Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Principle of Apparatus
2.2. Internal Configuration of Optics
2.3. Measurement of Absorbance and Emittance of Lactic Acid
2.4. Blood Lactate Measurement
2.5. Measurement of Blood Lactate and Blood Glucose Levels
2.6. Visualization of Time Response of Lactic Acid by k-Means Method
3. Results
3.1. Non-Invasive Lactate Measurement of the Upper Arm
3.2. Lactic Acid in the Human Body over Time
3.3. Simultaneous Non-Invasive Detection of Blood Glucose and Lactate in the Human Body
4. Discussion
4.1. Discrepancy Between Mid-Infrared Passive Spectroscopic Imaging and Blood Collection-Type Sensors over Time
4.2. Verification of Time Response of Lactate in Human Body
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonato, P. Wearable sensors and systems. IEEE Eng. Med. Biol. Mag. 2010, 29, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.M.; Tymoczko, J.L.; Gatto, G.J.; Stryer, L. Biochemistry, 8th ed.; W.H. Freeman: New York, NY, USA, 2015. [Google Scholar]
- Brooks, G.A.; Arevalo, J.; Osmond, A.; Leija, R.; Curl, C.; Tovar, A. Lactate in contemporary biology: A phoenix risen. J. Physiol. 2022, 600, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, D.H. Four grams of glucose. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E11–E21. [Google Scholar] [CrossRef] [PubMed]
- Stainsby, W.N. Lactate metabolism in skeletal muscle. Fed. Proc. 1986, 45, 2924–2929. [Google Scholar]
- Andersen, L.W.; Mackenhauer, J.; Roberts, J.; Berg, K.M.; Cocchi, M.N.; Donnino, M.W. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin. Proc. 2013, 88, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R502–R516. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Murase, S.; Okuda, J.; Tamura, A.; Miwa, I. Stimulatory effect of fatty acid treatment on glucose utilization in human erythrocytes. BBA 1997, 1334, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Chinopoulos, C. From glucose to lactate and transiting intermediates through mitochondria, bypassing pyruvate kinase: Considerations for cells exhibiting dimeric PKM2 or otherwise inhibited kinase activity. Front. Physiol. 2020, 11, 543564. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- van Hall, G.; Strømstad, M.; Rasmussen, P.; Jans, Ø.; Zaar, M.; Gam, C.; Quistorff, B.; Secher, N.H.; Nielsen, H.B. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 2009, 29, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Seki, Y.; Nakashima, D.; Shiraishi, Y.; Ryuzaki, T.; Ikura, H.; Miura, K.; Suzuki, M.; Watanabe, T.; Nagura, T.; Matsumoto, M.; et al. A novel device for detecting anaerobic threshold using sweat lactate during exercise. Sci. Rep. 2021, 11, 4929. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Crapnell, R.D.; Tridente, A.; Banks, C.E.; Dempsey-Hibbert, N.C. Evaluating the possibility of translating technological advances in non-invasive continuous lactate monitoring into critical care. Sensors 2021, 21, 879. [Google Scholar] [CrossRef] [PubMed]
- Jancev, M.; Vissers, T.A.C.M.; Visseren, F.L.J.; van Bon, A.C.; Serné, E.H.; DeVries, J.H.; de Valk, H.W.; van Sloten, T.T. Continuous glucose monitoring in adults with type 2 diabetes: A systematic review and meta-analysis. Diabetologia 2024, 67, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Hong, J.; Park, S.B. Wearable device for continuous sweat lactate monitoring in sports: A narrative review. Front. Physiol. 2024, 15, 1376801. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Kitazaki, T.; Morimoto, Y.; Yamashita, S.; Anabuki, D.; Tahara, S.; Nishiyama, A.; Wada, K.; Ishimaru, I. Glucose emission spectra through mid-infrared passive spectroscopic imaging of the wrist for non-invasive glucose sensing. Sci. Rep. 2022, 12, 20558. [Google Scholar] [CrossRef] [PubMed]
