Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = radiopharmaceutical agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1159 KB  
Review
Molecular Imaging Advances in Endometriosis: The Promise of Radiopharmaceuticals
by Rebecca Napolitano, Giorgia Speltri, Petra Martini, Francesca Porto, Lorenza Marvelli, Alessandro Niorettini, Licia Uccelli, Luca Urso, Luca Filippi, Hatice Uslu, Burak Canitez, Hamza Alperen Kösem and Alessandra Boschi
Molecules 2026, 31(1), 93; https://doi.org/10.3390/molecules31010093 - 25 Dec 2025
Viewed by 238
Abstract
Endometriosis is a highly prevalent, chronic gynecological disorder characterized by the ectopic presence of endometrial-like tissue, driving significant morbidity and chronic pelvic pain. Pathologically, it is increasingly recognized as a fibro-inflammatory condition involving extensive tissue remodeling and fibrosis. Current conventional imaging modalities, including [...] Read more.
Endometriosis is a highly prevalent, chronic gynecological disorder characterized by the ectopic presence of endometrial-like tissue, driving significant morbidity and chronic pelvic pain. Pathologically, it is increasingly recognized as a fibro-inflammatory condition involving extensive tissue remodeling and fibrosis. Current conventional imaging modalities, including ultrasound and MRI, are primarily morphological, while standard molecular imaging using Positron Emission Tomography (PET) tracers has shown limited diagnostic utility. [18F]Fluorodeoxyglucose (FDG) suffers from high physiological uptake in pelvic organs and inconsistent detection of lesions. Receptor-based tracers like [68Ga]Ga-DOTATATE have demonstrated uncertain efficacy. In contrast, radiopharmaceuticals targeting the Fibroblast Activation Protein (FAP) offer a promising molecular approach. FAP is specifically overexpressed by activated fibroblasts present in the stroma of endometriotic lesions, correlating significantly with tissue fibrosis (collagen content) and local immune infiltration (e.g., CD68 macrophages). This comprehensive review analyzes the landscape of radiopharmaceuticals for endometriosis imaging, contrasting the specific limitations of traditional metabolic and receptor agents with the molecular rationale and emerging evidence supporting the use of FAP Inhibitors (FAPI), positioning them as crucial, non-invasive tools for the future diagnosis and management of this challenging disease. Full article
Show Figures

Figure 1

14 pages, 1351 KB  
Article
Automated Scale-Down Development and Optimization of [68Ga]Ga-DOTA-EMP-100 for Non-Invasive PET Imaging and Targeted Radioligand Therapy of c-MET Overactivation in Cancer
by Silvia Migliari, Anna Gagliardi, Alessandra Guercio, Maura Scarlattei, Giorgio Baldari, Alex Gibson, Christophe Portal and Livia Ruffini
Biologics 2025, 5(4), 40; https://doi.org/10.3390/biologics5040040 - 17 Dec 2025
Viewed by 257
Abstract
Background/Objectives: Overactivation of the HGF/c-MET pathway is implicated in various cancers, making its inhibition a promising therapeutic strategy. While several MET-targeting agents are currently approved or in advanced clinical development, patient selection often relies on invasive tissue-based assays. The development of a [...] Read more.
Background/Objectives: Overactivation of the HGF/c-MET pathway is implicated in various cancers, making its inhibition a promising therapeutic strategy. While several MET-targeting agents are currently approved or in advanced clinical development, patient selection often relies on invasive tissue-based assays. The development of a specific c-MET radioligand for PET imaging and radioligand therapy represents a non-invasive alternative, enabling real-time monitoring of target expression and offering a pathway to personalized treatment. Methods: Radiosynthesis of [68Ga]Ga-DOTA-EMP100 was performed using a GMP-certified 68Ge/68Ga generator connected to an automated synthesis module. The radiopharmaceutical production was optimized by scaling down the amount of DOTA-EMP-100 from 50 to 20 μg. Synthesis efficiency and release criteria were assessed according to Ph. Eur. for all the final products by evaluating radiochemical yield (RY%), radiochemical purity, presence of free gallium (by Radio-UV-HPLC) and gallium colloids (by Radio-TLC), molar activity (Am), chemical purity, pH, and LAL test results. Results: An optimized formulation of [68Ga]Ga-DOTA-EMP-100, using 40 μg of precursor, provided the best outcome in terms of radiochemical performance. Process validation across three independent productions confirmed a consistent radiochemical yield of 64.5% ± 0.5, high radiochemical purity (>99.99%), and a molar activity of 53.41 GBq/µmol ± 0.8. Conclusions: [68Ga]Ga-DOTA-EMP-100 was successfully synthesized with high purity and reproducibility, supporting its potential for multi-dose application in clinical PET imaging and targeted radioligand therapy. Full article
Show Figures

