Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Collection and Preparation
2.3. Bioactive Compound Extraction
2.4. Phenolic Profile HPLC Analysis
2.5. Spectrophotometric Analysis
2.5.1. Total Polyphenol Content Assay
2.5.2. Assessment of Antioxidant Capacity
DPPH Assay
FRAP Assay
ABTS Assay
2.6. In Vivo Drosophila melanogaster Viability Tests
2.7. Drosophila melanogaster Eye Pigment Quantification
2.8. Statistical Analysis
3. Results and Discussions
3.1. Phenolic Profile
3.2. Polyphenol Content and Antioxidant Activity
3.3. In Vivo Drosophila melanogaster Viability Tests on Neutral and Normal Diets
3.4. The Relevance of the Hormetic Effect of LS Extracts
3.5. In Vivo Drosophila melanogaster Viability Tests with High-Sugar Diet
3.6. Modulation of wm4h Gene Expression of Drosophila with LS Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dar, R.A.; Shahnawaz, M.; Ahanger, M.A.; Majid, I.U. Exploring the Diverse Bioactive Compounds from Medicinal Plants: A Review. J. Phytopharm. 2023, 12, 189–195. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Granica, S.; Kiss, A.K. Lythrum salicaria L.—Underestimated Medicinal Plant from European Traditional Medicine. A Review. J. Ethnopharmacol. 2015, 170, 226–250. [Google Scholar] [CrossRef]
- Srećković, N.; Katanić Stanković, J.S.; Matić, S.; Mihailović, N.R.; Imbimbo, P.; Monti, D.M.; Mihailović, V. Lythrum salicaria L. (Lythraceae) as a Promising Source of Phenolic Compounds in the Modulation of Oxidative Stress: Comparison between Aerial Parts and Root Extracts. Ind. Crops Prod. 2020, 155, 112781. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commission. Loosestrife Lythri Herba. In European Pharmacopoeia; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2019; Volume 1, pp. 1511–1512. [Google Scholar]
- Bencsik, T.; Barthó, L.; Sándor, V.; Papp, N.; Benkó, R.; Felinger, A.; Kilár, F.; Horváth, G. Phytochemical Evaluation of Lythrum salicaria Extracts and Their Effects on Guinea-Pig Ileum. Nat. Prod. Commun. 2013, 8, 1247–1250. [Google Scholar] [CrossRef]
- Turker, A.U.; Yildirim, A.B.; Tas, I.; Ozkan, E.; Turker, H. Evaluation of Some Traditional Medicinal Plants: Phytochemical Profile, Antibacterial and Antioxidant Potentials. Rom. Biotechnol. Lett. 2021, 26, 2499–2510. [Google Scholar] [CrossRef]
- Varga, E.; Fülöp, I.; Farczádi, L.; Croitoru, M.D. Polyphenolic Determination from Medicinal Plants Used in Veterinary Medicine by an UHPLC-LC-MS/MS Method. Farmacia 2020, 68, 1129–1135. [Google Scholar] [CrossRef]
- Tunalier, Z.; Koşar, M.; Küpeli, E.; Çaliş, İ.; Başer, K.H.C. Antioxidant, Anti-Inflammatory, Anti-Nociceptive Activities and Composition of Lythrum salicaria L. Extracts. J. Ethnopharmacol. 2007, 110, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Pirvu, L.; Hlevca, C.; Nicu, I.; Bubueanu, C. Comparative Studies on Analytical, Antioxidant, and Antimicrobial Activities of a Series of Vegetal Extracts Prepared from Eight Plant Species Growing in Romania. J. Planar Chromatogr. Mod. TLC 2014, 27, 346–356. [Google Scholar] [CrossRef]
