Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (737)

Search Parameters:
Keywords = quercetin and its derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1636 KB  
Article
Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies
by Lidia-Ioana Virchea, Cecilia Georgescu, Endre Máthé, Adina Frum, Monica Mironescu, Bence Pecsenye, Robert Nagy, Oana Danci, Maria-Lucia Mureșan, Maria Totan and Felicia-Gabriela Gligor
Pharmaceutics 2025, 17(9), 1097; https://doi.org/10.3390/pharmaceutics17091097 - 22 Aug 2025
Viewed by 208
Abstract
Background: Purple loosestrife (Lythrum salicaria L.) is a medicinal plant native to the spontaneous Romanian flora. The aim of this study was to investigate the phenolic profile, total phenolic content (TPC), and antioxidant capacity (AC) of two L. salicaria L. extracts, a [...] Read more.
Background: Purple loosestrife (Lythrum salicaria L.) is a medicinal plant native to the spontaneous Romanian flora. The aim of this study was to investigate the phenolic profile, total phenolic content (TPC), and antioxidant capacity (AC) of two L. salicaria L. extracts, a hydro-methanolic extract (LSmet-1) and a hydro-ethanolic extract (LSeth-2), and their putative toxicity, as well as the effect on eye pigment content in the case of Drosophila melanogaster of an extract derived from LSmet-1 (LSmet-3). To the best of our knowledge, this is the first study to evaluate the influence of L. salicaria L. extracts on cytotoxicity and the expression of genes as determined by eye pigment levels, using a D. melanogaster-based model system. Methods: High-performance liquid chromatography was carried out to investigate the chemical composition of the extracts. Spectrophotometric methods were used to estimate their TPC and AC. Cytotoxicity was evaluated using an in vivo D. melanogaster diet-dependent viability assay and eye pigments of wm4h males, suitable for position-effect variegation studies, which were quantified by a spectrophotometric method. Results: The results indicated that the main phenolic compounds were gallic acid, resveratrol, and rutin in LSmet-1, whereas in LSeth-2, gallic acid and quercetin were the most relevant. LSmet-1 had a higher TPC compared to LSeth-2. Both extracts exhibited notable efficacy in the applied in vitro antioxidant tests. The viability of flies on normal media increased in a concentration-dependent manner at lower concentrations, with the extract being toxic at higher concentrations. On a high-sugar diet, even lower concentrations were toxic. All tested concentrations influenced the eye pigment content. Conclusions: Our study brings new findings on L. salicaria L. extracts, suggesting the need for further investigation before introducing them in therapy. Full article
(This article belongs to the Special Issue Natural Compounds in Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 886 KB  
Review
Chinese Medicine-Derived Natural Compounds and Intestinal Regeneration: Mechanisms and Experimental Evidence
by Fengbiao Guo and Shaoyi Zhang
Biomolecules 2025, 15(9), 1212; https://doi.org/10.3390/biom15091212 - 22 Aug 2025
Viewed by 191
Abstract
Intestinal regeneration is essential for maintaining epithelial integrity and repairing mucosal damage caused by inflammation, infections, or injuries. Traditional Chinese Medicine (TCM) has long utilized herbal remedies for gastrointestinal disorders, and accumulating evidence highlights that natural compounds derived from TCM possess significant regenerative [...] Read more.
Intestinal regeneration is essential for maintaining epithelial integrity and repairing mucosal damage caused by inflammation, infections, or injuries. Traditional Chinese Medicine (TCM) has long utilized herbal remedies for gastrointestinal disorders, and accumulating evidence highlights that natural compounds derived from TCM possess significant regenerative potential. This review summarizes the multifaceted mechanisms by which these bioactive compounds promote intestinal healing. Key actions include the stimulation of intestinal stem cell (ISC) proliferation and differentiation, the modulation of inflammatory responses, the reinforcement of epithelial barrier integrity, the attenuation of oxidative stress, and the reshaping of the gut microbiota. Representative compounds such as Astragalus polysaccharides, berberine, curcumin, puerarin, and flavonoids like quercetin exhibit these effects through signaling pathways, including HIF-1, Wnt/β-catenin, NF-κB, Nrf2, and IL-22. Evidence from in vitro organoid models and in vivo studies in colitis, radiation injury, antibiotic-associated diarrhea, and intestinal dysmotility and diarrhea models demonstrates that these compounds enhance crypt villus regeneration, preserve tight junctions, and improve clinical outcomes. The holistic, multi-target actions of Chinese medicine-derived natural products make them promising candidates for therapeutic strategies aimed at intestinal repair. Further clinical validation and mechanistic studies are warranted to facilitate their integration into modern gastrointestinal medicine. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

