Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = radial distortion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 17389 KiB  
Article
A Distortion Image Correction Method for Wide-Angle Cameras Based on Track Visual Detection
by Quanxin Liu, Xiang Sun and Yuanyuan Peng
Photonics 2025, 12(8), 767; https://doi.org/10.3390/photonics12080767 - 30 Jul 2025
Viewed by 225
Abstract
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial [...] Read more.
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial coordinates of natural spatial landmark points are constructed according to the known track gauge value between two parallel rails and the spacing value between sleepers. By using the image coordinate relationships corresponding to these spatial coordinates, the coordinates of the distortion center point are solved according to the radial distortion fundamental matrix. Then, a constraint equation is constructed based on the collinear constraint of vanishing points in railway images, and the Levenberg–Marquardt algorithm is used to found the radial distortion coefficients. Moreover, the distortion coefficients and the coordinates of the distortion center are re-optimized according to the least squares method (LSM) between points and the fitted straight line. Finally, based on the above, the distortion correction is carried out for the distorted railway images captured by the camera. The experimental results show that the above method can efficiently and accurately perform online distortion correction for large field of view wide-angle cameras used in railway inspection without the participation of specially made cooperative calibration objects. The whole method is simple and easy to implement, with high correction accuracy, and is suitable for the rapid distortion correction of camera images in railway online visual inspection. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

27 pages, 5964 KiB  
Article
Investigation of Improved Labyrinth Seal Stability Accounting for Radial Deformation
by Guozhe Ren, Hongyuan Tang, Dan Sun, Wenfeng Xu and Yu Li
Aerospace 2025, 12(7), 621; https://doi.org/10.3390/aerospace12070621 - 10 Jul 2025
Viewed by 263
Abstract
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in [...] Read more.
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in contact between the labyrinth seal tip and neighbouring components. A numerical analytical model incorporating the rotor and stator cavities, along with the labyrinth seal disc structure, has been established. The sealing integrity of a standard labyrinth seal disc’s flow channel is evaluated and studied at different clearances utilising the fluid–solid-thermal coupling method. The findings demonstrate that, after considering radial deformation, a cold gap of 0.5 mm in the conventional labyrinth structure leads to stabilisation of the final hot gap and flow rate, with no occurrence of tooth tip rubbing; however, both the gap value and flow rate show considerable variation relative to the cold state. When the cold gap is 0.3 mm, the labyrinth plate makes contact with the stator wall. To resolve the problem of tooth tip abrasion in the conventional design with a 0.3 mm cold gap, two improved configurations are proposed, and a stability study for each configuration is performed independently. The leakage and temperature rise attributes of the two upgraded configurations are markedly inferior to those of the classic configuration at a cold gap of 0.5 mm. At a cold gap of 0.3 mm, the two improved designs demonstrate no instances of tooth tip rubbing. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

33 pages, 10063 KiB  
Article
Wide-Angle Image Distortion Correction and Embedded Stitching System Design Based on Swin Transformer
by Shiwen Lai, Zuling Cheng, Wencui Zhang and Maowei Chen
Appl. Sci. 2025, 15(14), 7714; https://doi.org/10.3390/app15147714 - 9 Jul 2025
Viewed by 362
Abstract
Wide-angle images often suffer from severe radial distortion, compromising geometric accuracy and challenging image correction and real-time stitching, especially in resource-constrained embedded environments. To address this, this study proposes a wide-angle image correction and stitching framework based on a Swin Transformer, optimized for [...] Read more.
Wide-angle images often suffer from severe radial distortion, compromising geometric accuracy and challenging image correction and real-time stitching, especially in resource-constrained embedded environments. To address this, this study proposes a wide-angle image correction and stitching framework based on a Swin Transformer, optimized for lightweight deployment on edge devices. The model integrates multi-scale feature extraction, Thin Plate Spline (TPS) control point prediction, and optical flow-guided constraints, balancing correction accuracy and computational efficiency. Experiments on synthetic and real-world datasets show that the method outperforms mainstream algorithms, with PSNR gains of 3.28 dB and 2.18 dB on wide-angle and fisheye images, respectively, while maintaining real-time performance. To validate practical applicability, the model is deployed on a Jetson TX2 NX device, and a real-time dual-camera stitching system is built using C++ and DeepStream. The system achieves 15 FPS at 1400 × 1400 resolution, with a correction latency of 56 ms and stitching latency of 15 ms, demonstrating efficient hardware utilization and stable performance. This study presents a deployable, scalable, and edge-compatible solution for wide-angle image correction and real-time stitching, offering practical value for applications such as smart surveillance, autonomous driving, and industrial inspection. Full article
(This article belongs to the Special Issue Latest Research on Computer Vision and Image Processing)
Show Figures