Figure 1

15 pages, 2701 KB  
Article
A Novel 68Ga-Labeled Integrin α4β7-Targeted Radiopharmaceutical for PET/CT Imaging of DSS-Induced Murine Colitis
by Guangjie Yang, Haiqiong Zhang and Li Huo
Pharmaceutics 2025, 17(12), 1591; https://doi.org/10.3390/pharmaceutics17121591 - 10 Dec 2025
Viewed by 329
Abstract
Background: Inflammatory bowel diseases (IBD) rely on invasive methods for detecting intestinal inflammation, with the needs for non-invasive molecular imaging tools being unmet. Integrin α4β7 is a key target in IBD pathogenesis due to its role in the recruitment of T cells. [...] Read more.
Background: Inflammatory bowel diseases (IBD) rely on invasive methods for detecting intestinal inflammation, with the needs for non-invasive molecular imaging tools being unmet. Integrin α4β7 is a key target in IBD pathogenesis due to its role in the recruitment of T cells. This study aimed to develop a novel 68Ga-labeled integrin α4β7-targeted radiopharmaceutical (68Ga-A2) and evaluate its feasibility for non-invasive PET/CT imaging of IBD inflammation in a dextran sulfate sodium (DSS)-induced murine colitis model. Methods: 68Ga-A2 was synthesized via radiolabeling DOTA-A2 with 68Ga. In vitro properties (radiochemical purity, stability, binding specificity, and affinity) of 68Ga-A2 were validated. The DSS-induced colitis model was established and confirmed in C57BL/6J mice, followed by in vivo PET/CT imaging, ex vivo biodistribution studies, and histological (HE and IHC) analyses to evaluate the targeting efficacy of 68Ga-A2. Results: 68Ga-A2 was prepared efficiently (20 min) with a radiochemical purity of >95% and demonstrated good in vitro stability. It exhibited specific binding to integrin α4β7 with a Kd of 68.48 ± 6.55 nM. While whole-body PET/CT showed no visible inflammatory focus uptake, ex vivo imaging and biodistribution of colon tissue revealed significantly higher uptake in DSS-treated mice compared to that in healthy/blocking groups, which was consistent with histological evidence of inflammation. Conclusions: 68Ga-A2 demonstrated specific targeting of IBD inflammatory foci in vitro and ex vivo. Despite whole-body imaging limitations, further optimization of its structure may enable it to become a promising non-invasive PET agent for IBD. These findings support future clinical investigations to validate its utility in IBD diagnosis and monitoring. Full article
Show Figures