27 pages, 1567 KB  
Review
NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging
by Stephen Safe
Nutrients 2025, 17(16), 2709; https://doi.org/10.3390/nu17162709 - 21 Aug 2025
Viewed by 485
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a member of the NR4A subfamily that was initially discovered as an intermediate early gene expressed in response to stressors, including inflammatory agents. This review addresses the hypothesis that NR4A1 is a key nutrient sensor that contributes [...] Read more.
Orphan nuclear receptor 4A1 (NR4A1) is a member of the NR4A subfamily that was initially discovered as an intermediate early gene expressed in response to stressors, including inflammatory agents. This review addresses the hypothesis that NR4A1 is a key nutrient sensor that contributes to the anti-aging and health-protective effects of receptor ligands, dietary phenolics, and other diet-derived compounds. There is evidence in animal models including humans that NR4A1 serves as an important gene that decreases the rate of aging and its associated diseases. For example, in humans and mice, NR4A1 expression decreases with age and loss of NR4A1 enhances disease susceptibility, and survival curves show that NR4A1-deficient mice live 4 months less than wild-type animals. An extensive comparison of inflammatory diseases, immune dysfunction, and fibrosis in multiple tissues shows that in NR4A1−/− mice and rats these diseases and injuries are enhanced compared to wild-type NR4A1−/− animals. There is evidence showing that structurally diverse NR4A1 ligands reverse the induced adverse effects in NR4A1 wild-type mice. This raises an important question regarding the mechanisms of NR4A1-dependent inhibition of the aging process and the potential for this receptor as a nutrient sensor. It has been well established that polyphenolics, including flavonoids, resveratrol, and other compounds in the diet, are health-protective and decrease the aging process. Recent studies show that resveratrol and flavonoids such as quercetin and kaempferol bind NR4A1 and exhibit protective NR4A1-dependent inhibition of endometriosis and cancer. These limited studies support a role for NR4A1 as a potential dietary sensor of nutrients that are known to be health-protective and a potential nutrient target for improving health. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Graphical abstract

13 pages, 1100 KB  
Article
Molecular Networking-Guided Annotation of Flavonoid Glycosides from Quercus mongolica Bee Pollen
by Yerim Joo, Eunbeen Shin, Hyunwoo Kim, Mi Kyeong Lee and Seon Beom Kim
Int. J. Mol. Sci. 2025, 26(16), 7930; https://doi.org/10.3390/ijms26167930 - 17 Aug 2025
Viewed by 318
Abstract
Bee pollen is a primary and secondary metabolite-rich natural product collected by pollinators such as honeybees. Polyphenols, particularly flavonoids, are well known for their potent antioxidant activities. Numerous phytochemical and biological studies have focused on Quercus mongolica, a member of the Fagaceae [...] Read more.
Bee pollen is a primary and secondary metabolite-rich natural product collected by pollinators such as honeybees. Polyphenols, particularly flavonoids, are well known for their potent antioxidant activities. Numerous phytochemical and biological studies have focused on Quercus mongolica, a member of the Fagaceae family. However, research focusing specifically on pollen is limited. Moreover, bee pollen chemical composition varies significantly depending on its geographical origin and cultivation conditions. In this study, the flavonoid glycosides of Q. mongolica pollen were profiled using LC–MS/MS-based molecular networking, which revealed that the largest molecular cluster corresponded to flavonoid glycosides. A total of 69 flavonoid glycosides, primarily comprising 2 kaempferol derivatives, 14 quercetin derivatives, and 46 isorhamnetin derivatives, were annotated based on MS/MS fragmentation patterns, spectral library matches in GNPS (Global Natural Products Social Molecular Networking), and comparison with previously reported data. Two primary compounds, isorhamnetin 3-O-β-D-xylopyranosyl (1→6)-β-D-glucopyranoside and isorhamnetin-3-O-neohesperidoside, were identified by comparison with reference standards. This study offers foundational insights into the flavonoid diversity of Q. mongolica pollen, contributing to a broad understanding of its secondary metabolite profile. Full article
Show Figures

