Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,007)

Search Parameters:
Keywords = radiation monitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1674 KiB  
Article
Air-STORM: Informed Decision Making to Improve the Success of Solar-Powered Air Quality Samplers in Challenging Environments
by Kyan Kuo Shlipak, Julian Probsdorfer and Christian L’Orange
Sensors 2025, 25(15), 4798; https://doi.org/10.3390/s25154798 (registering DOI) - 4 Aug 2025
Abstract
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to [...] Read more.
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to extreme temperatures and insufficient solar energy. Proper planning can help overcome these challenges. Air Sampler Solar and Thermal Optimization for Reliable Monitoring (Air-STORM) is an open-source tool that uses meteorological and solar radiation data to identify temperature and solar charging risks for air pollution monitors based on the target deployment area. The model was validated experimentally, and its utility was demonstrated through illustrative case studies. Air-STORM simulations can be customized for specific locations, seasons, and monitor configurations. This capability enables the early detection of potential sampling risks and provides opportunities to optimize monitor design, proactively mitigate temperature and power failures, and increase the likelihood of successful sample collection. Ultimately, improving sampling success will help increase the availability of high-quality outdoor air pollution data necessary to reduce global air pollution exposure. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
10 pages, 615 KiB  
Article
Translating SGRT from Breast to Lung Cancer: A Study on Frameless Immobilization and Real-Time Monitoring Efficacy, Focusing on Setup Accuracy
by Jang Bo Shim, Hakyoung Kim, Sun Myung Kim and Dae Sik Yang
Life 2025, 15(8), 1234; https://doi.org/10.3390/life15081234 - 4 Aug 2025
Abstract
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and [...] Read more.
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and clinical utility of SGRT in lung cancer treatment, focusing on its effectiveness in patient setup and real-time motion monitoring under frameless immobilization conditions. Materials and Methods: A total of 204 treatment records from 17 patients with primary lung cancer who underwent radiotherapy at Korea University Guro Hospital between October 2024 and April 2025 were retrospectively analyzed. Patients were initially positioned using the Identify system (Varian) in the CT suite, with surface data transferred to the treatment room system. Alignment was performed to within ±1 cm and ±2° across six degrees of freedom. Cone-beam CT (CBCT) was acquired prior to treatment for verification, and treatment commenced when the Distance to Correspondence Surface (DCS) was ≤0.90. Setup deviations from the Identify system were recorded and compared with CBCT in three translational axes to evaluate positioning accuracy and PTV displacement. Results and Conclusions: The Identify system was shown to provide high setup accuracy and reliable real-time motion monitoring in lung cancer radiotherapy. Its ability to detect patient movement and automatically interrupt beam delivery contributes to enhanced treatment safety and precision. In addition, even though the maximum longitudinal (Lng) shift reached up to −1.83 cm with surface-guided setup, and up to 1.78 cm (Lat) 5.26 cm (Lng), 9.16 cm (Vrt) with CBCT-based verification, the use of Identify’s auto-interruption mode (±1 cm in translational axes, ±2° in rotational axes) allowed treatment delivery with PTV motion constrained within ±0.02 cm. These results suggest that, due to significant motion in the longitudinal direction, appropriate PTV margins should be considered during treatment planning. The Identify system enhances setup accuracy in lung cancer patients using a surface-guided approach and enables real-time tracking of intra-fractional errors. SGRT, when implemented with systems such as Identify, shows promise as a feasible alternative or complement to conventional IGRT in selected lung cancer cases. Further studies with larger patient cohorts and diverse clinical settings are warranted to validate these findings. Full article
(This article belongs to the Special Issue Current Advances in Lung Cancer Diagnosis and Treatment)
Show Figures

Figure 1

20 pages, 16348 KiB  
Article
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in [...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience. Full article
Show Figures

