Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = radial bearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 417 KiB  
Article
Minimally Invasive Off-Pump Coronary Artery Bypass as Palliative Revascularization in High-Risk Patients
by Magdalena Rufa, Adrian Ursulescu, Samir Ahad, Ragi Nagib, Marc Albert, Rafael Ayala, Nora Göbel, Tunjay Shavahatli, Mihnea Ghinescu, Ulrich Franke and Bartosz Rylski
Clin. Pract. 2025, 15(8), 147; https://doi.org/10.3390/clinpract15080147 - 6 Aug 2025
Abstract
Background: In high-risk and frail patients with multivessel coronary artery disease (MV CAD), guidelines indicated complete revascularization with or without the use of cardiopulmonary bypass (CPB) bears a high morbidity and mortality risk. In cases where catheter interventions were deemed unsuitable and conventional [...] Read more.
Background: In high-risk and frail patients with multivessel coronary artery disease (MV CAD), guidelines indicated complete revascularization with or without the use of cardiopulmonary bypass (CPB) bears a high morbidity and mortality risk. In cases where catheter interventions were deemed unsuitable and conventional coronary artery bypass grafting (CABG) posed an unacceptable perioperative risk, patients were scheduled for minimally invasive direct coronary artery bypass (MIDCAB) grafting or minimally invasive multivessel coronary artery bypass grafting (MICS-CABG). We called this approach “palliative revascularization.” This study assesses the safety and impact of palliative revascularization on clinical outcomes and overall survival. Methods: A consecutive series of 57 patients undergoing MIDCAB or MICS-CABG as a palliative surgery between 2008 and 2018 was included. The decision for palliative surgery was met in heart team after carefully assessing each case. The patients underwent single or double-vessel revascularization using the left internal thoracic artery and rarely radial artery/saphenous vein segments, both endoscopically harvested. Inpatient data could be completed for all 57 patients. The mean follow-up interval was 4.2 ± 3.7 years, with a follow-up rate of 91.2%. Results: Mean patient age was 79.7 ± 7.4 years. Overall, 46 patients (80.7%) were male, 26 (45.6%) had a history of atrial fibrillation and 25 (43.9%) of chronic kidney disease. In total, 13 patients exhibited a moderate EuroSCORE II, while 27 were classified as high risk, with a EuroSCORE II exceeding 5%. Additionally, 40 patients (70.2%) presented with three-vessel disease, 17 (29.8%) suffered an acute myocardial infarction within three weeks prior to surgery and 50.9% presented an impaired ejection fraction. There were 48 MIDCAB and nine MICS CABG with no conversions either to sternotomy or to CPB. Eight cases were planned as hybrid procedures and only 15 patients (26.3%) were completely revascularized. During the first 30 days, four patients (7%) died. A myocardial infarction occurred in only one case, no patient necessitated immediate reoperation. The one-, three- and five-year survival rates were 83%, 67% and 61%, respectively. Conclusions: MIDCAB and MICS CABG can be successfully conducted as less invasive palliative surgery in high-risk multimorbid patients with MV CAD. The early and mid-term results were better than predicted. A higher rate of hybrid procedures could improve long-term outcome in selected cases. Full article
14 pages, 1747 KiB  
Article
The Importance of Using Multi-Level Piezometers to Improve the Estimation of Aquifer Properties from Pumping Tests in Complex Heterogeneous Aquifers
by Majdi Mansour, Stephen Walthall and Andrew Hughes
Water 2025, 17(15), 2338; https://doi.org/10.3390/w17152338 - 6 Aug 2025
Abstract
Reliable estimates of aquifer properties are needed for groundwater resources management and for engineering applications. Pumping tests conducted in fractured aquifers using an open borehole may not produce a proper characterization of the aquifer properties leading to the failure of engineering solutions. In [...] Read more.
Reliable estimates of aquifer properties are needed for groundwater resources management and for engineering applications. Pumping tests conducted in fractured aquifers using an open borehole may not produce a proper characterization of the aquifer properties leading to the failure of engineering solutions. In this work, we apply a radial flow model to reproduce the time drawdown curves recorded at an observation borehole instrumented with multi-level piezometers drilled in the Permo-Triassic sandstone, which is a complex fractured hydraulic unit. The radial flow model and the optimization code PEST are used to estimate the aquifer hydraulic parameter values. The model is then used to investigate the implications of replacing the multi-level piezometers with an open borehole. The results show that the open borehole does not only significantly alter the groundwater head and flow patterns around the borehole, but the analysis of the time drawdown curve obtained would produce estimates of aquifer properties that bear no relationship with the actual hydraulic properties of the aquifer. For engineering control studies, the pumping test must be carefully designed to account for the presence of fractures, and these must be represented in the analysis tools to ensure the correct characterization of the hydraulic system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 - 1 Aug 2025
Viewed by 196
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