Graphical abstract

15 pages, 1624 KB  
Article
A Bioorthogonal TCO–Tetrazine-Based Pretargeted PET/NIRF Platform Enabling High-Contrast Tumor Imaging
by Mingxing Huang, Weichen Wang, Qiao Yu, Yike Zhou, Yingwei Wang, Rang Wang, Xin Li, Yaojia Zhou, Yi Zhang and Rong Tian
Pharmaceuticals 2025, 18(12), 1874; https://doi.org/10.3390/ph18121874 - 9 Dec 2025
Viewed by 364
Abstract
Objectives: Pretargeting strategies enhance the specificity and safety of radiopharmaceuticals by separating tumor targeting from radionuclide delivery. To address the rapid clearance and systemic exposure of directly labeled small-molecule agents, a DZ-1–based pretargeting system was developed, utilizing its broad-spectrum tumor-targeting characteristics. Methods: [...] Read more.
Objectives: Pretargeting strategies enhance the specificity and safety of radiopharmaceuticals by separating tumor targeting from radionuclide delivery. To address the rapid clearance and systemic exposure of directly labeled small-molecule agents, a DZ-1–based pretargeting system was developed, utilizing its broad-spectrum tumor-targeting characteristics. Methods: Three DZ-TCO precursors (DZ-1-TCO, DZ-Lys-TCO, and DZ-Lys-PEG4-TCO) were synthesized and evaluated by near-infrared fluorescence imaging in HeLa and U87MG tumor-bearing mice. Two tetrazine probes (methyl-tetrazine and mono-substituted tetrazine) were labeled with 68Ga to yield 68Ga-DOTA-Me-Tz and 68Ga-DOTA-H-Tz, whose stability was assessed in PBS and serum. Pretargeted PET imaging was performed using different precursor/probe combinations and pretargeting intervals (24, 48, and 72 h). Results: All precursors exhibited tumor accumulation peaking at 24 h and signal retention up to 96 h. Both 68Ga-DOTA-Me-Tz and 68Ga-DOTA-H-Tz maintained >85% radiochemical stability after 4 h. PET imaging identified DZ-Lys-TCO as the most effective precursor (1.98 ± 0.72 %ID/g, T/M 3.86 ± 0.91). Using 68Ga-DOTA-H-Tz, the 48 h interval achieved optimal uptake (3.24 ± 0.95 %ID/g) with the highest tumor-to-muscle ratio (8.30 ± 3.39). Biodistribution confirmed rapid renal clearance, low off-target accumulation, and peak tumor uptake of 3.53 ± 1.76 %ID/g (T/M 10.9 ± 0.3 at 30 min). Conclusions: The DZ-TCO/68Ga-DOTA-Tz pretargeting system enables high-contrast tumor imaging with low background. The combination of DZ-Lys-TCO and 68Ga-DOTA-H-Tz at a 48 h interval provides optimal performance, representing a promising platform for precise and safe radiopharmaceutical imaging. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

38 pages, 1179 KB  
Review
Therapeutic Advances in Metastatic Prostate Cancer: A Journey from Standard of Care to New Emerging Treatment
by Rossella Cicchetti, Martina Basconi, Giulio Litterio, Angelo Orsini, Marco Mascitti, Alessio Digiacomo, Gaetano Salzano, Octavian Sabin Tătaru, Matteo Ferro, Carlo Giulioni, Angelo Cafarelli, Luigi Schips and Michele Marchioni
Int. J. Mol. Sci. 2025, 26(23), 11665; https://doi.org/10.3390/ijms262311665 - 2 Dec 2025
Viewed by 1985
Abstract
Prostate cancer (PCa) remains one of the most prevalent malignancies among men worldwide and continues to pose significant therapeutic challenges, especially in its metastatic and castration-resistant forms. Over the past two decades, the treatment paradigm has evolved from monotherapy with androgen deprivation therapy [...] Read more.
Prostate cancer (PCa) remains one of the most prevalent malignancies among men worldwide and continues to pose significant therapeutic challenges, especially in its metastatic and castration-resistant forms. Over the past two decades, the treatment paradigm has evolved from monotherapy with androgen deprivation therapy (ADT) to a multifaceted approach integrating chemotherapy, androgen receptor axis-targeted therapies (ARATs), radiopharmaceuticals, and precision medicine. This review explores the molecular underpinnings of PCa, including genetic and epigenetic alterations such as BRCA1/2, TP53, and PTEN mutations, and their role in disease progression and treatment resistance. We detail the evidence supporting the integration of systemic agents like abiraterone, enzalutamide, and darolutamide into both hormone-sensitive and castration-resistant settings. Furthermore, we highlight the expanding role of radioligand therapies, including radium-223 and Lutetium-177-labeled PSMA-617 (Lu-PSMA-617), as well as the growing impact of PARP inhibitors in genomically selected patients. The emergence of theranostic strategies and next-generation sequencing has paved the way for personalized treatment algorithms, moving toward a truly precision oncology model in PCa. This comprehensive review synthesizes current therapeutic strategies, clinical trial evidence, and future directions aimed at optimizing outcomes and quality of life for patients with advanced prostate cancer. Full article
Show Figures