Figure 1

12 pages, 955 KiB  
Article
Single-Center Preliminary Experience Treating Endometrial Cancer Patients with Fiducial Markers
by Francesca Titone, Eugenia Moretti, Alice Poli, Marika Guernieri, Sarah Bassi, Claudio Foti, Martina Arcieri, Gianluca Vullo, Giuseppe Facondo, Marco Trovò, Pantaleo Greco, Gabriella Macchia, Giuseppe Vizzielli and Stefano Restaino
Life 2025, 15(8), 1218; https://doi.org/10.3390/life15081218 - 1 Aug 2025
Viewed by 141
Abstract
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer [...] Read more.
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer requiring adjuvant radiation with external beams were enrolled. Five patients underwent radiation therapy targeting the pelvic disease and positive lymph nodes, with doses of 50.4 Gy in twenty-eight fractions and a subsequent stereotactic boost on the vaginal vault at a dose of 5 Gy in a single fraction. One patient was administered 30 Gy in five fractions to the vaginal vault. These patients underwent external beam RT following the implantation of three 0.40 × 10 mm gold fiducial markers (FMs). Our IGRT strategy involved real-time 2D kV image-based monitoring of the fiducial markers during the treatment delivery as a surrogate of the vaginal cuff. To explore the potential role of FMs throughout the treatment process, we analyzed cine movies of the 2D kV-triggered images during delivery, as well as the image registration between pre- and post-treatment CBCT scans and the planning CT (pCT). Each CBCT used to trigger fraction delivery was segmented to define the rectum, bladder, and vaginal cuff. We calculated a standard metric to assess the similarity among the images (Dice index). Results: All the patients completed radiotherapy and experienced good tolerance without any reported acute or long-term toxicity. We did not observe any loss of FMs during or before treatment. A total of twenty CBCTs were analyzed across ten fractions. The observed trend showed a relatively emptier bladder compared to the simulation phase, with the bladder filling during the delivery. This resulted in a final median Dice similarity coefficient (DSC) of 0.90, indicating strong performance. The rectum reproducibility revealed greater variability, negatively affecting the quality of the delivery. Only in two patients, FMs showed intrafractional shift > 5 mm, probably associated with considerable rectal volume changes. Target coverage was preserved due to a safe CTV-to-PTV margin (10 mm). Conclusions: In our preliminary study, CBCT in combination with the use of fiducial markers to guide the delivery proved to be a feasible method for IGRT both before and during the treatment of post-operative gynecological cancer. In particular, this approach seems to be promising in selected patients to facilitate the use of SBRT instead of BRT (brachytherapy), thanks to margin reduction and adaptive strategies to optimize dose delivery while minimizing toxicity. A larger sample of patients is needed to confirm our results. Full article
Show Figures

Figure 1

25 pages, 442 KiB  
Systematic Review
Ultrasonographic Elastography of the Spleen for Diagnosing Neoplastic Myeloproliferation: Identifying the Most Promising Methods—A Systematic Review
by Mateusz Bilski, Marta Sobas and Anna Zimny
J. Clin. Med. 2025, 14(15), 5400; https://doi.org/10.3390/jcm14155400 (registering DOI) - 31 Jul 2025
Viewed by 110
Abstract
Background: The relationship between spleen and bone marrow stiffness, and other features of abnormal myeloproliferation has long been described. However, the scientific knowledge in this area remains very superficial. This review evaluated the diagnostic effectiveness of various ultrasound (US) methods in the [...] Read more.
Background: The relationship between spleen and bone marrow stiffness, and other features of abnormal myeloproliferation has long been described. However, the scientific knowledge in this area remains very superficial. This review evaluated the diagnostic effectiveness of various ultrasound (US) methods in the assessment of neoplastic myeloproliferation using spleen stiffness measurement (SSM). Aim: To explore the diagnostic accuracy of US techniques in assessing spleen stiffness, determining which of them may be suitable for the diagnosis of myeloproliferative diseases in adults. Methods: The review included original retrospective or prospective studies published in the last five years (2019–2024) in peer-reviewed medical journals that reported receiver operating characteristics (ROCs) for SSM and the articles concerning the relation between SSM values and neoplastic myeloproliferation. The studies were identified through PubMed searches on 1 July and 1 December 2024. Quality was assessed using the QUADAS-2 tool. Results were tabulated according to the diagnostic method separately for myeloproliferative neoplasms (MNs) and for other clinical findings. Results: The review included 52 studies providing ROCs for SSM or compatibility between operators, and five studies covering the relation between SSM values and MNs. Conclusions: Acoustic radiation force impulse (ARFI), two-dimensional shear wave elastography (2D-SWE), transient elastography (TE), and point shear wave elastography (p-SWE) are promising methods for measuring SSM that can be incorporated into the diagnosis, screening, and monitoring system in MNs. Full article
(This article belongs to the Special Issue New Insights into Diagnostic and Interventional Radiology)
Show Figures