Figure 1

12 pages, 11453 KiB  
Article
Probabilistic Shaping Based on Single-Layer LUT Combined with RBFNN Nonlinear Equalization in a Photonic Terahertz OFDM System
by Yuting Huang, Kaile Li, Feixiang Zhang and Jianguo Yu
Electronics 2025, 14(13), 2677; https://doi.org/10.3390/electronics14132677 - 2 Jul 2025
Viewed by 259
Abstract
We propose a probabilistic shaping (PS) scheme based on a single-layer lookup table (LUT) that employs only one LUT for symbol mapping while achieving favorable system performance. This scheme reduces the average power of the signal by adjusting the symbol distribution using a [...] Read more.
We propose a probabilistic shaping (PS) scheme based on a single-layer lookup table (LUT) that employs only one LUT for symbol mapping while achieving favorable system performance. This scheme reduces the average power of the signal by adjusting the symbol distribution using a specialized LUT architecture and a flexible shaping proportion. The simulation results indicate that the proposed PS scheme delivers performance comparable to that of the conventional constant-composition distribution-matching-based probabilistic shaping (CCDM-PS) algorithm. Specifically, it reduces the bit error rate (BER) from 1.2376 ×104 to 6.3256 ×105, corresponding to a 48.89% improvement. The radial basis function neural network (RBFNN) effectively compensates for nonlinear distortions and further enhances transmission performance due to its simple architecture and strong capacity for nonlinear learning. In this work, we combine lookup-table-based probabilistic shaping (LUT-PS) with RBFNN-based nonlinear equalization for the first time, completing the transmission of 16-QAM OFDM signals over a photonic terahertz-over-fiber system operating at 400 GHz. Simulation results show that the proposed approach reduces the BER by 81.45% and achieves a maximum Q-factor improvement of up to 23 dB. Full article
Show Figures

Figure 1

24 pages, 23575 KiB  
Article
Influence of the Drilling Parameters in the Single-Lip Deep-Hole Drilling Process on the Surface Integrity of Nickel-Based Alloy
by Tao Wu, Fangchao Zhang, Haoguang Zhou and Dong Zhang
Machines 2025, 13(7), 554; https://doi.org/10.3390/machines13070554 - 26 Jun 2025
Viewed by 340
Abstract
Single-lip deep-hole drilling is a key technology for the precision machining of high-temperature nickel-based alloy pore structures in aero engines. However, the intense thermo-mechanical coupling effects during machining can easily lead to surface integrity deterioration, and the correlation mechanism between microstructure and properties [...] Read more.
Single-lip deep-hole drilling is a key technology for the precision machining of high-temperature nickel-based alloy pore structures in aero engines. However, the intense thermo-mechanical coupling effects during machining can easily lead to surface integrity deterioration, and the correlation mechanism between microstructure and properties remains unclear. By adjusting the spindle speed and feed rate, a series of orthogonal experiments were carried out to study the integrity characteristics of the machined surface, including surface morphology, roughness, work hardening, and subsurface microstructure. The results reveal gradient structural features along radial depth: a dynamic recrystallized layer (RL) at the surface and a plastically deformed layer (PDL) containing high-density subgrains/distorted grains in the subsurface. With the increase in the spindle speed, the recrystallization phenomenon is intensified, the RL ratio of the machined-affected zone (MAZ) is increased, and the surface roughness is reduced to ~0.5 μm. However, excessive heat input will reduce the nanohardness. Low feed rates (<0.012 mm/rev) effectively suppress pit defects, whereas high feed rates (≥0.014 mm/rev) trigger pit density resurgence through shear instability. Progressive material removal rate (MRR) elevation drives concurrent PDL thickness reduction and RL proportion growth. Optimal medium MRR range (280–380 mm3/min) achieves synergistic RL/PDL optimization, reducing machining-affected zone thickness (MAZ < 35 μm) while maintaining fatigue resistance. These findings establish theoretical foundations for balancing efficiency and precision in aerospace high-temperature component manufacturing. Full article
(This article belongs to the Special Issue Design and Manufacturing for Lightweight Components and Structures)
Show Figures