Graphical abstract

28 pages, 10833 KB  
Article
Optimization and Component Identification of Ultrasound-Assisted Extraction of Polyphenols from Coriander (Coriandrum sativum L.) and Evaluation of Polyphenol Content Changes and Antioxidant Activity During Storage
by Heng Yuan, Chunzhi Xie, Yue Ma, Yaqi Miao, Xuehong Chen, Hao Gong and Jun Wang
Separations 2025, 12(8), 217; https://doi.org/10.3390/separations12080217 - 16 Aug 2025
Viewed by 269
Abstract
Coriander (Coriandrum sativum L.) has significant value in the food industry due to its unique flavor and health benefits. However, its polyphenol content and antioxidant activity have not been systematically analyzed during storage. This study optimized the extraction process of coriander polyphenols [...] Read more.
Coriander (Coriandrum sativum L.) has significant value in the food industry due to its unique flavor and health benefits. However, its polyphenol content and antioxidant activity have not been systematically analyzed during storage. This study optimized the extraction process of coriander polyphenols using ultrasound-assisted extraction combined with response surface methodology. The polyphenol composition was systematically identified, and changes in polyphenol content and antioxidant activity during storage were investigated. The optimal process conditions for extracting coriander polyphenols were determined as 40% ethanol concentration, 1:121 g/mL material-to-liquid ratio, 81 °C extraction temperature, and 10 min extraction time. This optimized protocol yielded 16.231 mg GAE/g, a 119.28% increase over conventional methods using the same raw material. Fifty polyphenolic compounds were identified using high-resolution mass spectrometry. The main types of polyphenols identified were quercetin, kaempferol, and hydroxycinnamic acid derivatives. Notably, 41 of these compounds were reported in coriander for the first time. In vitro tests revealed that coriander polyphenols exhibit potent antioxidant properties, with IC50 values of 73.43 μg/mL for DPPH and 82.15 μg/mL for ABTS. Furthermore, the polyphenol content and antioxidant capacity of coriander increased significantly during storage, with total phenolic content rising by 40.5%, DPPH activity by 32.5%, and ABTS activity by 56.5%. Key individual polyphenols showed differential changes: rutin continuously accumulated, while chlorogenic acid and ferulic acid exhibited an initial increase followed by a decrease. This study provides strong technical support for the use of coriander polyphenols in functional foods and medicines. Full article
Show Figures

Figure 1

18 pages, 1727 KB  
Article
Upcycling of Waste Cherries Produces an Anthocyanin-Rich Powder That Protects Against Amyloid-β Toxicity in C. elegans
by Sarah A. Blackburn, William G. Sullivan, Laura M. Freeman, Kevin Howland, Antonis A. Karamalegos, Michael Dallaway, Mark Philo, Jennifer M. A. Tullet and Marina Ezcurra
Antioxidants 2025, 14(8), 995; https://doi.org/10.3390/antiox14080995 - 13 Aug 2025
Viewed by 560
Abstract
Agricultural waste poses significant environmental and economic challenges, with the UK generating 135,000 tonnes annually. Upcycling plant-derived waste offers a sustainable approach to enhancing agricultural productivity while producing innovative, health-promoting foods. Cherries, particularly rich in anthocyanins and quercetin, possess antioxidant and anti-inflammatory properties [...] Read more.
Agricultural waste poses significant environmental and economic challenges, with the UK generating 135,000 tonnes annually. Upcycling plant-derived waste offers a sustainable approach to enhancing agricultural productivity while producing innovative, health-promoting foods. Cherries, particularly rich in anthocyanins and quercetin, possess antioxidant and anti-inflammatory properties linked to numerous health benefits. In this study researchers and a small agricultural business in Kent, the UK’s largest cherry-producing region, collaborated to quantify the bioactive compounds in products derived from waste cherries and evaluate their health potential. We find that cherry juice, pulp, and pomace retain high anthocyanin content, particularly Cyanidin-3-O-rutinoside, and contain quercetin. Using Caenorhabditis elegans as a model, we demonstrate that cherry pulp supplementation is protective in an Alzheimer’s disease model. Our study highlights the potential to upcycle agricultural waste to produce foods with health benefits while reducing waste. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Figure 1