16 pages, 2280 KiB  
Article
Mechanical Properties of Korla Fragrant Pear Fruiting Branches and Pedicels: Implications for Non-Destructive Harvesting
by Yanwu Jiang, Jun Chen, Zhiwei Wang, Jianguo Zhou and Guangrui Hu
Horticulturae 2025, 11(8), 880; https://doi.org/10.3390/horticulturae11080880 - 29 Jul 2025
Viewed by 252
Abstract
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these [...] Read more.
The Korla fragrant pear is a highly valued economic fruit in China’s Xinjiang region. However, biomechanical data on the fruit-bearing branches and pedicels of this species remain incomplete, which to some extent hinders the advancement of harvesting equipment and techniques. Therefore, refining these data is of great significance for the development of efficient and non-destructive harvesting strategies. This study aims to elucidate the mechanical properties of the fruiting branches and peduncles of Korla fragrant pears, thereby establishing a theoretical foundation for the future development of intelligent harvesting technology for this variety. The research utilized axial and radial compression tests, along with three-point bending test methods, to quantitatively analyze the elastic modulus and shear modulus of the branches and peduncles. The test results reveal that the elastic modulus of the fruiting branches under axial compression is 263.51 ± 76.51 MPa, while under radial compression, it measures 135.53 ± 73.73 MPa (where ± represents the standard deviation). In comparison, the elastic modulus of the peduncles is recorded at 152.96 ± 119.95 MPa. Additionally, the three-point bending test yielded a shear modulus of 75.48 ± 32.84 MPa for the branches and 30.23 ± 8.50 MPa for the peduncles. Using finite element static structural analysis, the simulation results aligned closely with the experimental data, falling within an acceptable error range, thus validating the reliability of the testing methods and outcomes. The mechanical parameters obtained in this study are critical for modeling the stress and deformation behaviors of pear-bearing structures during mechanical harvesting. These findings provide valuable theoretical support for the optimization of harvesting device design and operational strategies, with the aim of reducing fruit damage and improving harvesting efficiency in pear orchards. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 7901 KiB  
Article
Research on the Load Characteristics of Aerostatic Spindle Considering Straightness Errors
by Guoqing Zhang, Yu Guo, Guangzhou Wang, Wenbo Wang, Youhua Li, Hechun Yu and Suxiang Zhang
Lubricants 2025, 13(8), 326; https://doi.org/10.3390/lubricants13080326 - 26 Jul 2025
Viewed by 206
Abstract
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model [...] Read more.
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model of the unbalanced air film, considering the straightness errors of the rotor’s radial and thrust surfaces, was constructed. Unlike conventional studies that rely solely on idealized error assumptions, this research integrates actual straightness measurement data into the simulation process, enabling a more realistic and precise prediction of bearing performance. Rotors with different tolerance specifications were fabricated, and static performance simulations were carried out based on the measured geometry data. An experimental setup was built to evaluate the performance of the aerostatic spindle assembled with these rotors. The experimental results were compared with the simulation outcomes, confirming the validity of the proposed model. To further quantify the influence of straightness errors on the static characteristics of aerostatic spindles, ideal functions were used to define representative manufacturing error profiles. The results show that a barrel-shaped error on the radial bearing surface can cause a load capacity variation of up to 46.6%, and its positive effect on air film load capacity is more significant than that of taper or drum shapes. For the thrust bearing surface, a concave-shaped error can lead to a load capacity variation of up to 13.4%, and its enhancement effect is superior to those of the two taper and convex-shaped errors. The results demonstrate that the straightness errors on the radial and thrust bearing surfaces are key factors affecting the radial and axial load capacities of the spindle. Full article
Show Figures