Figure 1

24 pages, 3190 KB  
Article
Ga-68-Labeled Affibody Molecule-Based Radiopharmaceutical Targeting Platelet Derived Growth Factor Receptor Beta for Detection of Active Fibrosis in Patients with Myocardial Infarction
by Irina Velikyan, Karl-Henrik Grinnemo, Viktor Flodin, Stefan James, Ulrika Thelander, Michael Wagner, Sergey Rodin, Tanja Kero, Olle Korsgren and Olof Eriksson
Pharmaceuticals 2025, 18(12), 1833; https://doi.org/10.3390/ph18121833 - 1 Dec 2025
Viewed by 366
Abstract
Introduction: Platelet-derived growth factor receptor beta (PDGFRβ) is a key regulator of fibrogenesis. Non-invasive imaging of PDGFRβ expression may offer a novel approach to assess fibrotic remodeling, particularly in cardiac patients’ post-intervention, where fibrosis poses clinical risk. This study presents the GMP-compliant [...] Read more.
Introduction: Platelet-derived growth factor receptor beta (PDGFRβ) is a key regulator of fibrogenesis. Non-invasive imaging of PDGFRβ expression may offer a novel approach to assess fibrotic remodeling, particularly in cardiac patients’ post-intervention, where fibrosis poses clinical risk. This study presents the GMP-compliant production of a novel PDGFRβ-targeted PET radiopharmaceutical, [68Ga]Ga-DOTA-Z09591 ([68Ga]Ga-ATH001), and its preclinical evaluation in mouse and human myocardial tissue, along with initial clinical imaging in patients with ST-elevation myocardial infarction (STEMI). Methods: The precursor was chemically synthesized and radiolabeled with gallium-68 using a fully automated, GMP-compatible system and a pharmaceutical-grade 68Ge/68Ga generator. Autoradiography, H&E, Sirius Red, Masson’s trichrome, and IHC staining were performed on infarcted mouse hearts and human myocardial biopsies. In vivo PET/MRI with [68Ga]Ga-ATH001, 15O-H2O, and gadolinium contrast was conducted in STEMI patients one week post-percutaneous coronary intervention. Results: [68Ga]Ga-ATH001 was produced with high radiochemical yield and purity. Autoradiography demonstrated specific, receptor-mediated binding of [68Ga]Ga-ATH001, co-localizing with PDGFRβ immunoreactivity, collagen deposition, and tissue damage. In STEMI patients, focal tracer uptake was observed in infarcted myocardium correlating with MRI-detected structural abnormalities and perfusion defects on 15O-H2O PET. Uptake in unaffected myocardium was low and homogeneous, consistent with minimal physiological PDGFRβ expression. Conclusions: [68Ga]Ga-ATH001 was successfully developed and validated for phase 0 clinical study. The tracer demonstrated PDGFRβ-specific binding in human fibrotic myocardium and enabled non-invasive detection of myocardial fibrogenic activity in STEMI patients. These findings support further clinical evaluation of [68Ga]Ga-ATH001 as a targeted molecular imaging agent for early assessment of post-infarction fibrosis. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

10 pages, 1385 KB  
Review
A Cursory Gaze at Solitary Radiopharmaceutical Chelators Incorporating Macrocyclic and Acyclic Moieties
by Stephen Ahenkorah and Danni Ramdhani
Pharmaceutics 2025, 17(12), 1508; https://doi.org/10.3390/pharmaceutics17121508 - 22 Nov 2025
Viewed by 578
Abstract
Radiopharmaceutical development usually requires chelators to route radiometals to specific cancer targets. However, there is no universal chelator. To reduce off-target side effects, new chelators are needed as the radiometal toolset grows. DOTA is the most often used chelator for radiometals in radiopharmaceutical [...] Read more.
Radiopharmaceutical development usually requires chelators to route radiometals to specific cancer targets. However, there is no universal chelator. To reduce off-target side effects, new chelators are needed as the radiometal toolset grows. DOTA is the most often used chelator for radiometals in radiopharmaceutical development, however DOTA’s extreme conditions make it unsuitable for labeling heat sensitive biological vectors. The ideal chelator should be thermodynamically and kinetically stable, allowing labeling under mild conditions (~37 °C). In recent years, new hybrid chelators with enhanced characteristics have emerged, warranting further investigation for medical applications. This paper aims to discuss some of these promising chelators. Full article
Show Figures