- Anabuki, D.; Tahara, S.; Yano, H.; Nishiyama, A.; Wada, K.; Nishimura, A.; Ishimaru, I. Emission integral effect on non-invasive blood glucose measurements made using mid-infrared passive spectroscopic imaging. Sensors 2025, 25, 8674. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.R.; de Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Inoue, Y.; Ishimaru, I.; Yasokawa, T.; Ishizaki, K.; Yoshida, M.; Kondo, M.; Kuriyama, S.; Masaki, T.; Nakai, S.; Takegawa, K.; et al. Variable phase-contrast fluorescence spectrometry for fluorescently stained cells. Appl. Phys. Lett. 2006, 89, 121103. [Google Scholar] [CrossRef]
- Ishimaru, I. Palm-sized (80-mm cube weighing 0.5 kg) low-price (several thousand USD) mid-infrared (wavelength 8–14 µm) Fourier spectroscopic imager. In Proceedings of the Imaging Spectrometry XXIII: Applications, Sensors, and Processing, San Diego, CA, USA, 11–12 September 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11130, p. 111300G. [Google Scholar]
- Qi, W.; Suzuki, Y.; Sato, S.; Fujiwara, M.; Kawashima, N.; Suzuki, S.; Abeygunawardhana, P.; Wada, K.; Nishiyama, A.; Ishimaru, I. Enhanced interference-pattern visibility using multislit optical superposition method for imaging-type two-dimensional Fourier spectroscopy. Appl. Opt. 2015, 54, 6254–6259. [Google Scholar] [CrossRef] [PubMed]
- Spendier, F.; Müller, A.; Korinek, M.; Hofmann, P. Intensity thresholds and maximal lactate steady state in small muscle group exercise. Sports 2020, 8, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, N.; Wahl, P.; Kleinöder, H.; Mester, J. Lactate kinetics during multiple set resistance exercise. J. Sports Sci. Med. 2014, 13, 173–177. [Google Scholar]
- Freckmann, G.; Pleus, S.; Grady, M.; Setford, S.; Levy, B. Measures of accuracy for continuous glucose monitoring and blood glucose monitoring devices. J. Diabetes Sci. Technol. 2019, 13, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Kazuma, S.; Masuda, Y. A rapid increase in serum lactate levels after cardiovascular surgery is associated with postoperative serious adverse events: A single center retrospective study. Diagnostics 2024, 14, 2082. [Google Scholar] [CrossRef] [PubMed]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Halestrap, A.P. The monocarboxylate transporter family—Structure and functional characterization. IUBMB Life 2011, 64, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Belu, A.; Filip, N.; Trandafir, L.M.; Spoială, E.L.; Țarcă, E.; Zamosteanu, D.; Ghiga, G.; Bernic, J.; Jehac, A.; Cojocaru, E. Lactate, an essential metabolic marker in the diagnosis and management of pediatric conditions. Diagnostics 2025, 15, 816. [Google Scholar] [CrossRef] [PubMed]
- Mathew, T.K.; Zubair, M.; Tadi, P. Blood Glucose Monitoring; StatPearls Publishing: Tampa, CA, USA, 2025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobashi, R.; Anabuki, D.; Yano, H.; Mukaihara, Y.; Nishiyama, A.; Wada, K.; Nishimura, A.; Ishimaru, I. Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging. Sensors 2025, 25, 4537. https://doi.org/10.3390/s25154537
Kobashi R, Anabuki D, Yano H, Mukaihara Y, Nishiyama A, Wada K, Nishimura A, Ishimaru I. Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging. Sensors. 2025; 25(15):4537. https://doi.org/10.3390/s25154537
Chicago/Turabian StyleKobashi, Ruka, Daichi Anabuki, Hibiki Yano, Yuto Mukaihara, Akira Nishiyama, Kenji Wada, Akiko Nishimura, and Ichiro Ishimaru. 2025. "Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging" Sensors 25, no. 15: 4537. https://doi.org/10.3390/s25154537
APA StyleKobashi, R., Anabuki, D., Yano, H., Mukaihara, Y., Nishiyama, A., Wada, K., Nishimura, A., & Ishimaru, I. (2025). Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging. Sensors, 25(15), 4537. https://doi.org/10.3390/s25154537