18 pages, 1407 KB  
Article
Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves
by Afaf Mehiou, Chaimae Alla, Zachée Louis Evariste Akissi, Ikram Dib, Sanae Abid, Ali Berraaouan, Hassane Mekhfi, Abdelkhaleq Legssyer, Abderrahim Ziyyat and Sevser Sahpaz
Plants 2025, 14(16), 2513; https://doi.org/10.3390/plants14162513 - 12 Aug 2025
Viewed by 429
Abstract
Wild blackberry (Rubus ulmifolius Schott) is a culinary and medicinal plant traditionally used to treat various ailments, including hypertension. This study evaluated the vasorelaxant effects of five crude leaf extracts of R. ulmifolius (hexane, dichloromethane, ethyl acetate, methanol, and aqueous), as well [...] Read more.
Wild blackberry (Rubus ulmifolius Schott) is a culinary and medicinal plant traditionally used to treat various ailments, including hypertension. This study evaluated the vasorelaxant effects of five crude leaf extracts of R. ulmifolius (hexane, dichloromethane, ethyl acetate, methanol, and aqueous), as well as the hypotensive and antioxidant activities of its methanolic extract (MERu), and analyzed its phytochemical profile. Crude extracts, obtained using a Soxhlet apparatus, were tested in vitro on isolated rat aortic rings precontracted with phenylephrine. The hypotensive effect of MERu was examined in vivo in normotensive rats, and its antioxidant activity was assessed using the DPPH assay. Total phenolic and tannin contents were quantified by the Folin–Ciocalteu and hide powder methods, respectively, while UHPLC-MS was used to identify its phytochemicals. All crude extracts induced concentration-dependent vasorelaxation, with MERu showing the strongest effect (59.31% relaxation at 10−1 g/L). Intravenous MERu induced significant blood pressure reductions in rats, starting at 1 mg/kg. At 20 mg/kg, systolic, diastolic, and mean arterial pressures dropped by 38.61%, 51.58%, and 45.19%, respectively. MERu also demonstrated potent antioxidant activity and was rich in polyphenols, particularly tannins. Sixteen compounds were identified, notably rubanthrone A, a galloyl-bis-HHDP glucose derivative, ellagic acid, and quercetin-3-O-β-D-glucuronide. These results suggest that R. ulmifolius may have therapeutic potential for hypertension and exhibits promising characteristics as a functional food. Full article
(This article belongs to the Special Issue Efficacy, Safety and Phytochemistry of Medicinal Plants)
Show Figures

Figure 1

19 pages, 2688 KB  
Article
Optimizing Antioxidant and Biological Activities of Quercus Fructus: Synergistic Role of Inner Shell and Extraction Methods
by Jin Gyeom Kim, Hajeong Kim, Beulah Favour Ortutu, Woochan Jeong, Su-In Yoon, Inhwa Han and Jin Ah Cho
Antioxidants 2025, 14(8), 976; https://doi.org/10.3390/antiox14080976 - 8 Aug 2025
Viewed by 310
Abstract
This study comprehensively evaluated how the inclusion of the inner shell and the choice of extraction method influence the antioxidant activity of Quercus Fructus (QF). Eight QF extracts were prepared with or without the inner shell using stirring (S) and ultrasonication (U) with [...] Read more.
This study comprehensively evaluated how the inclusion of the inner shell and the choice of extraction method influence the antioxidant activity of Quercus Fructus (QF). Eight QF extracts were prepared with or without the inner shell using stirring (S) and ultrasonication (U) with 80% ethanol, boiled water (B) and autoclave (A) with distilled water. Among them, the ultrasonication extract with inner shell (IU) exhibited the highest antioxidant capacity, showing strong DPPH radical scavenging (228.8 mg TEAC/g), ABTS activity (162.9 mg TEAC/g), reducing power (380.9 mg TERP/g), and SOD-like activity (38.1%). HPLC-UV profiling identified quercetin-7-glucoside (Q7G) as a major detectable compound, although several polar phenolics remained unidentified. In LPS-stimulated Raw 264.7 cells, IU significantly suppressed nitric oxide production and iNOS expression without cytotoxicity. Additionally, IU treatment markedly reduced ROS accumulation in H2O2-exposed zebrafish embryos. These findings suggest that including the inner shell with ultrasonication extraction synergistically enhances QF’s antioxidant efficacy, suggesting a practical strategy for maximizing the functional potential of QF in natural antioxidant development. Full article
(This article belongs to the Special Issue Plant Antioxidants, Inflammation, and Chronic Disease)
Show Figures

Figure 1

23 pages, 1714 KB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Viewed by 391
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

26 pages, 956 KB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 - 1 Aug 2025
Viewed by 434
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
Show Figures

Figure 1

20 pages, 10909 KB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 - 1 Aug 2025
Viewed by 388
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Show Figures

Figure 1

32 pages, 722 KB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 489
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

22 pages, 1630 KB  
Article
Development of Cytisus Flower Extracts with Antioxidant and Anti-Inflammatory Properties for Nutraceutical and Food Uses
by Adela Alvaredo-López-Vizcaíno, Augusto Costa-Barbosa, Paula Sampaio, Pablo G. del Río, Claudia Botelho and Pedro Ferreira-Santos
Int. J. Mol. Sci. 2025, 26(15), 7100; https://doi.org/10.3390/ijms26157100 - 23 Jul 2025
Viewed by 446
Abstract
Plant flowers are recognized as a rich source of bioactive phenolic compounds. In this study, for the first time, the recovery of antioxidant phenolic compounds from Cytisus striatus flowers (CF) was optimized using microwave-assisted extraction (MAE). The variables (% of ethanol, temperature, and [...] Read more.
Plant flowers are recognized as a rich source of bioactive phenolic compounds. In this study, for the first time, the recovery of antioxidant phenolic compounds from Cytisus striatus flowers (CF) was optimized using microwave-assisted extraction (MAE). The variables (% of ethanol, temperature, and time) were studied using a response surface methodology (RSM). Extraction efficiency was assessed by total phenol content, total flavonoid content, and the antioxidant capacity through DPPH, ABTS, FRAP, and CUPRAC assays. Additionally, cytotoxicity and anti-inflammatory properties were evaluated in different cell lines. The optimal extraction conditions (87.6% ethanol, 160.8 °C and 8.76 min) yielded extracts rich in phenolics (85.9 mg GAE/g CF) and flavonoids (120.3 mg RE/g CF), with strong antioxidant capacity. LC-MS/MS analysis identified 27 phenolic compounds, including chrysin, apigenin, and quercetin derivatives. Cytotoxicity tests showed that CF extract maintained high viability (>80%) in human embryonic kidney (HEK293T) and human lung adenocarcinoma (A549) cells up to 2000 µg/mL, indicating low cytotoxicity. The anti-inflammatory potential was evidenced by a decrease in IL-1β levels and an increase in IL-10 cytokine production in LPS-stimulated macrophages. These results highlight the great potential of CF as a promising bioresource to obtain value-added compounds for the development of functional foods, nutraceuticals, and cosmetic products. Full article
Show Figures

