Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Crude Extracts Preparation
2.3. Experimental Animals
2.4. Ex Vivo Assessment of the Vasorelaxant Effect of Crude Extracts
2.5. In Vivo Assessment of the Hypotensive Effect of Methanolic Extract
2.6. Antioxidant Activity
2.7. Quantitative Analysis of Total Phenolic and Tannin Content of Methanolic Extract
2.7.1. Determination of Total Phenolic Content
2.7.2. Determination of Total Tannin Content
2.8. Ultra-High-Performance Liquid Chromatography Coupled with Mass Spectrometry (UHPLC-MS) Analysis of Methanolic Extract
2.9. Statistical Analysis
3. Results
3.1. Extraction Yield
3.2. Vasorelaxant Effect of the Crude Extracts
3.3. Hypotensive Effect of the Methanolic Extract (MERu)
3.4. Antioxidant Activity (DPPH Assay)
3.5. Total Phenolic, Tannin, and Pure Compound Contents of the Methanolic Extract
3.6. Ultra-High-Performance Liquid Chromatography Coupled with Mass Spectrometry (UHPLC-MS) Analysis of the Methanolic Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MERu | Methanolic extract of Rubus ulmifolius |
HERu | Hexanic extract of Rubus ulmifolius |
DERu | Dichloromethane extract of Rubus ulmifolius |
EERu | Ethyl acetate extract of Rubus ulmifolius |
AERu | Aqueous extract of Rubus ulmifolius |
PHE | Phenylephrine |
CCh | Carbachol |
SNP | Sodium nitroprusside |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
MAP | Mean arterial pressure |
HR | Heart rate |
References
- Jordan, J.; Kurschat, C.; Reuter, H. Arterial hypertension: Diagnosis and treatment. Dtsch. Arztebl. Int. 2018, 115, 557. [Google Scholar]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Carey, R.M.; Muntner, P.; Bosworth, H.B.; Whelton, P.K. Prevention and control of hypertension: JACC health promotion series. J. Am. Coll. Cardiol. 2018, 72, 1278–1293. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Lackland, D.T.; Campbell, N.R.; Ojo Owolabi, M.; Bavuma, C.; Mamoun Beheiry, H.; Dzudie, A.; Ibrahim, M.M.; El Aroussy, W.; Singh, S. How to improve awareness, treatment, and control of hypertension in Africa, and how to reduce its consequences: A call to action from the World Hypertension League. Hypertension 2022, 79, 1949–1961. [Google Scholar] [CrossRef]
- Charchar, F.J.; Prestes, P.R.; Mills, C.; Ching, S.M.; Neupane, D.; Marques, F.Z.; Sharman, J.E.; Vogt, L.; Burrell, L.M.; Korostovtseva, L. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J. Hypertens. 2024, 42, 23–49. [Google Scholar] [CrossRef]
- Ram, C.V.S. Antihypertensive drugs: An overview. Am. J. Cardiovasc. Drugs 2002, 2, 77–89. [Google Scholar] [CrossRef]
- Romano, B.; Lucariello, G.; Capasso, R. Topical collection pharmacology of medicinal plants. Biomolecules 2021, 11, 101. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Pereira, E.; Prieto, M.A.; Simal-Gandara, J.; Pires, T.C.; Alves, M.J.; Calhelha, R.; Barros, L.; Ferreira, I.C. Rubus ulmifolius Schott as a novel source of food colorant: Extraction optimization of coloring pigments and incorporation in a bakery product. Molecules 2019, 24, 2181. [Google Scholar] [CrossRef]
- Chauhan, E.S.; Chauhan, U. Nutritional and bioactive properties of Rubus ulmifolius Schott (blackberry): A review. Asian J. Dairy Food Res. 2022, 41, 249–255. [Google Scholar] [CrossRef]