Figure 1

18 pages, 326 KB  
Review
Update on Systemic Therapies for Metastatic/Unresectable Pheochromocytomas and Paragangliomas and Future Directions
by Imani Ghosh, Olivia Benson, Jorge H. Hernandez-Felix, Frank I. Lin, Karel Pacak and Jaydira del Rivero
Cancers 2025, 17(22), 3702; https://doi.org/10.3390/cancers17223702 - 19 Nov 2025
Viewed by 1097
Abstract
Metastatic or unresectable pheochromocytomas and paragangliomas (PPGLs) remain rare but clinically challenging neuroendocrine neoplasms with limited curative options. Traditionally managed with surgery, radionuclide therapy, or cytotoxic chemotherapy, systemic treatments have historically achieved disease stabilization, rather than durable remissions. In recent years, however, the [...] Read more.
Metastatic or unresectable pheochromocytomas and paragangliomas (PPGLs) remain rare but clinically challenging neuroendocrine neoplasms with limited curative options. Traditionally managed with surgery, radionuclide therapy, or cytotoxic chemotherapy, systemic treatments have historically achieved disease stabilization, rather than durable remissions. In recent years, however, the therapeutic landscape has evolved substantially. Radiopharmaceuticals such as 131I-MIBG and 177Lu-DOTATATE continue to play a pivotal role, achieving disease control in many patients. Cytotoxic regimens, particularly temozolomide, remain relevant, with some studies suggesting that SDHB-mutated PPGLs demonstrate a heightened sensitivity associated with MGMT promoter hypermethylation and reduced MGMT expression. Targeted agents are increasingly important: multi-kinase inhibitors such as sunitinib, anlotinib, and cabozantinib have shown meaningful activity. The landmark approval of belzutifan, a HIF-2α inhibitor, in 2025 represents the first oral targeted therapy for advanced/metastatic PPGL, which is particularly relevant for pseudohypoxic Cluster 1 tumors. Immunotherapy has yielded modest responses with checkpoint inhibitor monotherapy, but ongoing studies of dual checkpoint blockade and TKI–ICI combinations hold promise. Novel approaches, including PARP inhibition, metabolic targeting strategies, and cancer vaccines, are under investigation, especially for aggressive SDHB-related disease. Optimal sequencing of these therapies is emerging as a central challenge, with treatment strategies increasingly tailored to molecular genotype, tumor behavior, and functional imaging phenotype. This review summarizes current evidence and highlights ongoing clinical trials, underscoring a paradigm shift toward precision medicine and rational combination strategies. Collectively, these advances bring cautious optimism that metastatic PPGLs may soon become a more manageable chronic disease with improved survival and quality of life. Full article
(This article belongs to the Special Issue Updates in Neuroendocrine Neoplasms)
25 pages, 800 KB  
Review
Radioligand Therapy in Cancer Management: A Global Perspective
by Gaia Ninatti, Sze Ting Lee and Andrew M. Scott
Cancers 2025, 17(21), 3412; https://doi.org/10.3390/cancers17213412 - 23 Oct 2025
Viewed by 3185
Abstract
Radioligand therapy (RLT) is a targeted treatment modality that combines a tumour-specific ligand with a therapeutic radionuclide. Once administered, the radiopharmaceutical binds selectively to cancer-associated targets, delivering cytotoxic radiation directly to tumour cells while sparing surrounding tissues. Two RLT agents, [177Lu]Lu-DOTA-TATE [...] Read more.
Radioligand therapy (RLT) is a targeted treatment modality that combines a tumour-specific ligand with a therapeutic radionuclide. Once administered, the radiopharmaceutical binds selectively to cancer-associated targets, delivering cytotoxic radiation directly to tumour cells while sparing surrounding tissues. Two RLT agents, [177Lu]Lu-DOTA-TATE (Lutathera®) and [177Lu]Lu-PSMA-617 (Pluvicto®), have received regulatory approval for the treatment of advanced gastroenteropancreatic neuroendocrine tumours and metastatic castration-resistant prostate cancer, respectively. As of July 2025, more than 400 clinical trials are registered, exploring novel molecular targets such as FAP, CAIX, and GRPR, as well as alternative radionuclides and combination regimens in both solid and haematologic malignancies. In this review, we describe the design principles and mechanisms of action of RLT, summarise clinical evidence for approved and emerging radiopharmaceuticals, and discuss current global disparities in access and availability. Finally, we outline the main clinical challenges, including fixed dosing regimens, resistance, toxicity, and variability in patient selection and response assessment. Continued research to optimise radiopharmaceutical design, together with investment in infrastructure, workforce capacity, and international collaboration, will be essential to expand access and realise the full potential of RLT as a leading treatment strategy in modern oncology. Full article
(This article belongs to the Special Issue Cancer Treatment: Present and Future of Radioligand Therapy)
Show Figures