Figure 1

20 pages, 6122 KiB  
Article
Surface Charge and Electric Field Distribution of Direct-Current Gas-Insulated Transmission Lines’ Basin-Type Insulators Under Multi-Field Coupling
by Junran Jia, Xin Lin, Zhenxin Geng and Jianyuan Xu
Appl. Sci. 2025, 15(13), 7061; https://doi.org/10.3390/app15137061 - 23 Jun 2025
Viewed by 350
Abstract
In direct-current gas-insulated transmission lines (DC GIL), complex heat transfer processes accelerate surface charge accumulation on insulators, causing local electric field distortion and elevating the risk of surface flashover. This study develops a three-dimensional multi-physics coupled mathematical model for ±200 kV DC GIL [...] Read more.
In direct-current gas-insulated transmission lines (DC GIL), complex heat transfer processes accelerate surface charge accumulation on insulators, causing local electric field distortion and elevating the risk of surface flashover. This study develops a three-dimensional multi-physics coupled mathematical model for ±200 kV DC GIL basin-type insulators. The bulk and surface conductivity of insulator materials were experimentally measured under varying temperature and electric field conditions, with fitting equations derived to describe their behavior. The model investigates surface charge accumulation and electric field distribution under DC voltage and polarity-reversal conditions, incorporating multi-field coupling effects. Results show that, at a 3150 A current in a horizontally arranged DC GIL, insulator temperatures reach approximately 62.8 °C near the conductor and 32 °C near the enclosure, with the convex surface exhibiting higher temperatures than the concave surface and distinct radial variations. Under DC voltage, surface charge accumulates faster in high-temperature regions, with both charge and electric field distributions stabilizing after approximately 300 h, following significant changes within the first 40 h. Following stabilization, the distribution of surface charge and electric field varies across different radial directions. During polarity reversal, residual surface charges cause electric field distortion, increasing maximum field strength by 13.6% and 47.2% on the convex and concave surfaces, respectively, with greater distortion on the concave surface, as calculated from finite element simulations with a numerical accuracy of ±0.5% based on mesh convergence and solver tolerance. These findings offer valuable insights for enhancing DC GIL insulation performance. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

27 pages, 1668 KiB  
Article
Body Force Modelling of a Multi-Stage High-Pressure Compressor Under Inlet Distortion
by Chiara Crea, Julien Marty, Raphaël Barrier, Sébastien Cochon and Guillaume Dufour
Int. J. Turbomach. Propuls. Power 2025, 10(2), 12; https://doi.org/10.3390/ijtpp10020012 - 17 Jun 2025
Viewed by 425
Abstract
The present work aims to propose a new calibration strategy of the Hall–Thollet Body Force (BF) model to simulate the flow in multi-stage compressors and to capture inlet distortion effects within the machine. Both global (0D) and radial (1D) correction terms are introduced [...] Read more.
The present work aims to propose a new calibration strategy of the Hall–Thollet Body Force (BF) model to simulate the flow in multi-stage compressors and to capture inlet distortion effects within the machine. Both global (0D) and radial (1D) correction terms are introduced and calibrated to improve predictions in multi-stage compressors, accounting for highly interacting, highly loaded blades, falling outside the validity range of the model’s original coefficients. The modified model has been tested on the 3.5-stage high-pressure compressor CREATE, for which experimental data are available. The modified model is then employed to study different patterns of inlet distortion. The results show a very good agreement between Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations and Body Force calculations in terms of performance, key quantities along the radial and circumferential directions and distortion transfer across the compressor. Full article
Show Figures

Figure 1

24 pages, 9633 KiB  
Article
Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss
by Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani and Donato Abruzzese
Buildings 2025, 15(12), 2058; https://doi.org/10.3390/buildings15122058 - 15 Jun 2025
Viewed by 368
Abstract
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing [...] Read more.
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 19553 KiB  
Article
Let’s Go Bananas: Beyond Bounding Box Representations for Fisheye Camera-Based Object Detection in Autonomous Driving
by Senthil Yogamani, Ganesh Sistu, Patrick Denny and Jane Courtney
Sensors 2025, 25(12), 3735; https://doi.org/10.3390/s25123735 - 14 Jun 2025
Viewed by 706
Abstract
Object detection is a mature problem in autonomous driving, with pedestrian detection being one of the first commercially deployed algorithms. It has been extensively studied in the literature. However, object detection is relatively less explored for fisheye cameras used for surround-view near-field sensing. [...] Read more.
Object detection is a mature problem in autonomous driving, with pedestrian detection being one of the first commercially deployed algorithms. It has been extensively studied in the literature. However, object detection is relatively less explored for fisheye cameras used for surround-view near-field sensing. The standard bounding-box representation fails in fisheye cameras due to heavy radial distortion, particularly in the periphery. In this paper, a generic object detection framework is implemented using the base YOLO (You Only Look Once) detector to systematically explore various object representations using the public WoodScape dataset. First, we implement basic representations, namely the standard bounding box, the oriented bounding box, and the ellipse. Secondly, we implement a generic polygon and propose a novel curvature-adaptive polygon, which obtains an improvement of 3 mAP (mean average precision) points. A polygon is expensive to annotate and complex to use in downstream tasks; thus, it is not practical to use it in real-world applications. However, we utilize it to demonstrate that the accuracy gap between the polygon and the bounding box representation is very high due to strong distortion in fisheye cameras. This motivates the design of a distortion-aware optimal representation of the bounding box for fisheye images, which tend to be banana-shaped near the periphery. We derive a novel representation called a curved box and improve it further by leveraging vanishing-point constraints. The proposed curved box representations outperform the bounding box by 3 mAP points and the oriented bounding box by 1.6 mAP points. In addition, the camera geometry tensor is formulated to provide adaptation to non-linear fisheye camera distortion characteristics and improves the performance further by 1.4 mAP points. Full article
(This article belongs to the Special Issue Design, Communication, and Control of Autonomous Vehicle Systems)
Show Figures

Figure 1

11 pages, 1268 KiB  
Article
Study of Average Characteristic Parameters of Isotopes, Isotones and Isobars by Electron and Proton Scattering
by Mirteimour Mirabutalybov and Mina Aliyeva
Quantum Beam Sci. 2025, 9(2), 18; https://doi.org/10.3390/qubs9020018 - 6 May 2025
Viewed by 547
Abstract
By way of studying the difference of the proton and neutron distributions in isotopes, isotones and isobars, we used the results of theoretical calculations obtained from the scattering of protons and electrons on nuclei. To calculate the differential cross section of proton scattering, [...] Read more.
By way of studying the difference of the proton and neutron distributions in isotopes, isotones and isobars, we used the results of theoretical calculations obtained from the scattering of protons and electrons on nuclei. To calculate the differential cross section of proton scattering, an expression was obtained for the distorted-wave formfactor of the nucleus, which, using the mathematical method proposed by us, is expressed through the plane-wave Born formfactor. In addition, using the data for elastic scattering of electrons on nuclei, the average characteristic parameters of C2040a, C2048a, C2452r, C2454r, F2654e, N2858i, N2860i nuclei were determined. In this work, for calculating the differential cross section of the elastic scattering of electrons on spherical nuclei, the Fermi function was chosen as a trial function of the proton density distribution. In the calculations, the pole method was used to solve the Born integral of the target nucleus formfactor. Based on an analysis of the calculations of the differential cross section of the elastic scattering of electrons and the calculations of the differential cross section of the scattering of protons on the same nuclei, the main patterns of behavior of the general characteristics of nuclei, such as the root mean square radius (RMS), diffuseness, and the isotopic and isotonic shifts of parameters, were determined. For the C2048a nucleus, the radial dependence of the nucleon density distribution on the center of the nucleus, as well as the ratio of proton to neutron densities, have been studied. Changes in the distribution of densities of protons and neutrons with the addition of two neutrons to nucleus C2452r as well as changes in the distributions of densities of protons and neutrons when two neutrons are replaced by protons in isobars F2654eC2454r have been studied. The results of changes in the distribution of densities of protons and neutrons were justified on the basis of the shell model of the nucleus, using characteristic parameters determined for these nuclei from elastic electron scattering. A joint analysis of experimental work on the elastic scattering of electrons and protons on spherical nuclei leads to the conclusion that the distribution patterns of protons and neutrons differ from each other. In particular, this follows from calculations of the RMS of proton, neutron and nucleon distributions. Full article
Show Figures

Figure 1

15 pages, 6330 KiB  
Article
Application of Neural Network Models for Analyzing the Impact of Flight Speed and Angle of Attack on Flow Parameter Non-Uniformity in a Turbofan Engine Inlet Duct
by Adam Kozakiewicz, Maciej Adamczyk and Rafał Kieszek
Energies 2025, 18(8), 2064; https://doi.org/10.3390/en18082064 - 17 Apr 2025
Viewed by 401
Abstract
This study investigates the aerodynamic performance of a fourth-generation normal shockwave inlet system, with a primary focus on minimizing pressure losses and ensuring uniform airflow distribution. A computational model was developed, incorporating a section of the fuselage along with the complete inlet duct. [...] Read more.
This study investigates the aerodynamic performance of a fourth-generation normal shockwave inlet system, with a primary focus on minimizing pressure losses and ensuring uniform airflow distribution. A computational model was developed, incorporating a section of the fuselage along with the complete inlet duct. The model was discretized using a hybrid mesh approach to enhance numerical accuracy. The analysis was conducted at a flight altitude of 8000 m, encompassing 370 distinct cases defined by varying angles of attack and Mach numbers. This comprehensive parametric study yielded a dataset of 10,800 total pressure measurements across predefined sampling locations. Based on the obtained results, flow distortion coefficients in both circumferential (CDI) and radial directions (RDI) were systematically determined for each test case. The interdependencies between CDI, RDI, Mach number, and angle of attack (α) were analyzed and presented in a consolidated manner. In the second phase of the study, an artificial neural network (ANN) utilizing a Feed-Forward architecture was implemented to predict pressure distributions for intermediate flight conditions. The ANN was trained using the CFG algorithm, and the predictive accuracy was assessed through the determination coefficients computed by comparing ANN-based estimates with numerical simulation results. The findings demonstrate the efficacy of ANN-based modeling in enhancing the predictive capabilities of inlet flow dynamics, offering valuable insights for optimizing next-generation supersonic air intake systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

18 pages, 4389 KiB  
Article
Problem of Supraharmonic Diagnostics in Power Networks
by Piotr Kuwałek and Grzegorz Wiczyński
Electronics 2025, 14(8), 1609; https://doi.org/10.3390/electronics14081609 - 16 Apr 2025
Viewed by 586
Abstract
The increasing number of power electronic devices in power networks causes a significant increase in supraharmonics in these networks. Supraharmonics are spectral components in the 2–150kHz bandwidth that cause high-frequency signal distortions that can disturb the operation of other supplied loads, including [...] Read more.
The increasing number of power electronic devices in power networks causes a significant increase in supraharmonics in these networks. Supraharmonics are spectral components in the 2–150kHz bandwidth that cause high-frequency signal distortions that can disturb the operation of other supplied loads, including in the field of communication or control. In the case of an increase in the occurrence of supraharmonics, it is necessary to identify the source of the disturbance, taking into account, among others, the indication of its supply point. This article presents the results of observations of supraharmonics in modern power networks. Based on results of long-term research carried out in controlled laboratory conditions and under a real power network in industrial conditions, significant diagnostic problems in the identification of supraharmonic sources related to the influence of typical loads in a low-voltage network are indicated. For the presented cases, the propagation of selected spectral components in a low-voltage network with a branched radial topology is presented. The influence of typical loads in low-voltage networks on the diagnosis of supraharmonics in modern power systems is presented. The possibilities of amplification or supression of supraharmonics by loads that are not their source are demonstrated, depending on their supply point in the power network. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
A New Earth System Spatial Grid Extending the Great Circle Arc QTM: The Spherical Geodesic Degenerate Octree Grid
by Yilin Ren, Mengyun Zhou and Aijun Zhong
ISPRS Int. J. Geo-Inf. 2025, 14(4), 152; https://doi.org/10.3390/ijgi14040152 - 1 Apr 2025
Viewed by 639
Abstract
An Earth system spatial grid (ESSG) is an extension of a discrete global grid system (DGGS) in the radial direction. It is an important tool for organizing, representing, simulating, analyzing, sharing, and visualizing spatial data. The existing ESSGs suffer from complex spatial relationships [...] Read more.
An Earth system spatial grid (ESSG) is an extension of a discrete global grid system (DGGS) in the radial direction. It is an important tool for organizing, representing, simulating, analyzing, sharing, and visualizing spatial data. The existing ESSGs suffer from complex spatial relationships and significant geometric distortion. To mitigate these problems, a spherical geodesic degenerate octree grid (SGDOG) and its encoding and decoding schemes are proposed in this paper. The SGDOG extends the great circle arc QTM in the radial direction and adopts different levels of the great circle arc QTM at different radial depths. The subdivision of SGDOG is simple and clear, and has multi-level characteristics. The experimental results demonstrate that the SGDOG has advantages of simple spatial relationships, convergent volume distortion, and real-time encoding and decoding. The SGDOG has the potential to organize and manage global spatial data and perform large-scale visual analysis of the Earth system. Full article
Show Figures

Figure 1

26 pages, 8557 KiB  
Article
A Novel Earth-System Spatial Grid Model: ISEA4H-ESSG for Multi-Layer Geoscience Data Integration and Analysis
by Yue Ma, Guoqing Li, Long Zhao and Xiaochuang Yao
Appl. Sci. 2025, 15(7), 3703; https://doi.org/10.3390/app15073703 - 27 Mar 2025
Viewed by 638
Abstract
This paper presents a novel Earth-System Stratified Grid (ISEA4H-ESSG) model, designed to address the challenges in multi-layer geoscience data management and analysis. In the realm of geosciences, which encompasses the solid earth, atmosphere, hydrosphere, and biosphere, as well as planetary and space sciences, [...] Read more.
This paper presents a novel Earth-System Stratified Grid (ISEA4H-ESSG) model, designed to address the challenges in multi-layer geoscience data management and analysis. In the realm of geosciences, which encompasses the solid earth, atmosphere, hydrosphere, and biosphere, as well as planetary and space sciences, the effective integration of diverse data sources is crucial. Traditional grids have limitations in three-dimensional spatial modeling, cross-layer data fusion, and dynamic multi-scale analysis. The ISEA4H-ESSG model overcomes these drawbacks by integrating the Icosahedral Snyder Equal-Area Aperture 4 Hexagon Discrete Global Grid System (ISEA4H DGGS) with a degenerative subdivision mechanism. It adheres to six core principles, including stratified spherical coverage, geographic consistency, multi-scale dynamic adaptability, global seamless partitioning, encoding uniqueness and efficiency, and multi-source data compatibility. Through the independent subdivision of spherical and radial layers, this model balances resolution differences and resolves polar-grid distortion and cross-layer data heterogeneity issues. The introduction of a four-dimensional spatiotemporal encoding framework enhances the storage and parallel computing capabilities of massive datasets. Case studies on ionosphere three-dimensional modeling and global atmospheric temperature field formatting demonstrate the high precision and adaptability of the ISEA4H-ESSG model. This research provides a unified spatial data infrastructure for geosciences, facilitating in-depth studies on natural hazards, climate change, and planetary evolution, and offering new perspectives for international partnerships and future Earth-related research. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 12602 KiB  
Article
Demagnetization Analysis and Optimization of Bonded Nd-Fe-B Magnet Rings in Brushless DC Motors
by Yinan Wang, Hao Zhan, Yanyan Gong, Mingxu Wang, Juntao Yu, Ze Zhang, Yuanfei Yang and Li Wang
Machines 2025, 13(2), 75; https://doi.org/10.3390/machines13020075 - 22 Jan 2025
Cited by 2 | Viewed by 799
Abstract
Bonded Nd-Fe-B magnets have greater freedom of shape than sintered Nd-Fe-B magnets. The ring structure is one of the typical structures of bonded Nd-Fe-B materials. In this paper, we analyzed the generation and spread of demagnetization fault (DMF) and changes in motor performance. [...] Read more.
Bonded Nd-Fe-B magnets have greater freedom of shape than sintered Nd-Fe-B magnets. The ring structure is one of the typical structures of bonded Nd-Fe-B materials. In this paper, we analyzed the generation and spread of demagnetization fault (DMF) and changes in motor performance. Meanwhile, a BLDC fitted with a bonded Nd-Fe-B magnet ring was analyzed for DMF under actual overload conditions. DMF occurred with obvious localization and variability, which was mainly concentrated on the side of each pole opposite to the direction of the motor’s operation, near the weak magnetic zones. The experimental results show that back electromotive force (EMF) and its harmonic had the same variation trends as the surface radial flux density of the magnet ring. The analysis with the EMF waveform and total harmonic distortion (THD) were proposed as a method for diagnosing the DMF. Finally, this paper presents a modified magnet ring. The anti-demagnetization capability of the modified magnet ring is effectively improved. This research can provide a reference for the design analysis of BLDCs using bonded Nd-Fe-B magnet rings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

Back to TopTop