- Drioiche, A.; Benhlima, N.; Kchibale, A.; Boutahiri, S.; Ailli, A.; El Hilali, F.; Moukaid, B.; Zair, T. Ethnobotanical investigation of herbal food additives of Morocco used as natural dyes. Ethnobot. Res. Appl. 2021, 21, 1–43. [Google Scholar] [CrossRef]
- Salhi, S.; Fadli, M.; Zidane, L.; Douira, A. Études floristique et ethnobotanique des plantes médicinales de la ville de Kénitra (Maroc). Mediterr. Bot. 2010, 31, 133. [Google Scholar] [CrossRef]
- El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (northern Morocco). J. Ethnopharmacol. 2003, 86, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, S.; Dahmani, J.; Belahbib, N.; Zidane, L. Ethnopharmacological and ethnobotanical study of medicinal plants in the Central High Atlas, Morocco الدراسة الإيثنوفرمكولوجية والإ ثنوبولوجیة للنباتات الطبية في الأطلس المتوسط الكبير للمغرب. Ethnobot. Res. Appl. 2020, 20, 1–40. [Google Scholar]
- Chaachouay, N.; Azeroual, A.; Bencharki, B.; Zidane, L. Herbal medicine used in the treatment of cardiovascular diseases in the Rif, north of Morocco. Front. Pharmacol. 2022, 13, 921918. [Google Scholar] [CrossRef]
- Bouayyadi, L.; El Hafian, M.; Zidane, L. Étude floristique et ethnobotanique de la flore médicinale dans la région du Gharb, Maroc. J. Appl. Biosci. 2015, 93, 8770–8788. [Google Scholar] [CrossRef]
- Meddour, R.; Sahar, O.; Ouyessad, M. Ethnobotanical survey on medicinal plants in the Djurdjura National Park and its influence area, Algeria. Ethnobot. Res. Appl. 2020, 20, 1–25. [Google Scholar] [CrossRef]
- Hamel, T.; Zaafour, M.; Boumendjel, M. Ethnomedical knowledge and traditional uses of aromatic and medicinal plants of the Wetlands Complex of the Guerbes-Sanhadja Plain (wilaya of Skikda in northeastern Algeria). Herbal Med. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Kaci, Z.; Tirchi, N.; Dahmane, T.; Berrai, H.; Holgado, R.; Boubekeur, S.; Chebli, A.; Biche, M. First ethnobotanical study relating to usage of medicinal plants in province of Ain Defla region, south-west of Algeria. Indian J. Ecol. 2022, 49, 655–664. [Google Scholar]
- Chohra, D.; Ferchichi, L. Ethnobotanical study of Belezma National Park (BNP) plants in Batna: East of Algeria. Acta Sci. Nat. 2019, 6, 40–54. [Google Scholar] [CrossRef]
- Martini, S.; d’Addario, C.; Colacevich, A.; Focardi, S.; Borghini, F.; Santucci, A.; Figura, N.; Rossi, C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int. J. Antimicrob. Agents 2009, 34, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Tabarki, S.; Aouadhi, C.; Mechergui, K.; Hammi, K.M.; Ksouri, R.; Raies, A.; Toumi, L. Comparison of phytochemical composition and biological activities of Rubus ulmifolius extracts originating from four regions of Tunisia. Chem. Biodivers. 2017, 14, e1600168. [Google Scholar] [CrossRef] [PubMed]
- Bramki, A.; Benouchenne, D.; Salvatore, M.M.; Benslama, O.; Andolfi, A.; Rahim, N.; Moussaoui, M.; Ramoul, S.; Nessah, S.; Barboucha, G. In vitro and in silico biological activities investigation of ethyl acetate extract of Rubus ulmifolius Schott leaves collected in Algeria. Plants 2024, 13, 3425. [Google Scholar] [CrossRef]
- Mehiou, A.; Lucau-Danila, A.; Akissi, Z.L.; Alla, C.; Bouanani, N.; Legssyer, A.; Hilbert, J.-L.; Sahpaz, S.; Ziyyat, A. Nutrigenomic insights and cardiovascular benefits of blackberry (Rubus ulmifolius Schott.) and mugwort (Artemisia campestris L.). Exp. Physiol. 2025, 1–16. [Google Scholar] [CrossRef]