Graphical abstract

27 pages, 5867 KB  
Article
Distinct Virologic Properties of African and Epidemic Zika Virus Strains: The Role of the Envelope Protein in Viral Entry, Immune Activation, and Neuropathogenesis
by Ashkan Roozitalab, Chenyu Zhang, Jiantao Zhang, Ge Li, Chengyu Yang, Wangheng Hou, Qiyi Tang and Richard Y. Zhao
Pathogens 2025, 14(7), 716; https://doi.org/10.3390/pathogens14070716 - 19 Jul 2025
Viewed by 442
Abstract
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in [...] Read more.
The 2016 Zika virus (ZIKV) epidemic has largely subsided, but a key question remains. How did ZIKV evolve to become a virulent human pathogen compared to the virus of its original discovery? What specific virologic and pathologic changes contributed to increased pathogenicity in humans? Phylogenetic studies have identified two genetically distinct ZIKV, the African and Asian lineages, which differ in their pathogenicity. Previous studies including ours suggest that the envelope (E) protein plays a key role in viral entry, immune activation, and neuropathogenesis. This study aimed to further elucidate virologic and pathogenic differences between these lineages by assessing their ability to bind and replicate in host cells, induce apoptotic cell death, trigger inflammatory responses, and influence human neural progenitor cell (hNPC)-derived neurosphere formation. We compared a historic African ZIKV strain (MR766) with an epidemic Brazilian strain (BR15) and evaluated the effects of the E protein inhibitor quercetin-3-β-O-D-glucoside (Q3G) and an E protein-neutralizing antibody (AbII). Our results revealed distinct virologic properties and that MR766 exhibited stronger inhibition of neurosphere formation due to enhanced viral binding to neuronal SH-SY5Y cells, while BR15 infection triggered a heightened pro-inflammatory cytokine response with reduced viral binding. Chimeric virus studies suggested that the E protein likely influences viral binding, replication efficiency, immune activation, and neuropathogenesis. Notably, Q3G exhibited antiviral activities against both MR766 and BR15, whereas AbII preferentially inhibited MR766. These findings highlight the virological differences between ancestral and epidemic viral strains, as well as the critical role of E protein in viral permissiveness, immune response, and neuropathogenesis, providing insights for developing targeted antiviral strategies. Full article
Show Figures

Figure 1

26 pages, 6375 KB  
Article
Photoprotective Effects of Quercetin and Hesperidin in Polymorphous Light Eruption: A Comparative Study with Alpha-Glucosylrutin
by Yoon-Seo Choi, Sang-Hoon Park, Inhee Jung, Eun-Ju Park, Wonki Hong, Jin-Hee Shin, Won-Sang Seo and Jongsung Lee
Curr. Issues Mol. Biol. 2025, 47(7), 567; https://doi.org/10.3390/cimb47070567 - 19 Jul 2025
Viewed by 986
Abstract
Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification [...] Read more.
Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification as a potential skin sensitizer and aquatic toxin raise safety and environmental concerns. These limitations underscore the need for safer, naturally derived alternatives. In this study, we investigated the comparative efficacy of quercetin (QC) and hesperidin (HPN)—two plant-based flavonoids—against AGR in in vitro and ex vivo models of sun-induced skin damage. An optimized QC:HPN 8:1 (w/w) complex significantly restored antioxidant enzyme activities (SOD: 4.11 ± 0.32 mU/mg; CAT: 1.88 ± 0.04 mU/mg) and suppressed inflammatory cytokine production (IL-6: 155.95 ± 3.17 pg/mL; TNF-α: 62.34 ± 0.72 pg/mL) more effectively than AGR. β-hexosaminidase secretion, a marker of allergic response, was reduced to 99.02 ± 1.45% with QC:HPN 8:1, compared to 121.33 ± 1.15% with AGR. QC alone exhibited dose-dependent cytotoxicity at ≥10 μg/mL, whereas HPN maintained >94% cell viability at all tested concentrations. These findings highlight the QC:HPN 8:1 complex as a safe, natural, and effective alternative to synthetic AGR for preventing and managing PLE and UV-induced dermal inflammation. Further research should focus on clinical validation and formulation development for topical use. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 3rd Edition)
Show Figures

Figure 1

Back to TopTop