Figure 1

18 pages, 5269 KiB  
Article
Analysis of Flexible Bearing Load Under Various Torque Conditions
by Nanxian Zheng, Jia Wang, Miaojie Wu, Huishan Liu and Yourui Tao
Machines 2025, 13(7), 627; https://doi.org/10.3390/machines13070627 - 21 Jul 2025
Viewed by 182
Abstract
This paper aims to develop a model for calculating the ball load of the thin-walled flexible bearing (FB) in a harmonic drive under various external torque conditions. The effect of the flexspline (FS) on the FB ball load is considered, and the equivalent [...] Read more.
This paper aims to develop a model for calculating the ball load of the thin-walled flexible bearing (FB) in a harmonic drive under various external torque conditions. The effect of the flexspline (FS) on the FB ball load is considered, and the equivalent ring is improved to calculate the ball load of the FB. Then, the accuracy of the proposed model in calculating the ball load is verified using a finite element analysis model. Finally, a fitting formula is obtained to rapidly evaluate the FB ball load via the geometrical parameters of the FB and the FS under various external torques. The results show that the FB ball load is mainly affected by the FB maximum radial deformation under low external torque. When subjected to heavy external torque, the maximum ball load is mainly affected by the FS’s geometric parameters. Full article
(This article belongs to the Special Issue Design and Manufacturing for Lightweight Components and Structures)
Show Figures

Figure 1

15 pages, 4349 KiB  
Article
The Roles of Leaflet Geometry in the Structural Deterioration of Bioprosthetic Aortic Valves
by Yaghoub Dabiri and Kishan Narine
Prosthesis 2025, 7(4), 86; https://doi.org/10.3390/prosthesis7040086 - 18 Jul 2025
Viewed by 232
Abstract
Objectives: Our goal was to assess the role of leaflet geometry on the structural deterioration of bioprosthetic aortic valves (BAVs) in a closed configuration. Methods: With a Fung-type orthotropic model, finite element modeling was used to create ten cases with parabolic, circular and [...] Read more.
Objectives: Our goal was to assess the role of leaflet geometry on the structural deterioration of bioprosthetic aortic valves (BAVs) in a closed configuration. Methods: With a Fung-type orthotropic model, finite element modeling was used to create ten cases with parabolic, circular and spline leaflet curvatures and six leaflet angles. Results: A circular circumferential curvature led to lower von Mises and compressive stresses in both the coaptation and load-bearing areas, reduced tensile stresses in the coaptation regions, and increased tensile stresses in the load-bearing areas. A parabolic radial curvature reduced von Mises stresses in the coaptation, as well as the load-bearing regions, reduced compressive stresses in the coaptation, and reduced tensile stresses in the load-bearing regions, leading to a slight increase in the minimized tensile stress in the coaptation regions (1.794 vs. 1.765 MPa) and the minimized compressive stress in the load-bearing regions (0.772 vs. 0.768 MPa). Within a range of downward inclination of the leaflets, all stresses in the coaptation regions decreased. A parabolic circumferential curvature, a linear radial curvature, and, for most cases, upward leaflet inclinations were associated with larger contact pressures between the leaflets. Conclusions: A parabolic radial curvature and downward leaflet inclination likely lead to the longer durability of BAVs. Full article
Show Figures

Figure 1

21 pages, 3570 KiB  
Article
Fatigue Life Analysis of Cylindrical Roller Bearings Considering Elastohydrodynamic Lubrications
by Ke Zhang, Zhitao Huang, Qingsong Li and Ruiyu Zhang
Appl. Sci. 2025, 15(14), 7867; https://doi.org/10.3390/app15147867 - 14 Jul 2025
Viewed by 253
Abstract
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations [...] Read more.
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations potentially reaching multiple times. However, conventional quasi-static models often neglect lubrication effects. This study establishes a quasi-static analysis model for cylindrical roller bearings that incorporates the effects of elastohydrodynamic lubrication by integrating elastohydrodynamic lubrication theory with the Lundberg–Palmgren life model. The isothermal line contact elastohydrodynamic lubrication equations are solved using the multigrid method, and the contact load distribution is determined through nonlinear iterative techniques to calculate bearing fatigue life. Taking the N324 support bearing on the main shaft of an SFW250-8/850 horizontal hydro-generator as an example, the influences of radial load, inner race speed, and lubricant viscosity on fatigue life are comparatively analyzed. Experimental validation is conducted under both light-load and heavy-load operating conditions. The results demonstrate that elastohydrodynamic lubrication markedly increases contact loads, leading to a reduced predicted fatigue life compared with that of the De Mul model (which ignores lubrication). The proposed lubrication-integrated model achieves an average deviation of 5.3% from the experimental data, representing a 16.1% improvement in prediction accuracy over the De Mul model. Additionally, increased rotational speed and lubricant viscosity accelerate fatigue life degradation. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

16 pages, 3138 KiB  
Article
Analysis of Vibration Characteristics of Angular Contact Ball Bearings in Aviation Engines Under Changing Conditions
by Yanfang Dong, Zibo Yan, Jianyong Sun, Wei Yu, Hai Zhang, Wenbo Zhou and Jihao Jin
Aerospace 2025, 12(7), 623; https://doi.org/10.3390/aerospace12070623 - 11 Jul 2025
Viewed by 308
Abstract
This paper addresses the vibration characteristics of angular contact ball bearings in aircraft engines under variable load conditions. Based on multibody dynamics theory, a dynamic model of the bearing was established. Vibration data under actual operating conditions were obtained using an experimental test [...] Read more.
This paper addresses the vibration characteristics of angular contact ball bearings in aircraft engines under variable load conditions. Based on multibody dynamics theory, a dynamic model of the bearing was established. Vibration data under actual operating conditions were obtained using an experimental test platform. This study systematically investigated the influence of rotational speed, axial load, and radial load on the vibration acceleration level of the bearing outer ring. Through a comparison of simulation and experimental data (with an error rate below 10%), the reliability of the model was validated. The results indicate that the bearing vibration acceleration level exhibits a nonlinear increasing relationship with rotational speed. An increase in radial load significantly amplifies the amplitude of acceleration-level fluctuations, while appropriately increasing axial load can reduce bearing vibration intensity. Under variable load coupling conditions, the dynamic interaction between axial and radial forces results in complex nonlinear vibration responses, with a 2 s acceleration time achieving the optimal balance between vibration suppression and efficiency (steady-state average of 70.4 dB). Additionally, the morphological characteristics of the cage center-of-gravity trajectory (such as trajectory disorder and poor smoothness) are closely related to vibration characteristics, revealing the critical role of dynamic load changes in bearing stability. The research results provide a theoretical basis for optimizing the operating conditions, vibration control, and reliability design of aircraft engine bearings. Full article
Show Figures

Figure 1

20 pages, 2933 KiB  
Article
Characteristic Analysis of Bump Foil Gas Bearing Under Multi-Physical Field Coupling
by Daixing Lu, Zhengjun Zhu and Junjie Lu
Appl. Sci. 2025, 15(13), 7584; https://doi.org/10.3390/app15137584 - 7 Jul 2025
Viewed by 305
Abstract
Due to their self-adaptability, low friction, low loss, and high-speed stability, bump foil aerodynamic journal bearings are widely used in high-speed rotating equipment such as turbomachinery and flywheel energy storage. In the process of high-speed operation, the heat generated leads to changes in [...] Read more.
Due to their self-adaptability, low friction, low loss, and high-speed stability, bump foil aerodynamic journal bearings are widely used in high-speed rotating equipment such as turbomachinery and flywheel energy storage. In the process of high-speed operation, the heat generated leads to changes in air parameters (such as viscosity, density, etc.), thus affecting the overall performance of air bearings. In this paper, combined with the compressible Reynolds equation, a fluid–solid coupling model was established to analyze the steady-state characteristics and key influencing factors of bearings. Through the energy equation, the air viscosity–temperature effect was considered, and different boundary conditions were set. The internal temperature distribution of the air bearing and the influence of the temperature on the bearing characteristics were systematically analyzed. It was found that the bearing capacity increased when the temperature was considered. In a certain range, with the increase in ambient temperature, the increase in bearing capacity is reduced. This paper provides a theoretical design basis for the design of high-stability bearings and promotes the design of next-generation air bearings with higher speed, lower loss, and stronger adaptability, which has very important theoretical and engineering significance. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

30 pages, 4492 KiB  
Article
Hard Preloaded Duplex Ball Bearing Dynamic Model for Space Applications
by Pablo Riera, Luis Maria Macareno, Igor Fernandez de Bustos and Josu Aguirrebeitia
Machines 2025, 13(7), 581; https://doi.org/10.3390/machines13070581 - 4 Jul 2025
Viewed by 334
Abstract
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic [...] Read more.
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic behaviour under vibration, simulations and experimental tests are performed. However, published models for space applications fail to capture the variations observed in test responses. This study presents a multi-degree-of-freedom nonlinear multibody model of a hard-preloaded duplex space ball bearing, particularized for this work to the case in which the outer ring is attached to a shaker and the inner ring to a test dummy mass. The model incorporates the Hunt and Crossley contact damping formulation and employs quaternions to accurately represent rotational dynamics. The simulated model response is validated against previously published axial test data, and its response under step, sine, and random excitations is analysed both in the case of radial and axial excitation. The results reveal key insights into frequency evolution, stress distribution, gapping phenomena, and response amplification, providing a deeper understanding of the dynamic performance of space-grade ball bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 5139 KiB  
Article
Exploring the Failures of Deep Groove Ball Bearings Under Alternating Electric Current in the Presence of Commercial Lithium Grease
by Shubrajit Bhaumik, Mohamed Yunus, Sarveshpranav Jothikumar, Gurram Hareesh, Viorel Paleu, Ashok Kumar Sharma and Shail Mavani
Technologies 2025, 13(7), 275; https://doi.org/10.3390/technologies13070275 - 1 Jul 2025
Viewed by 467
Abstract
Deep groove ball bearings are important mechanical elements in the automotive and process industries, particularly in electric motors. One of the primary reasons for their failure is lubricant degradation due to stray shaft current. Thus, the present work exhibited the failure of bearings [...] Read more.
Deep groove ball bearings are important mechanical elements in the automotive and process industries, particularly in electric motors. One of the primary reasons for their failure is lubricant degradation due to stray shaft current. Thus, the present work exhibited the failure of bearings under simulated lubricated conditions similar to those of real time bearings failing in presence of stray electric current. The test was conducted using a full bearing test rig with an applied radial load, 496 N, an alternating current, 10 A, and a rotation of 2000 rpm for 24 h. The bearings (6206 series) were greased using two commercially available ester-polyalphaolefin oil-based greases with viscosity 46–54 cSt (Grease 1) and 32–35 cSt (Grease 2, also contained aromatic oil). The optical microscopic images of the bearing raceways after the tribo test indicated the superior performance of Grease 1 compared to Grease 2, with lesser formation of white etching areas, micro-pitting, spot welds, and fluting on the surfaces of the bearings. Additionally, 80% less vibrations were recorded during the test with Grease 1, indicating a stable lubricating film of Grease 1 during the test as compared to Grease 2. Furthermore, a higher extent of Grease 2 degradation during the tribo test was also confirmed using Fourier transform infrared spectroscopy. Statistical analysis (t-test) indicated the significant variation of the vibrations produced during the test with electrified conditions. The present work indicated that the composition of the greases plays a significant role in controlling the bearing failures. Full article
Show Figures

Figure 1

20 pages, 2868 KiB  
Article
Control Optimization of a Hybrid Magnetic Suspension Blood Pump Controller Based on the Finite Element Method
by Teng Jing, Yu Yang and Weimin Ru
Machines 2025, 13(7), 567; https://doi.org/10.3390/machines13070567 - 30 Jun 2025
Viewed by 271
Abstract
This study focuses on a blood pump system equipped with four radial active magnetic bearings (RAMBs). The finite element method (FEM) was employed to optimize the physical parameters of the system. Based on this optimization, two intelligent PID tuning strategies—particle swarm optimization (PSO) [...] Read more.
This study focuses on a blood pump system equipped with four radial active magnetic bearings (RAMBs). The finite element method (FEM) was employed to optimize the physical parameters of the system. Based on this optimization, two intelligent PID tuning strategies—particle swarm optimization (PSO) and backpropagation (BP) neural networks—were compared. First, a differential control model of a single-degree-of-freedom active magnetic bearing was developed, based on the topology and operating principles of the radial magnetic bearings. Then, magnetic circuit parameters were precisely identified through finite element simulation, enabling accurate optimization of the physical model. To enhance control accuracy, intelligent tuning strategies based on PSO and BP neural networks were applied, effectively addressing the limitations of conventional PID controllers, which often rely on empirical tuning and lack precision. Finally, simulation experiments were conducted to evaluate the optimization performance of PSO and BP neural networks in the magnetic bearing control system. The results demonstrate that the improved PSO algorithm offers significant advantages over both the BP neural network and traditional manual PID tuning. Specifically, it achieved a rise time of 0.0049 s, a settling time of 0.0079 s, and a steady-state error of 0.0013 mm. The improved PSO algorithm ensures system stability while delivering faster dynamic response and superior control accuracy. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

16 pages, 4741 KiB  
Article
Plug-In Repetitive Control for Magnetic Bearings Based on Equivalent-Input-Disturbance
by Gang Huang, Bolong Liu, Songlin Yuan and Xinyi Shi
Eng 2025, 6(7), 141; https://doi.org/10.3390/eng6070141 - 28 Jun 2025
Viewed by 212
Abstract
The radial magnetic bearing system is an open-loop, unstable, strong nonlinear system with a high rotor speed, predisposition to jitter, and poor interference immunity. The system is subjected to the main interference generated by gravity, and rotor imbalance and sensor runout seriously affect [...] Read more.
The radial magnetic bearing system is an open-loop, unstable, strong nonlinear system with a high rotor speed, predisposition to jitter, and poor interference immunity. The system is subjected to the main interference generated by gravity, and rotor imbalance and sensor runout seriously affect the system’s rotor position control performance. A plug-in repetitive control method based on equivalent-input-disturbance (EID) is presented to address the issue of decreased control accuracy of the magnetic bearing system caused by disturbances from gravity, rotor imbalance, and sensor runout. First, a linearized model of the magnetic bearing rotor containing parameter fluctuations due to the eddy current effect and temperature rise effect is established, and a plug-in repetitive controller (PRC) is designed to enhance the rejection effect of periodic disturbances. Next, an EID system is introduced, and a Luenberger observer is used to estimate the state variables and disturbances of the system. The estimates of the EID are then used for feedforward compensation to address the issue of large overshoot in the system. Finally, simulations are conducted for comparison with the PID control method and PRC control method. The plug-in repetitive controller method assessed in this paper improves control performance by an average of 87.9% and 57.7% and reduces the amount of over-shooting by an average of 66.5% under various classes of disturbances, which proves the efficiency of the control method combining a plug-in repetitive controller with the EID theory. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Study on Dynamic Response Characteristics of Electrical Resistivity of Gas Bearing Coal in Spontaneous Imbibition Process
by Kainian Wang, Zhaofeng Wang, Hongzhe Jia, Shujun Ma, Yongxin Sun, Liguo Wang and Xin Guo
Processes 2025, 13(7), 2028; https://doi.org/10.3390/pr13072028 - 26 Jun 2025
Viewed by 337
Abstract
The capillary force driving the water penetration process in the coal pore network is the key factor affecting the effect of coal seam water injection. The resistivity method can be used to determine the migration characteristics of water in coal. In order to [...] Read more.
The capillary force driving the water penetration process in the coal pore network is the key factor affecting the effect of coal seam water injection. The resistivity method can be used to determine the migration characteristics of water in coal. In order to study the relationship between the resistivity of gas-bearing coal and the migration of water in the process of imbibition, the self-generated imbibition tests of coal under different external water conditions were carried out by using the self-developed gas-bearing coal imbibition experimental platform and the dynamic response characteristics of coal resistivity with external water were obtained. The results show that the water injected into the coal body migrates from bottom to top under the driving of capillary force, and the resistivity of the wetted coal body shows a sudden decline, slow decline, and gradually stable stage change. Through the slice drying method, it is found that the moisture in the coal body is almost uniform after imbibition, and the resistivity method can be used to accurately and quantitatively characterize the moisture content of the coal body. In the axial direction, as water infiltrates layer by layer, the sudden change time of resistivity is delayed with the deepening of the layer. The resistivity of each layer first drops sharply then slows down and tends to stabilize. The stable value of resistivity increases gradually with the depth of the layer. In the radial direction, within the same plane, water first migrates to the centre of the coal body and then begins to spread outwards. The average mutation time and stable value of coal resistivity during spontaneous imbibition decrease with increasing water content. When the water content reaches 10%, the stable value of resistivity tends to be constant, and the relationship between the stable value of coal resistivity and water content conforms to an exponential function. Full article
Show Figures

Figure 1

Back to TopTop