- Sanna, G.; Farci, P.; Busonera, B.; Murgia, G.; La Colla, P.; Giliberti, G. Antiviral properties from plants of the Mediterranean flora. Nat. Prod. Res. 2015, 29, 2065–2070. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A. Antifungal activity of Moroccan medicinal plants against citrus sour rot agent Geotrichum candidum. Lett. Appl. Microbiol. 2012, 55, 155–161. [Google Scholar] [CrossRef]
- Triggiani, D.; Ceccarelli, D.; Cusi, M.G.; Paffetti, A.; Braconi, D.; Millucci, L.; Bernardini, G.; Santucci, A. Rubus ulmifolius leaf extract inhibits proliferation of murine myeloma cells. Med. Aromat. Plant Sci. Biotechol. 2012, 6, 37–41. [Google Scholar]
- Ali, N.; Shaoib, M.; Shah, S.W.A.; Shah, I.; Shuaib, M. Pharmacological profile of the aerial parts of Rubus ulmifolius Schott. BMC Complement. Altern. Med. 2017, 17, 59. [Google Scholar] [CrossRef]
- Akhtar, K.; Shah, S.W.A.; Shah, A.A.; Shoaib, M.; Haleem, S.K.; Sultana, N. Pharmacological effect of Rubus ulmifolius Schott as antihyperglycemic and antihyperlipidemic on streptozotocin (STZ)-induced albino mice. Appl. Biol. Chem. 2017, 60, 411–418. [Google Scholar] [CrossRef]
- National Research Council (NRC). Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011.
- Flamini, G.; Catalano, S.; Caponi, C.; Panizzi, L.; Morelli, I. Three anthrones from Rubus ulmifolius. Phytochemistry 2002, 59, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Panizzi, L.; Caponi, C.; Catalano, S.; Cioni, P.; Morelli, I. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J. Ethnopharmacol. 2002, 79, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Mehiou, A.; Alla, C.; Akissi, Z.L.; Lucau-Danila, A.; Bouanani, N.; Legssyer, A.; Hilbert, J.-L.; Sahpaz, S.; Ziyyat, A. Rubus ulmifolius schott: A comprehensive review of its botany, traditional uses, phytochemistry and pharmacological effects. J. Berry Res. 2024, 14, 301–328. [Google Scholar] [CrossRef]
- Touyz, R.M.; Alves-Lopes, R.; Rios, F.J.; Camargo, L.L.; Anagnostopoulou, A.; Arner, A.; Montezano, A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 2018, 114, 529–539. [Google Scholar] [CrossRef]
- Giles, T.D.; Sander, G.E.; Nossaman, B.D.; Kadowitz, P.J. Impaired vasodilation in the pathogenesis of hypertension: Focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J. Clin. Hypertens. 2012, 14, 198–205. [Google Scholar] [CrossRef]
- Zidane, A.; Tits, M.; Angenot, L.; Wauters, J.-N.; Frederich, M.; Dib, I.; Mekhfi, H.; Aziz, M.; Bnouham, M.; Abdelkhaleq, L.; et al. Phytochemical analysis of Tetraclinis articula in relation to its vasorelaxant property. J. Mater. Environ. Sci. 2014, 5, 1368–1375. [Google Scholar]
- Assaidi, A.; Dib, I.; Tits, M.; Angenot, L.; Bellahcen, S.; Bouanani, N.; Legssyer, A.; Aziz, M.; Mekhfi, H.; Bnouham, M. Chenopodium ambrosioides induces an endothelium-dependent relaxation of rat isolated aorta. J. Integr. Med. 2019, 17, 115–124. [Google Scholar] [CrossRef]
- Bell, D.R.; Gochenaur, K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J. Appl. Physiol. 2006, 100, 1164–1170. [Google Scholar] [CrossRef]