Figure 1

42 pages, 1849 KB  
Review
Recommendations on the Clinical Application and Future Potential of α-Particle Therapy: A Comprehensive Review of the Results from the SECURE Project
by Valentina Di Iorio, Anna Sarnelli, Stefano Boschi, Maddalena Sansovini, Rosa Maria Genovese, Cipriana Stefanescu, Vlad Ghizdovat, Wael Jalloul, Jennifer Young, Jane Sosabowski, Petra Kolenc, Rachel Roberts, Govert de With, Dimitris Visvikis and Renata Mikolajczak
Pharmaceuticals 2025, 18(10), 1578; https://doi.org/10.3390/ph18101578 - 18 Oct 2025
Cited by 1 | Viewed by 3037
Abstract
This review comprehensively assesses the clinical applications and future potential of alpha-emitting radionuclides available for targeted alpha-particle therapy (TAT) in cancer treatment. The approval of radium-223 therapy in 2013 marked a significant advancement in alpha-emitting therapeutic radiopharmaceuticals, which are primarily used in treatment [...] Read more.
This review comprehensively assesses the clinical applications and future potential of alpha-emitting radionuclides available for targeted alpha-particle therapy (TAT) in cancer treatment. The approval of radium-223 therapy in 2013 marked a significant advancement in alpha-emitting therapeutic radiopharmaceuticals, which are primarily used in treatment of prostate cancer. The EU SECURE project was introduced as a major initiative to enhance the sustainability and safety of medical alpha-emitting radionuclides production in Europe. This literature review was conducted by a multidisciplinary team on selected radionuclides, including actinium-225, bismuth-213, astatine-211, lead-212, terbium-149, radium-223 and thorium-227. These were selected based on their clinical significance, as identified in the EU PRISMAP project and subsequent literature searches. The review process involved searching major databases using specific keywords related to alpha-emitter therapy and was limited to articles in English. For each selected radionuclide, the physical characteristics, the radiochemistry, and the pre-clinical and clinical studies are explored. Actinium-225 is the most widely studied alpha emitter, with several preclinical and clinical studies on prostate cancer and neuroendocrine tumours. Other types of tumours (such as glioblastoma) still require preclinical and clinical development. Bismuth-213 bound to antibodies, peptides and nanobodies has shown optimal results in preclinical and clinical studies, with increased median survival and no significant toxicity. Astatine-211 differs from most other α-emitters relevant to TAT, since it yields one α-particle per decay. This offers certain translational advantages, including the simplification of radiation dosimetry calculations and quality control (QC). Lead-212 has the advantage of being an in situ generator with likely widespread availability. Although clinical data are limited, the findings are promising at this stage. The unconventional production of Terbium-149 is the primary reason it has not yet progressed to clinical trials. Overcoming this production obstacle would allow more detailed preclinical investigations. Optimal results with Thorium-227-labelled agents have been observed in preclinical studies, including delays in cellular growth, multiple double-strand breaks and complete regression. Intermediate phase I trial results have also been reported, demonstrating safety and tolerability, as well as an objective response rate of 25%.: The results highlight the advantages of alpha particles in targeting cancer cells with minimal radiation to normal tissue, emphasising the need for high specificity and stability in delivery mechanisms, as well as suggesting that the full clinical potential of alpha particle therapy remains unexplored. Theranostic approach and dosimetric evaluations still represent relevant challenges. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