- Manayi, A.; Khanavi, M.; Saiednia, S.; Azizi, E.; Mahmoodpour, M.R.; Vafi, F.; Malmir, M.; Siavashi, F.; Hadjiakhoondi, A. Biological Activity and Microscopic Characterization of Lythrum salicaria L. DARU J. Pharm. Sci. 2013, 21, 61. [Google Scholar] [CrossRef]
- López, V.; Akerreta, S.; Casanova, E.; García-Mina, J.; Cavero, R.; Calvo, M. Screening of Spanish Medicinal Plants for Antioxidant and Antifungal Activities. Pharm. Biol. 2008, 46, 602–609. [Google Scholar] [CrossRef]
- Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetti, F.; Custódio, L. Natural Products from Extreme Marine Environments: Searching for Potential Industrial Uses within Extremophile Plants. Ind. Crops Prod. 2016, 94, 299–307. [Google Scholar] [CrossRef]
- Srećković, N.Z.; Nedić, Z.P.; Liberti, D.; Monti, D.M.; Mihailović, N.R.; Katanić Stanković, J.S.; Dimitrijević, S.; Mihailović, V.B. Application Potential of Biogenically Synthesized Silver Nanoparticles Using Lythrum salicaria L. Extracts as Pharmaceuticals and Catalysts for Organic Pollutant Degradation. RSC Adv. 2021, 11, 35585–35599. [Google Scholar] [CrossRef]
- Safta, D.A.; Vlase, A.-M.; Pop, A.; Cherfan, J.; Carpa, R.; Iurian, S.; Bogdan, C.; Vlase, L.; Moldovan, M.-L. Optimized Sambucus nigra L., Epilobium hirsutum L., and Lythrum salicaria L. Extracts: Biological Effects Supporting Their Potential in Wound Care. Antioxidants 2025, 14, 521. [Google Scholar] [CrossRef] [PubMed]
- Granica, S.; Vahjen, W.; Zentek, J.; Melzig, M.F.; Pawłowska, K.A.; Piwowarski, J.P. Lythrum Salicaria Ellagitannins Stimulate IPEC-J2 Cells Monolayer Formation and Inhibit Enteropathogenic Escherichia Coli Growth and Adhesion. J. Nat. Prod. 2020, 83, 3614–3622. [Google Scholar] [CrossRef] [PubMed]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antimicrobial Activity of Native and Naturalized Plants of Minnesota and Wisconsin. J. Med. Plants Res. 2008, 2, 98–110. [Google Scholar]
- Piwowarski, J.P.; Kiss, A.K. Contribution of C-Glucosidic Ellagitannins to Lythrum salicaria L. Influence on pro-Inflammatory Functions of Human Neutrophils. J. Nat. Med. 2015, 69, 100–110. [Google Scholar] [CrossRef]
- Vafi, F.; Bahramsoltani, R.; Abdollahi, M.; Manayi, A.; Hossein Abdolghaffari, A.; Samadi, N.; Amin, G.; Hassanzadeh, G.; Jamalifar, H.; Baeeri, M.; et al. Burn Wound Healing Activity of Lythrum salicaria L. and Hypericum scabrum L. Wounds Compend. Clin. Res. Pract. 2016. ahead of print. [Google Scholar]
- Jouravel, G.; Guénin, S.; Bernard, F.-X.; Elfakir, C.; Bernard, P.; Himbert, F. New Biological Activities of Lythrum salicaria L.: Effects on Keratinocytes, Reconstructed Epidermis and Reconstructed Skins, Applications in Dermo-Cosmetic Sciences. Cosmetics 2017, 4, 52. [Google Scholar] [CrossRef]
- Park, Y.-J.; Kim, H.-Y.; Shin, S.; Lee, J.; Heo, I.; Cha, Y.-Y.; An, H.-J. Anti-Obesity Effect of Lythri Herba Water Extracts in Vitro and in Vivo. J. Ethnopharmacol. 2023, 317, 116789. [Google Scholar] [CrossRef]
- Iancu, I.M.; Bucur, L.A.; Schroder, V.; Mireșan, H.; Sebastian, M.; Iancu, V.; Badea, V. Phytochemical Evaluation and Cytotoxicity Assay of Lythri Herba Extracts. Farmacia 2021, 69, 51–58. [Google Scholar] [CrossRef]
- Šutovská, M.; Capek, P.; Fraňová, S.; Pawlaczyk, I.; Gancarz, R. Antitussive and Bronchodilatory Effects of Lythrum salicaria Polysaccharide-Polyphenolic Conjugate. Int. J. Biol. Macromol. 2012, 51, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk, I.; Czerchawski, L.; Kańska, J.; Bijak, J.; Capek, P.; Pliszczak-Król, A.; Gancarz, R. An Acidic Glycoconjugate from Lythrum salicaria L. with Controversial Effects on Haemostasis. J. Ethnopharmacol. 2010, 131, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef]
- Rauha, J.-P.; Wolfender, J.-L.; Salminen, J.-P.; Pihlaja, K.; Hostettmann, K.; Vuorela, H. Characterization of the Polyphenolic Composition of Purple Loosestrife (Lythrum salicaria). Z. Für Naturforschung C 2001, 56, 13–20. [Google Scholar] [CrossRef]
- Granica, S.; Piwowarski, J.P.; Kiss, A.K. Determination of C-Glucosidic Ellagitannins in Lythri salicariaeherba by Ultra-High Performance Liquid Chromatography Coupled with Charged Aerosol Detector: Method Development and Validation. Phytochem. Anal. 2014, 25, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Piwowarski, J.P.; Kiss, A.K. C-Glucosidic Ellagitannins from Lythri Herba (European Pharmacopoeia): Chromatographic Profile and Structure Determination. Phytochem. Anal. 2013, 24, 336–348. [Google Scholar] [CrossRef]
- Moilanen, J.; Koskinen, P.; Salminen, J.-P. Distribution and Content of Ellagitannins in Finnish Plant Species. Phytochemistry 2015, 116, 188–197. [Google Scholar] [CrossRef]
- Manayi, A.; Saeidnia, S.; Ostad, S.N.; Hadjiakhoondi, A.; Ardekani, M.R.S.; Vazirian, M.; Akhtar, Y.; Khanavi, M. Chemical Constituents and Cytotoxic Effect of the Main Compounds of Lythrum salicaria L. Z. Für Naturforschung C 2013, 68, 367–375. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Engin, M.S.; Zamahay, F.; Kalkan, S.; Otağ, M.R. Physical, Mechanical, and Bioactive Properties of Edible Film Based on Sodium Alginate Enriched with Lythrum salicaria L. Extract. J. Food Process. Preserv. 2022, 46, e16620. [Google Scholar] [CrossRef]
- Bose, S.; Datta, R.; Kirlin, W.G. Toxicity Studies Related to Medicinal Plants. In Evidence Based Validation of Traditional Medicines; Mandal, S.C., Chakraborty, R., Sen, S., Eds.; Springer: Singapore, 2021; pp. 621–647. ISBN 9789811581267. [Google Scholar]
- Panchal, K.; Tiwari, A.K. Drosophila Melanogaster “a Potential Model Organism” for Identification of Pharmacological Properties of Plants/Plant-Derived Components. Biomed. Pharmacother. 2017, 89, 1331–1345. [Google Scholar] [CrossRef]
- Jennings, B.H. Drosophila—A Versatile Model in Biology & Medicine. Mater. Today 2011, 14, 190–195. [Google Scholar] [CrossRef]
- Sârbu, I.; Ştefan, N.; Oprea, A. Plante Vasculare din Romania: Determinator Ilustrat de Teren; Editura Victor B Victor: Bucureşti, Romania, 2013; pp. 354–355. [Google Scholar]
- Popescu Stegarus, D.I.; Frum, A.; Dobrea, C.M.; Cristea, R.; Gligor, F.G.; Vicas, L.G.; Ionete, R.E.; Sutan, N.A.; Georgescu, C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2024, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Frum, A.; Georgescu, C.; Gligor, F.G.; Lengyel, E.; Stegarus, D.I.; Dobrea, C.M.; Tita, O. Identification and Quantification of Phenolic Compounds from Red Grape Pomace. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 45–52. [Google Scholar]
- Georgescu, C.; Frum, A.; Virchea, L.-I.; Sumacheva, A.; Shamtsyan, M.; Gligor, F.-G.; Olah, N.K.; Mathe, E.; Mironescu, M. Geographic Variability of Berry Phytochemicals with Antioxidant and Antimicrobial Properties. Molecules 2022, 27, 4986. [Google Scholar] [CrossRef] [PubMed]
- Frum, A.; Dobrea, C.M.; Rus, L.L.; Virchea, L.-I.; Morgovan, C.; Chis, A.A.; Arseniu, A.M.; Butuca, A.; Gligor, F.G.; Vicas, L.G.; et al. Valorization of Grape Pomace and Berries as a New and Sustainable Dietary Supplement: Development, Characterization, and Antioxidant Activity Testing. Nutrients 2022, 14, 3065. [Google Scholar] [CrossRef]
- Vicaș, L.; Teușdea, A.; Vicaș, S.; Marian, E.; Tunde, J.; Mureșan, M.; Gligor, F. Assessment of Antioxidant Capacity of Some Extracts for Further Use in Therapy. Farmacia 2015, 63, 267–274. [Google Scholar]
- Aleya, A.; Mihok, E.; Pecsenye, B.; Jolji, M.; Kertész, A.; Bársony, P.; Vígh, S.; Cziaky, Z.; Máthé, A.-B.; Burtescu, R.F.; et al. Phytoconstituent Profiles Associated with Relevant Antioxidant Potential and Variable Nutritive Effects of the Olive, Sweet Almond, and Black Mulberry Gemmotherapy Extracts. Antioxidants 2023, 12, 1717. [Google Scholar] [CrossRef]
- Evans, B.A.; Howells, A.J. Control of Drosopterin Synthesis in Drosophila Melanogaster: Mutants Showing an Altered Pattern of GTP Cyclohydrolase Activity During Development. Biochem. Genet. 1978, 16, 13–26. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Li, C.-X.; Kakar, M.U.; Khan, M.S.; Wu, P.-F.; Amir, R.M.; Dai, D.-F.; Naveed, M.; Li, Q.-Y.; Saeed, M.; et al. Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Naraki, K.; Roohbakhsh, A.; Hayes, A.W.; Karimi, G. The Protective Effects of Rutin on the Liver, Kidneys, and Heart by Counteracting Organ Toxicity Caused by Synthetic and Natural Compounds. Food Sci. Nutr. 2022, 11, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-M.; Deng, X.-T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef] [PubMed]
- Neamtu, A.-A.; Maghiar, T.-A.; Alaya, A.; Olah, N.-K.; Turcus, V.; Pelea, D.; Totolici, B.D.; Neamtu, C.; Maghiar, A.M.; Mathe, E. A Comprehensive View on the Quercetin Impact on Colorectal Cancer. Molecules 2022, 27, 1873. [Google Scholar] [CrossRef]
- Mehmood, A.; Javid, S.; Khan, M.F.; Ahmad, K.S.; Mustafa, A. In Vitro Total Phenolics, Total Flavonoids, Antioxidant and Antibacterial Activities of Selected Medicinal Plants Using Different Solvent Systems. BMC Chem. 2022, 16, 64. [Google Scholar] [CrossRef]
- Nakilcioğlu-Taş, E.; Ötleş, S. Influence of Extraction Solvents on the Polyphenol Contents, Compositions, and Antioxidant Capacities of Fig (Ficus carica L.) Seeds. An. Acad. Bras. Ciênc. 2021, 93, e20190526. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Almasi, H.; Esmaiili, M. Simultaneous Green Synthesis and In-Situ Impregnation of Silver Nanoparticles into Organic Nanofibers by Lythrum salicaria Extract: Morphological, Thermal, Antimicrobial and Release Properties. Mater. Sci. Eng. C 2019, 105, 110115. [Google Scholar] [CrossRef]
- Bencsik, T.; Horváth, G.; Papp, N. Variability of Total Flavonoid, Polyphenol and Tannin Contents in Some Lythrum salicaria Populations. Nat. Prod. Commun. 2011, 6, 1417–1420. [Google Scholar] [CrossRef]
- Mantle, D.; Eddeb, F.; Pickering, A.T. Comparison of Relative Antioxidant Activities of British Medicinal Plant Species in Vitro. J. Ethnopharmacol. 2000, 72, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the Anti-Inflammatory and Antioxidant Activities of Luteolin, Kaempferol, Apigenin and Quercetin. South Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Abramov, Y.A.; Shatskikh, A.S.; Maksimenko, O.G.; Bonaccorsi, S.; Gvozdev, V.A.; Lavrov, S.A. The Differences Between Cis- and Trans-Gene Inactivation Caused by Heterochromatin in Drosophila. Genetics 2016, 202, 93–106. [Google Scholar] [CrossRef]
- Solodovnikov, A.A.; Lavrov, S.A.; Shatskikh, A.S.; Gvozdev, V.A. Effects of Chromatin Structure Modifiers on the Trans-Acting Heterochromatin Position Effect in Drosophila Melanogaster. Dokl. Biochem. Biophys. 2023, 513, S75–S81. [Google Scholar] [CrossRef]
- Wang, S.H.; Elgin, S.C.R. The Impact of Genetic Background and Cell Lineage on the Level and Pattern of Gene Expression in Position Effect Variegation. Epigenet. Chromatin 2019, 12, 70. [Google Scholar] [CrossRef]
- Casasa, S.; Zattara, E.E.; Moczek, A.P. Nutrition-Responsive Gene Expression and the Developmental Evolution of Insect Polyphenism. Nat. Ecol. Evol. 2020, 4, 970–978. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Chemical Hormesis: Its Historical Foundations as a Biological Hypothesis. Toxicol. Pathol. 1999, 27, 195–216. [Google Scholar] [CrossRef]
- Mattson, M.P. Hormesis Defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef]
- Ogunsuyi, O.B.; Oboh, G.; Oluokun, O.O.; Ademiluyi, A.O.; Ogunruku, O.O. Gallic Acid Protects against Neurochemical Alterations in Transgenic Drosophila Model of Alzheimer’s Disease. Adv. Tradit. Med. 2020, 20, 89–98. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Chitnis, A.; Talekar, A.; Mulay, P.; Makkar, M.; James, J.; Thirumurugan, K. Hormetic Efficacy of Rutin to Promote Longevity in Drosophila Melanogaster. Biogerontology 2017, 18, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekara, K.T.; Shakarad, M.N. Aloe Vera or Resveratrol Supplementation in Larval Diet Delays Adult Aging in the Fruit Fly, Drosophila Melanogaster. J. Gerontol. A. Biol. Sci. Med. Sci. 2011, 66, 965–971. [Google Scholar] [CrossRef]
- Olanrewaju, J.A.; Bayo-Olugbami, A.A.; Enya, J.I.; Etuh, M.A.; Soyinka, O.O.; Akinnawo, W.; Oyebanjo, O.; Okwute, P.; Omotoso, D.; Afolabi, T.O.; et al. Modulatory Role of Dose-Dependent Quercetin Supplemented Diet on Behavioral and Anti-Oxidant System in Drosophila melanogaster Model. J. Afr. Assoc. Physiol. Sci. 2023, 11, 45–54. [Google Scholar] [CrossRef]
- Wang, C.; Wheeler, C.T.; Alberico, T.; Sun, X.; Seeberger, J.; Laslo, M.; Spangler, E.; Kern, B.; de Cabo, R.; Zou, S. The Effect of Resveratrol on Lifespan Depends on Both Gender and Dietary Nutrient Composition in Drosophila Melanogaster. Age 2013, 35, 69–81. [Google Scholar] [CrossRef]
- Puisais, A.; Cock, I.E. Lythrum salicaria L. Extracts Down-Regulate Pro-Inflammatory Cytokine Release and Inhibit the Bacterial Triggers of Some Autoimmune Inflammatory Diseases. Pharmacogn. Commun. 2025, 15, 21–35. [Google Scholar] [CrossRef]