Figure 1

16 pages, 4154 KiB  
Article
Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea
by Lifeng Wu, Chunquan Chen, Xiaoyu Zhou, Kailun Zheng, Xiaohan Liang and Jing Wei
Molecules 2025, 30(15), 3176; https://doi.org/10.3390/molecules30153176 - 29 Jul 2025
Viewed by 207
Abstract
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth [...] Read more.
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth patterns at different nitrogen levels have yet to be elucidated. In this research, in addition to conventional growth monitoring and quality evaluation, a comparative proteomics method was applied to investigate the molecular mechanisms of mung bean in response to 0, 0.025, 0.05, 0.075, and 0.1% urea concentrations. Our results indicated that mung bean sprout height and yield increased with rising urea concentrations but were suppressed beyond the L3 level (0.075% urea). Nitrate nitrogen and free amino acid content rose steadily with urea levels, whereas protein content, nitrate reductase activity, and nitrite levels followed a peak-then-decline trend, peaking at intermediate concentrations. Differential expression protein analysis was conducted on mung bean sprouts treated with different concentrations of urea, and more differentially expressed proteins participated in the L3 urea concentration. Analysis of common differential proteins among comparison groups showed that the mung bean sprouts enhanced their adaptability to urea stress environments by upregulating chlorophyll a-b binding protein and cationic amino acid transporter and downregulating the levels of glycosyltransferase, L-ascorbic acid, and cytochrome P450. The proteomic analysis uncovered the regulatory mechanisms governing these metabolic pathways, identifying 47 differentially expressed proteins (DEPs) involved in the biosynthesis of proteins, free amino acids, and nitrogen-related metabolites. Full article
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 227
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

33 pages, 4070 KiB  
Review
A Comprehensive Review of Optical and AI-Based Approaches for Plant Growth Assessment
by Juan Zapata-Londoño, Juan Botero-Valencia, Vanessa García-Pineda, Erick Reyes-Vera and Ruber Hernández-García
Agronomy 2025, 15(8), 1781; https://doi.org/10.3390/agronomy15081781 - 24 Jul 2025
Viewed by 349
Abstract
Plant growth monitoring is a complex and challenging task, which depends on a variety of environmental variables, such as temperature, humidity, nutrient availability, and solar radiation. Advances in optical sensors have significantly enhanced data collection on plant growth. These developments enable the optimization [...] Read more.
Plant growth monitoring is a complex and challenging task, which depends on a variety of environmental variables, such as temperature, humidity, nutrient availability, and solar radiation. Advances in optical sensors have significantly enhanced data collection on plant growth. These developments enable the optimization of agricultural practices and crop management through the integration of artificial vision techniques. Despite advances in the application of these technologies, limitations and challenges persist. This review aims to analyze the current state-of-the-art methodologies for using artificial vision and optical sensors in plant growth assessment. The systematic review was conducted following the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Relevant studies were analyzed from the Scopus and Web of Science databases. The main findings indicate that data collection in agricultural environments is challenging. This is due to the variability of climatic conditions, the heterogeneity of crops, and the difficulty in obtaining accurately and homogeneously labeled datasets. Additionally, the integration of artificial vision models and advanced sensors would enable the assessment of plant responses to these environmental factors. The advantages and limitations were examined, as well as proposed research areas to further contribute to the improvement and expansion of these emerging technologies for plant growth assessment. Finally, a relevant research line focuses on evaluating AI-based models on low-power embedded platforms to develop accessible and efficient decision-making solutions in both agricultural and urban environments. This systematic review was registered in the Open Science Framework (OSF). Full article
(This article belongs to the Special Issue Advances in Agricultural Engineering for a Sustainable Tomorrow)
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Efficient Heating System Management Through IoT Smart Devices
by Álvaro de la Puente-Gil, Alberto González-Martínez, Enrique Rosales-Asensio, Ana-María Diez-Suárez and Jorge-Juan Blanes Peiró
Machines 2025, 13(8), 643; https://doi.org/10.3390/machines13080643 - 23 Jul 2025
Viewed by 216
Abstract
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer [...] Read more.
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer a favorable payback period, positioning the solution as both sustainable and economically viable. Efficient heating management is increasingly critical amid growing energy and environmental concerns. This strategy uses IoT devices to collect real-time data on prices, consumption, and user preferences. Based on this data, the system adjusts heating settings intelligently to balance comfort and cost savings. IoT connectivity manages continuous monitoring and dynamic optimization in response to changing conditions. This study includes a real-case comparison between a conventional central heating system and an IoT-managed electric radiator setup. By applying automation rules linked to energy pricing and user habits, the system enhances energy efficiency, especially in cold climates. The economic evaluation shows that using low-cost IoT devices yields meaningful savings and achieves equipment payback within approximately three years. The results demonstrate the system’s effectiveness, demonstrating that smart, adaptive heating solutions can cut energy expenses without sacrificing comfort, while offering environmental and financial benefits. Full article
Show Figures

Figure 1

11 pages, 2547 KiB  
Article
Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging
by Ruka Kobashi, Daichi Anabuki, Hibiki Yano, Yuto Mukaihara, Akira Nishiyama, Kenji Wada, Akiko Nishimura and Ichiro Ishimaru
Sensors 2025, 25(15), 4537; https://doi.org/10.3390/s25154537 - 22 Jul 2025
Viewed by 298
Abstract
Mid-infrared passive spectroscopic imaging is a novel non-invasive and remote sensing method based on Planck’s law. It enables the acquisition of component-specific information from the human body by measuring naturally emitted thermal radiation in the mid-infrared region. Unlike active methods that require an [...] Read more.
Mid-infrared passive spectroscopic imaging is a novel non-invasive and remote sensing method based on Planck’s law. It enables the acquisition of component-specific information from the human body by measuring naturally emitted thermal radiation in the mid-infrared region. Unlike active methods that require an external light source, our passive approach harnesses the body’s own emission, thereby enabling safe, long-term monitoring. In this study, we successfully demonstrated the simultaneous, non-invasive measurements of blood glucose and lactate levels of the human body using this method. The measurements, conducted over approximately 80 min, provided emittance data derived from mid-infrared passive spectroscopy that showed a temporal correlation with values obtained using conventional blood collection sensors. Furthermore, to evaluate localized metabolic changes, we performed k-means clustering analysis of the spectral data obtained from the upper arm. This enabled visualization of time-dependent lactate responses with spatial resolution. These results demonstrate the feasibility of multi-component monitoring without physical contact or biological sampling. The proposed technique holds promise for translation to medical diagnostics, continuous health monitoring, and sports medicine, in addition to facilitating the development of next-generation healthcare technologies. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2025)
Show Figures

Figure 1

28 pages, 2909 KiB  
Review
State of the Art in Pulmonary Arterial Hypertension: Molecular Basis, Imaging Modalities, and Right Heart Failure Treatment
by Melika Shafeghat, Yasmin Raza, Roberta Catania, Amir Ali Rahsepar, Blair Tilkens, Michael J. Cuttica, Benjamin H. Freed, Jingbo Dai, You-Yang Zhao and James C. Carr
Biomedicines 2025, 13(7), 1773; https://doi.org/10.3390/biomedicines13071773 - 20 Jul 2025
Viewed by 518
Abstract
Pulmonary hypertension (PH) is broadly defined as a mean pulmonary arterial pressure (mPAP) exceeding 20 mm Hg at rest. Pulmonary arterial hypertension (PAH) is a specific subset of PH characterized by a normal pulmonary arterial wedge pressure (PAWP), combined with elevated mPAP and [...] Read more.
Pulmonary hypertension (PH) is broadly defined as a mean pulmonary arterial pressure (mPAP) exceeding 20 mm Hg at rest. Pulmonary arterial hypertension (PAH) is a specific subset of PH characterized by a normal pulmonary arterial wedge pressure (PAWP), combined with elevated mPAP and increased pulmonary vascular resistance (PVR), without other causes of pre-capillary hypertension such as lung diseases or chronic thromboembolic pulmonary hypertension. The majority of PAH cases are idiopathic; other common etiologies include connective tissue disease-associated PAH, congenital heart disease, and portopulmonary hypertension. To a lesser extent, genetic and familial forms of PAH can also occur. The pathophysiology of PAH involves the following four primary pathways: nitric oxide, endothelin-1, prostacyclin, and activin/bone morphogenetic protein (BMP). Dysregulation of these pathways leads to a progressive vasculopathy marked by vasoconstriction, vascular proliferation, elevated right heart afterload, and ultimately right-sided heart failure. Diagnosing PAH is challenging and often occurs at advanced stages. The gold standard for diagnosis remains invasive right heart catheterization. Along with invasive hemodynamic measurements, several noninvasive imaging modalities such as echocardiography and ventilation-perfusion scanning are key adjunct techniques. Also, recent advancements in cardiac magnetic resonance (CMR) have opened a new era for PAH management. Additionally, CMR and echocardiography not only enable diagnosis but also aid in evaluating disease severity and monitoring treatment responses. Current PAH treatments focus on targeting molecular pathways, reducing inflammation, and inhibiting right-sided heart failure. Integrating imaging with basic science techniques is crucial for enhanced patient diagnosis, and precision medicine is emerging as a key strategy in PAH management. Additionally, the incorporation of artificial intelligence into both molecular and imaging approaches holds significant potential. There is a growing need to integrate new imaging modalities with high resolution and reduced radiation exposure into clinical practice. In this review, we discuss the molecular pathways involved in PAH, the imaging modalities utilized for diagnosis and monitoring, and current targeted therapies. Advances in molecular understanding and imaging technologies, coupled with precision medicine, could hold promise in improving patient outcomes and revolutionizing the management of PAH patients. Full article
Show Figures