21 pages, 1636 KB  
Review
Lapatinib-Based Radioagents for Application in Nuclear Medicine
by Przemysław Koźmiński and Ewa Gniazdowska
Appl. Sci. 2025, 15(20), 10964; https://doi.org/10.3390/app152010964 - 12 Oct 2025
Viewed by 943
Abstract
Lapatinib is an approved therapeutic agent for the treatment of HER2-positive breast cancer. It has a high affinity for the non-receptor cytoplasmic tyrosine kinases of the EGFR and HER2 receptors. It is a type II inhibitor, with Kiapp values of 3 [...] Read more.
Lapatinib is an approved therapeutic agent for the treatment of HER2-positive breast cancer. It has a high affinity for the non-receptor cytoplasmic tyrosine kinases of the EGFR and HER2 receptors. It is a type II inhibitor, with Kiapp values of 3 nM and 13 nM, respectively. The dissociation rate of the lapatinib–receptor complex is notably slow compared with many other kinase inhibitors. Although the literature contains numerous reports on radiolabelled ligands for HER-family receptors, studies on radiolabelled tyrosine kinase inhibitors are far fewer, and only few focus specifically on radiolabelled lapatinib. The aim of this review is to compile and discuss the chemical and biological data on lapatinib-based radiopharmaceuticals with potential applications in the diagnosis and treatment of HER2-positive tumours. Full article
Show Figures

Figure 1

53 pages, 4230 KB  
Review
Alzheimer’s Disease: From Molecular Mechanisms to Promising Therapeutic Strategies
by Anna V. Ivanova, Alexandra D. Kutuzova, Ilia A. Kuzmichev and Maxim A. Abakumov
Int. J. Mol. Sci. 2025, 26(19), 9444; https://doi.org/10.3390/ijms26199444 - 26 Sep 2025
Cited by 2 | Viewed by 3338
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and there are still no strategies to slow or prevent its clinical progression. Significant financial and research resources have been invested into studying the pathology of AD. However, its pathogenesis is not [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and there are still no strategies to slow or prevent its clinical progression. Significant financial and research resources have been invested into studying the pathology of AD. However, its pathogenesis is not fully understood. This review provides a comprehensive analysis of current understanding of AD pathogenesis, including classical hypotheses (amyloid cascade, tau pathology, neuroinflammation, oxidative stress), emerging mechanisms (cellular senescence, endoplasmic reticulum stress, ubiquitin-proteasome system dysfunction), and alternative mechanisms (cholinergic dysfunction, glutamate excitotoxicity, disruption of the microbiota–gut–brain axis, and autophagy). Schematic illustrations summarize the relationships between the hypotheses and their role in the pathogenesis of AD. Particular attention is paid to the systematization of promising biological targets and the analysis of modern ligands of various nature, including small molecules, peptides, antibodies and their fragments, natural compounds, as well as innovative hybrid and multifunctional structures. A separate section is devoted to radiopharmaceuticals for PET imaging (Florbetaben, Flortaucipir, etc.) and promising therapeutic agents. Thus, in this review we (1) systematize modern concepts of AD pathogenesis, including classical, emerging mechanisms and alternative hypotheses; (2) conduct a comparative analysis of ligand classes (small molecules, peptides, antibodies, etc.) and their therapeutic potential; and (3) discuss the clinical prospects of radiopharmaceuticals for PET imaging and targeted therapy. The work provides a comprehensive analysis of modern approaches, which can help in the development of more effective drugs against AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

32 pages, 1169 KB  
Review
Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects
by Mohamed F. Nawar, Adli A. Selim, Basma M. Essa, Alaa F. El-Daoushy, Mohamed M. Swidan, Claudia G. Chambers, Mohammed H. Al Qahtani, Charles J. Smith and Tamer M. Sakr
Cancers 2025, 17(18), 3055; https://doi.org/10.3390/cancers17183055 - 18 Sep 2025
Viewed by 3409
Abstract
Alpha therapy (TAT) relies on combining alpha-emitting radionuclides with specific cell-targeting vectors to deliver a high payload of cytotoxic radiation capable of destroying tumor tissues. TAT efficacy comes from the tissue selectivity of the targeting vector, the high linear energy transfer (LET) of [...] Read more.
Alpha therapy (TAT) relies on combining alpha-emitting radionuclides with specific cell-targeting vectors to deliver a high payload of cytotoxic radiation capable of destroying tumor tissues. TAT efficacy comes from the tissue selectivity of the targeting vector, the high linear energy transfer (LET) of the radionuclide, and the short range of alpha particles in tissues. Recent research studies have been directed to evaluate TAT on a preclinical and clinical scale, including evaluating damage to tumor tissues with minimal toxic radiation effects on surrounding healthy tissues. This review highlights the use of Actinium-225/Bismuth-213 radionuclides as promising candidates for TAT. Herein, we begin with a discussion on the production and supply of [225Ac]Ac/[213Bi]Bi followed by the formulation of [225Ac]Ac/[213Bi]Bi-radiopharmaceuticals using different radiolabeling techniques. Finally, we have summarized the preclinical and clinical evaluation of these potential radiotheranostic agents. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