- Musselman, L.P.; Fink, J.L.; Narzinski, K.; Ramachandran, P.V.; Hathiramani, S.S.; Cagan, R.L.; Baranski, T.J. A High-Sugar Diet Produces Obesity and Insulin Resistance in Wild-Type Drosophila. Dis. Model. Mech. 2011, 4, 842–849. [Google Scholar] [CrossRef]
- Ecker, A.; Gonzaga, T.K.S.D.N.; Seeger, R.L.; Santos, M.M.D.; Loreto, J.S.; Boligon, A.A.; Meinerz, D.F.; Lugokenski, T.H.; Rocha, J.B.T.D.; Barbosa, N.V. High-Sucrose Diet Induces Diabetic-like Phenotypes and Oxidative Stress in Drosophila Melanogaster: Protective Role of Syzygium Cumini and Bauhinia Forficata. Biomed. Pharmacother. 2017, 89, 605–616. [Google Scholar] [CrossRef]
- Reuter, G.; Spierer, P. Position Effect Variegation and Chromatin Proteins. Bioessays 1992, 14, 605–612. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Yim, J. Biosynthesis of Drosopterins, the Red Eye Pigments of Drosophila melanogaster. IUBMB Life 2013, 65, 334–340. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compound (μg/g d.p.) | Sample | ||
---|---|---|---|
LSmet-1 | LSeth-2 | ||
Phenolic acids | Gallic acid | 183.82 ± 1.13 | 134.83 ± 1.50 |
Cinnamic acid | 4.58 ± 0.22 | 23.46 ± 0.53 | |
Syringic acid | 27.30 ± 0.73 | 31.15 ± 0.67 | |
Caffeic acid | n.d. | n.d. | |
Chlorogenic acid | n.d. | n.d. | |
Ferulic acid | 9.22 ± 0.24 | 14.92 ± 0.08 | |
Flavonoids | (+)-Catechin | n.d. | n.d. |
Rutin | 68.09 ± 2.14 | 21.99 ± 0.33 | |
Quercetin | 28.81 ± 0.71 | 200.75 ± 1.94 | |
Stilbenes | Resveratrol | 76.48 ± 1.51 | 15.06 ± 0.92 |
Sample | LSmet-1 | LSeth-2 | Ascorbic Acid | |
---|---|---|---|---|
Assay | ||||
TPC (mg GAE/g d.p.) | 26.40 ± 1.42 a | 13.38 ± 0.49 b | n.d. | |
DPPH (%) | 93.24 ± 0.07 a | 93.04 ± 0.19 a | 100.00 ± 0.42 b* | |
FRAP (µmol TE/g d.p.) | 31.04 ± 0.60 a | 12.44 ± 0.44 a | 20.07 ± 1.09 b mmol TE/g ascorbic acid | |
ABTS (mmol TE/g d.p.) | 0.37 ± 0.05 a | 0.43 ± 0.02 a | 21.45 ± 1.53 b mmol TE/g ascorbic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virchea, L.-I.; Georgescu, C.; Máthé, E.; Frum, A.; Mironescu, M.; Pecsenye, B.; Nagy, R.; Danci, O.; Mureșan, M.-L.; Totan, M.; et al. Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies. Pharmaceutics 2025, 17, 1097. https://doi.org/10.3390/pharmaceutics17091097
Virchea L-I, Georgescu C, Máthé E, Frum A, Mironescu M, Pecsenye B, Nagy R, Danci O, Mureșan M-L, Totan M, et al. Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies. Pharmaceutics. 2025; 17(9):1097. https://doi.org/10.3390/pharmaceutics17091097
Chicago/Turabian StyleVirchea, Lidia-Ioana, Cecilia Georgescu, Endre Máthé, Adina Frum, Monica Mironescu, Bence Pecsenye, Robert Nagy, Oana Danci, Maria-Lucia Mureșan, Maria Totan, and et al. 2025. "Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies" Pharmaceutics 17, no. 9: 1097. https://doi.org/10.3390/pharmaceutics17091097
APA StyleVirchea, L.-I., Georgescu, C., Máthé, E., Frum, A., Mironescu, M., Pecsenye, B., Nagy, R., Danci, O., Mureșan, M.-L., Totan, M., & Gligor, F.-G. (2025). Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies. Pharmaceutics, 17(9), 1097. https://doi.org/10.3390/pharmaceutics17091097