Graphical abstract

23 pages, 4267 KiB  
Article
Proof of Concept of an Integrated Laser Irradiation and Thermal/Visible Imaging System for Optimized Photothermal Therapy in Skin Cancer
by Diogo Novas, Alessandro Fortes, Pedro Vieira and João M. P. Coelho
Sensors 2025, 25(14), 4495; https://doi.org/10.3390/s25144495 - 19 Jul 2025
Viewed by 381
Abstract
Laser energy is widely used as a selective photothermal heating agent in cancer treatment, standing out for not relying on ionizing radiation. However, in vivo tests have highlighted the need to develop irradiation techniques that allow precise control over the illuminated area, adapting [...] Read more.
Laser energy is widely used as a selective photothermal heating agent in cancer treatment, standing out for not relying on ionizing radiation. However, in vivo tests have highlighted the need to develop irradiation techniques that allow precise control over the illuminated area, adapting it to the tumor size to further minimize damage to surrounding healthy tissue. To address this challenge, a proof of concept based on a laser irradiation system has been designed, enabling control over energy, exposure time, and irradiated area, using galvanometric mirrors. The control software, implemented in Python, employs a set of cameras (visible and infrared) to detect and monitor real-time thermal distributions in the region of interest, transmitting this information to a microcontroller responsible for adjusting the laser power and controlling the scanning process. Image alignment procedures, tunning of the controller’s gain parameters and the impact of the different engineering parameters are illustrated on a dedicated setup. As proof of concept, this approach has demonstrated the ability to irradiate a phantom of black modeling clay within an area of up to 5 cm × 5 cm, from 15 cm away, as well as to monitor and regulate the temperature over time (5 min). Full article
Show Figures

Graphical abstract

16 pages, 1114 KiB  
Article
Establishing Diagnostic Reference Levels for Paediatric CT Imaging: A Multi-Centre Study
by Yassine Bouchareb, Manar Al Kharusi, Amani Al Maqbali, Amal Al Maimani, Hasina Al Maskari, Srinivasa Rao Sirasanagandla, Amna Al Jabri, Faiza Al Kindi, Saud Al Shabibi and Saleh Baawain
Healthcare 2025, 13(14), 1728; https://doi.org/10.3390/healthcare13141728 - 17 Jul 2025
Viewed by 314
Abstract
Background: Computed Tomography (CT) imaging is widely recognised for its high capability in assessing multiple organs. However, concerns about patient radiation exposure, particularly in children, pose significant challenges. Objective: This study aimed to establish diagnostic reference levels (DRLs) for paediatric patients in the [...] Read more.
Background: Computed Tomography (CT) imaging is widely recognised for its high capability in assessing multiple organs. However, concerns about patient radiation exposure, particularly in children, pose significant challenges. Objective: This study aimed to establish diagnostic reference levels (DRLs) for paediatric patients in the most common CT examinations to monitor and better control radiation doses. Methods: Dosimetry records from 5956 patients’ scans for the four most common CT imaging examinations—Head, Chest, Abdomen Pelvis (AP), and Chest Abdomen Pelvis (CAP)—were considered. The CT dosimetric quantities (CT dose-index volume (CTDIvol) and dose-length product (DLP)), along with patient demographics (age and weight), were collected from radiology data storage systems. DRLs for CTDIvol and DLP were determined for each imaging examination, stratified by patient age and weight groups, in accordance with ICRP recommendations. Results: The derived DRLs are presented as [median CTDIvol (mGy): median DLP (mGy·cm)]. For (<1 yr): Head: 13:187, Chest: 0.4:7, AP: 0.9:19, CAP: 0.4:10. For (1–5 yrs): Head: 16:276, Chest: 1:22, AP: 1.5:58, CAP: 1.6:63. For (6–10 yrs): Head: 19:332, Chest: 1.4:35, AP: 1.9:74, CAP: 2:121. For (11–15 yrs): Head: 21:391, Chest: 3:86, AP: 4.1:191, CAP: 3:165. We observed that both the CTDIvol and DLP DRL values increase with patient age. Weight-based DRLs follow similar trends for CTDIvol, while DLP values show noticeable variations in Chest and AP examinations. Conclusions: The study findings highlight the need for review and optimisation of certain scanning protocols, particularly for chest and AP examinations. The derived DRLs are consistent with findings from other studies. The study recommends establishing national paediatric DRLs to enhance radiology practice across the country and ensure adherence to international safety standards. Full article
(This article belongs to the Collection Radiology-Driven Projects: Science, Networks, and Healthcare)
Show Figures

Figure 1

23 pages, 6991 KiB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 302
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 289
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

Back to TopTop