26 pages, 1121 KB  
Review
Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology)
by María Jimena Salgueiro and Marcela Zubillaga
Pharmaceutics 2025, 17(9), 1159; https://doi.org/10.3390/pharmaceutics17091159 - 3 Sep 2025
Viewed by 1114
Abstract
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many [...] Read more.
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many of these nanoplatforms evolve into multifunctional systems by incorporating additional imaging modalities (e.g., MRI, fluorescence) or non-radioactive therapies (e.g., photodynamic therapy, chemotherapy). These hybrid constructs often emerge from the reformulation, repositioning, or revival of previously approved or abandoned compounds, generating entities with novel pharmacological, pharmacokinetic, and biodistribution profiles. However, their translational potential faces significant regulatory hurdles. Existing frameworks—typically designed for single-modality drugs or devices—struggle to accommodate the combined complexity of nanoengineering, radioactive components, and integrated functionalities. This review examines how these systems challenge current norms in classification, safety assessment, preclinical modeling, and regulatory coordination. It also addresses emerging concerns around digital adjuncts such as AI-assisted dosimetry and software-based therapy planning. Finally, the article outlines international initiatives aimed at closing regulatory gaps and provides future directions for building harmonized, risk-adapted frameworks that support innovation while ensuring safety and efficacy. Full article
Show Figures

Figure 1

15 pages, 3903 KB  
Article
PSMA-Targeted Radiolabeled Peptide for Imaging and Therapy in Prostate Cancer: Preclinical Evaluation of Biodistribution and Therapeutic Efficacy
by Ming-Wei Chen, Yuan-Ruei Huang, Wei-Lin Lo, Shih-Ying Lee, Sheng-Nan Lo, Shih-Ming Wang and Kang-Wei Chang
Int. J. Mol. Sci. 2025, 26(15), 7580; https://doi.org/10.3390/ijms26157580 - 5 Aug 2025
Viewed by 2380
Abstract
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine [...] Read more.
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine the specific binding of 177Lu-PSMA-NARI-56 towards PSMA, assess its biodistribution, and evaluate therapeutic effectiveness by tumor-bearing mice. The effect of 177Lu-PSMA-NARI-56 viability of PSMA-positive cell (LNCaP) was evaluated. Biodistribution and endoradiotherapy studies were utilized to determine the distribution, targeting, and anti-tumor efficacy by tumor-bearing mice identified by 111In-PSMA-NARI-56. 177Lu-PSMA-NARI-56 exhibited a significant impact on the viability of the LNCaP cell. Biodistribution results revealed the maximum tumor uptake of 177Lu-PSMA-NARI-56 occurring within 24 h, reaching 40.56 ± 10.01%ID/g. In radionuclide therapy, at 58 days post-injection (p.i.), 177Lu-PSMA-NARI-56 demonstrated superior tumor inhibition (98%) compared to 177Lu-PSMA-617 (58%), and the mouse survival rate after 90 days of radiotherapy (90%) was also higher than that of 177Lu-PSMA-617 (30%) in LNCaP tumor-bearing mice. In the PSMA-positive animal model, 177Lu-PSMA-NARI-56 shows higher potential radiotheranostic and prolonged accumulation (identify by 111In-PSMA-NARI-56/nanoSPECT/CT image), offering the potential for improved treatment effectiveness and increased survival rates when compared to 177Lu-PSMA-617. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop