of ecosystem resilience under each scenario. The results reveal the following: (1) Temporally, ecosystem resilience exhibited a staged pattern of change. From 2020 to 2030, an increasing trend was observed only under the SSP1-2.6 scenario, whereas, from 2030 to 2060, resilience generally increased in all scenarios. (2) In terms of scenario comparison, ecosystem resilience typically followed a gradient pattern of SSP1-2.6 > SSP2-4.5 > SSP5-8.5. However, in 2060, a notable reversal occurred, with the highest resilience recorded under the SSP5-8.5 scenario. (3) Spatially, areas with high ecosystem resilience were primarily distributed in mountainous regions, while the southeastern plains and coastal zones consistently exhibited lower resilience levels. The results indicate that climate and land use changes jointly influence ecosystem resilience. Rainfall and temperature, as key climate drivers, not only affect land use dynamics but also play a crucial role in regulating ecosystem services and ecological processes. Under extreme scenarios such as SSP5-8.5, these factors may trigger nonlinear responses in ecosystem resilience. Meanwhile, land use restructuring further shapes resilience patterns by altering landscape configurations and recovery mechanisms. Our findings highlight the role of climate and land use in reshaping ecological structure, function, and services. This study offers scientific support for assessing and managing regional ecosystem resilience and informs adaptive urban governance in the face of future climate and land use uncertainty, promotes the sustainable development of ecosystems, and expands the applicability of remote sensing in dynamic ecological monitoring and predictive analysis. Full article
Show Figures

Graphical abstract

16 pages, 855 KiB  
Article
Evaluating Time Series Models for Monthly Rainfall Forecasting in Arid Regions: Insights from Tamanghasset (1953–2021), Southern Algeria
by Ballah Abderrahmane, Morad Chahid, Mourad Aqnouy, Adam M. Milewski and Benaabidate Lahcen
Geosciences 2025, 15(7), 273; https://doi.org/10.3390/geosciences15070273 - 20 Jul 2025
Viewed by 338
Abstract
Accurate precipitation forecasting remains a critical challenge due to the nonlinear and multifactorial nature of rainfall dynamics. This is particularly important in arid regions like Tamanghasset, where precipitation is the primary driver of agricultural viability and water resource management. This study evaluates the [...] Read more.
Accurate precipitation forecasting remains a critical challenge due to the nonlinear and multifactorial nature of rainfall dynamics. This is particularly important in arid regions like Tamanghasset, where precipitation is the primary driver of agricultural viability and water resource management. This study evaluates the performance of several time series models for monthly rainfall prediction, including the autoregressive integrated moving average (ARIMA), Exponential Smoothing State Space Model (ETS), Seasonal and Trend decomposition using Loess with ETS (STL-ETS), Trigonometric Box–Cox transform with ARMA errors, Trend and Seasonal components (TBATS), and neural network autoregressive (NNAR) models. Historical monthly precipitation data from 1953 to 2020 were used to train and test the models, with lagged observations serving as input features. Among the approaches considered, the NNAR model exhibited superior performance, as indicated by uncorrelated residuals and enhanced forecast accuracy. This suggests that NNAR effectively captures the nonlinear temporal patterns inherent in the precipitation series. Based on the best-performing model, rainfall was projected for the year 2021, providing actionable insights for regional hydrological and agricultural planning. The results highlight the relevance of neural network-based time series models for climate forecasting in data-scarce, climate-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
by Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili and Nino Chikhradze
Atmosphere 2025, 16(7), 889; https://doi.org/10.3390/atmos16070889 - 19 Jul 2025
Viewed by 766
Abstract
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational [...] Read more.
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus. Full article
Show Figures

Figure 1

28 pages, 12894 KiB  
Article
Evolution of Rainfall Characteristics in Catalonia, Spain, Using a Moving-Window Approach (1950–2022)
by Carina Serra, María del Carmen Casas-Castillo, Raül Rodríguez-Solà and Cristina Periago
Hydrology 2025, 12(7), 194; https://doi.org/10.3390/hydrology12070194 - 19 Jul 2025
Viewed by 583
Abstract
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation [...] Read more.
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation (CV), and trends across 43 overlapping 31-year periods. To assess trends in these moving statistics, a modified Mann–Kendall test was applied to both the 31-year means and CVs. Results revealed a significant 10% decrease in annual rainfall, with summer showing the most pronounced decline, as nearly 90% of stations exhibited negative trends, while the CV showed negative trends in coastal areas and mostly positive trends inland. At the monthly scale, February, March, June, August, and December exhibited negative trends at more than 50% of stations, with rainfall reductions ranging from 20% to 30%. Additionally, the temporal evolution of Mann–Kendall trend coefficients within each 31-year moving window displayed a fourth-degree polynomial pattern, with a periodicity of 30–35 years at annual and seasonal scales, and for some months. Finally, at the annual scale and in two centennial series, the 80-year oscillations found were inversely correlated with the large-scale climate indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). Full article
Show Figures

Figure 1

22 pages, 3860 KiB  
Article
Spatiotemporal Dynamics of Emerging Foot-and-Mouth Disease, Bluetongue, and Peste Des Petits Ruminants in Algeria
by Ilhem Zouyed, Sabrina Boussena, Nacira Ramdani, Houssem Eddine Damerdji, Julio A. Benavides and Hacène Medkour
Viruses 2025, 17(7), 1008; https://doi.org/10.3390/v17071008 - 17 Jul 2025
Viewed by 521
Abstract
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly [...] Read more.
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly unknown, limiting the implementation of effective preventive and control measures. We analyzed outbreak data reported by Algerian veterinary authorities and the WAHIS database from 2014 to 2022 for FMD; from 2006 to 2020 for BT; and from 2011 to 2022 for PPR to investigate their spatiotemporal patterns and environmental drivers. Over these periods, Algeria reported 1142 FMD outbreaks (10,409 cases; 0.16/1000 incidence), 167 BT outbreaks (602 cases; 0.018/1000), and 222 PPR outbreaks (3597 cases; 0.096/1000). Small ruminants were the most affected across all diseases, although cattle bore the highest burden of FMD. BT primarily impacted sheep, and PPR showed a higher incidence in goats. Disease peaks occurred in 2014 for FMD, 2008 for BT, and 2019 for PPR. Spatial analyses revealed distinct ecological hotspots: sub-humid and semi-arid zones for FMD and BT, and semi-arid/Saharan regions for PPR. These patterns may be influenced by species susceptibility, animal movement, trade, and climatic factors such as temperature and rainfall. The absence of consistent temporal trends and the persistence of outbreaks suggest multiple drivers, including insufficient vaccination coverage, under-reporting, viral evolution, and environmental persistence. Our findings underscore the importance of targeted species- and region-specific control strategies, including improved surveillance, cross-border coordination, and climate-informed risk mapping. Strengthening One Health frameworks will be essential to mitigate the re-emergence and spread of these diseases. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers, 2nd Edition)
Show Figures

Figure 1

Back to TopTop