- Cebová, M.; Klimentová, J.; Janega, P.; Pecháňová, O. Effect of bioactive compound of Aronia melanocarpa on cardiovascular system in experimental hypertension. Oxid. Med. Cell. Longev. 2017, 2017, 8156594. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Ishisaka, A.; Mawatari, K.; Vidal-Diez, A.; Spencer, J.P.; Terao, J. Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats. Br. J. Nutr. 2013, 109, 1746–1754. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.H.; Kang, W.S.; Kim, J.S.; Kim, S. Endothelium-dependent and endothelium-independent vasorelaxant effects of unripe Rubus coreanus Miq. and Dendropanax morbiferus H. Lév. extracts on rat aortic rings. BMC Complement. Med. Ther. 2020, 20, 190. [Google Scholar] [CrossRef] [PubMed]
- Younis, W.; Schini-Kerth, V.B.; Farooq, M.A.; Althobaiti, M.; Roberts, R.E. Hawthorn berry (Crataegus songarica) causes endothelium-dependent relaxation of the porcine coronary artery: Role of estrogen receptors. J. Berry Res. 2021, 11, 249–265. [Google Scholar] [CrossRef]
- Baradaran, A.; Nasri, H.; Rafieian-Kopaei, M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J. Res. Med. Sci. 2014, 19, 358. [Google Scholar]
- Akkari, H.; Hajaji, S.; B’chir, F.; Rekik, M.; Gharbi, M. Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus. Vet. Parasitol. 2016, 221, 46–53. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Cervellati, R.; Loi, M.C.; Innocenti, G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: Investigation of the high antioxidant capacity of Rubus ulmifolius. Food Chem. 2008, 106, 745–749. [Google Scholar] [CrossRef]
- Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65. [Google Scholar] [CrossRef]
- Leeya, Y.; Mulvany, M.J.; Queiroz, E.F.; Marston, A.; Hostettmann, K.; Jansakul, C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. Eur. J. Pharmacol. 2010, 649, 301–313. [Google Scholar] [CrossRef]
- Silva, G.C.; Pereira, A.C.; Rezende, B.A.; da Silva, J.P.F.; Cruz, J.S.; Maria de Fátima, V.; Gomes, R.A.; Teles, Y.C.; Cortes, S.F.; Lemos, V.S. Mechanism of the antihypertensive and vasorelaxant effects of the flavonoid tiliroside in resistance arteries. Planta Med. 2013, 79, 1003–1008. [Google Scholar] [CrossRef]
- Radović, J.; Suručić, R.; Niketić, M.; Kundaković-Vasović, T. Alchemilla viridiflora Rothm.: The potent natural inhibitor of angiotensin I-converting enzyme. Mol. Cell. Biochem. 2022, 477, 1893–1903. [Google Scholar] [CrossRef]
- Jackson, D.; Connolly, K.; Batacan, R.; Ryan, K.; Vella, R.; Fenning, A. (−)-Epicatechin reduces blood pressure and improves left ventricular function and compliance in deoxycorticosterone acetate-salt hypertensive rats. Molecules 2018, 23, 1511. [Google Scholar] [CrossRef]
- Tom, E.N.L.; Girard-Thernier, C.; Demougeot, C. The Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vessels. Phytomedicine 2016, 23, 1037–1042. [Google Scholar] [CrossRef]
- Mubarak, A.; Bondonno, C.P.; Liu, A.H.; Considine, M.J.; Rich, L.; Mas, E.; Croft, K.D.; Hodgson, J.M. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: A randomized trial. J. Agric. Food Chem. 2012, 60, 9130–9136. [Google Scholar] [CrossRef]
- Lei, F.; Xing, D.-M.; Xiang, L.; Zhao, Y.-N.; Wang, W.; Zhang, L.-J.; Du, L.-J. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J. Chromatogr. B 2003, 796, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Lee, R.; Heber, D. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin. Chim. Acta 2004, 348, 63–68. [Google Scholar] [CrossRef] [PubMed]
- González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.Á.; Tomé-Carneiro, J.; Zafrilla, P.; Mulero, J.; Tomás-Barberán, F.A.; Espín, J.C. Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. J. Funct. Foods 2015, 19, 225–235. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Barrio, R.; Cerdá, B.; López-Bote, C.; Rey, A.I.; Tomás-Barberán, F.A. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J. Agric. Food Chem. 2007, 55, 10476–10485. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic. Biol. Med. 2015, 89, 758–769. [Google Scholar] [CrossRef]
- Elendran, S.; Kumar, V.S.; Sundralingam, U.; Tow, W.-K.; Palanisamy, U.D. Enhancing the bioavailability of the ellagitannin, geraniin: Formulation, characterization, and in vivo evaluation. Int. J. Pharm. 2024, 660, 124333. [Google Scholar] [CrossRef]
- Yin, H.; Ma, J.; Han, J.; Li, M.; Shang, J. Pharmacokinetic comparison of quercetin, isoquercitrin, and quercetin-3-O-β-D-glucuronide in rats by HPLC-MS. PeerJ 2019, 7, e6665. [Google Scholar] [CrossRef]
Content * | Concentration Range (µg/mL) | Number of Points | R2 | Result |
---|---|---|---|---|
Total phenolic | - | 3 | 1 | 218.36 ± 10.67 |
Total non-tannic phenolic | - | 3 | 1 | 78.78 ± 4.81 |
Total tannin | - | 3 | 1 | 139.58 ± 5.86 |
Chlorogenic acid | 10–100 | 6 | 0.991 | 4.33 ± 1.52 < LOQ |
3-p-Coumaroylquinic acid | 10–100 | 6 | 0.997 | 1.0 ± 0.0 < LOQ |
Ellagic acid | 10–100 | 6 | 0.999 | 20.0 ± 0.0 |
Peak | Retention Time (min) | Molecular Ion [M-H]-(m/z) | Tentative Identification |
---|---|---|---|
1 | 0.740 | 215.20 | NI |
2 | 0.740 | 377.24 | Rubanthrone A |
3 | 2.450 | 353.22 | Neochlorogenic acid |
4 | 2.824 | 337.18 | p-Coumaroylquinic acid derivative |
5 | 2.824 | 417.32 | Kaempferol-3-O-arabinoside |
6 | 2.966 | 353.27 | Chlorogenic acid |
7 | 3.170 | 431.41 | Kaempferin |
8 | 3.267 | 289.14 | Epicatechin |
9 | 3.367 | 337.21 | 3-p-Coumaroylquinic acid |
10 | 3.458 | 934.39 | Galloyl-bis-HHDP glucose derivative |
11 | 3.587 | 433.26 | NI |
12 | 3.862 | 301.09 | Ellagic acid |
13 | 3.862 | 477.29 | Quercetin-3-O-β-D-glucuronide |
14 | 4.140 | 461.27 | Kaempferol-3-O-β-D-glucuronide |
15 | 4.369 | 547.38 | NI |
16 | 4.942 | 593.34 | Tiliroside |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehiou, A.; Alla, C.; Akissi, Z.L.E.; Dib, I.; Abid, S.; Berraaouan, A.; Mekhfi, H.; Legssyer, A.; Ziyyat, A.; Sahpaz, S. Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves. Plants 2025, 14, 2513. https://doi.org/10.3390/plants14162513
Mehiou A, Alla C, Akissi ZLE, Dib I, Abid S, Berraaouan A, Mekhfi H, Legssyer A, Ziyyat A, Sahpaz S. Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves. Plants. 2025; 14(16):2513. https://doi.org/10.3390/plants14162513
Chicago/Turabian StyleMehiou, Afaf, Chaimae Alla, Zachée Louis Evariste Akissi, Ikram Dib, Sanae Abid, Ali Berraaouan, Hassane Mekhfi, Abdelkhaleq Legssyer, Abderrahim Ziyyat, and Sevser Sahpaz. 2025. "Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves" Plants 14, no. 16: 2513. https://doi.org/10.3390/plants14162513
APA StyleMehiou, A., Alla, C., Akissi, Z. L. E., Dib, I., Abid, S., Berraaouan, A., Mekhfi, H., Legssyer, A., Ziyyat, A., & Sahpaz, S. (2025). Cardiovascular Effects, Antioxidant Activity, and Phytochemical Analysis of Rubus ulmifolius Schott Leaves. Plants, 14(16), 2513. https://doi.org/10.3390/plants14162513