Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = quasi-steady state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 12280 KiB  
Article
A Quasi-Convex RKPM for 3D Steady-State Thermomechanical Coupling Problems
by Lin Zhang, D. M. Li, Cen-Ying Liao and Li-Rui Tian
Mathematics 2025, 13(14), 2259; https://doi.org/10.3390/math13142259 - 12 Jul 2025
Viewed by 224
Abstract
A meshless, quasi-convex reproducing kernel particle framework for three-dimensional steady-state thermomechanical coupling problems is presented in this paper. A meshfree, second-order, quasi-convex reproducing kernel scheme is employed to approximate field variables for solving the linear Poisson equation and the elastic thermal stress equation [...] Read more.
A meshless, quasi-convex reproducing kernel particle framework for three-dimensional steady-state thermomechanical coupling problems is presented in this paper. A meshfree, second-order, quasi-convex reproducing kernel scheme is employed to approximate field variables for solving the linear Poisson equation and the elastic thermal stress equation in sequence. The quasi-convex reproducing kernel approximation proposed by Wang et al. to construct almost positive reproducing kernel shape functions with relaxed monomial reproducing conditions is applied to improve the positivity of the thermal matrixes in the final discreated equations. Two numerical examples are given to verify the effectiveness of the developed method. The numerical results show that the solutions obtained by the quasi-convex reproducing kernel particle method agree well with the analytical ones, with a slightly better-improved numerical accuracy than the element-free Galerkin method and the reproducing kernel particle method. The effects of different parameters, i.e., the scaling parameter, the penalty factor, and node distribution on computational accuracy and efficiency, are also investigated. Full article
Show Figures

Figure 1

15 pages, 1659 KiB  
Article
Cascaded Quasi-Resonant Extended State Observer-Based Deadbeat Predictive Current Control Strategy for PMSM
by Yang Liu, Xiaowei Yang, Yongqiang Zhang and Tao Hu
Electronics 2025, 14(14), 2782; https://doi.org/10.3390/electronics14142782 - 10 Jul 2025
Viewed by 188
Abstract
The traditional deadbeat predictive current control (DPCC) strategies for a permanent magnet synchronous motor (PMSM), such as those based on an extended state observer (ESO) and quasi-resonant extended state observer (QRESO), usually require large observer bandwidth, rendering the system sensitive to noise. To [...] Read more.
The traditional deadbeat predictive current control (DPCC) strategies for a permanent magnet synchronous motor (PMSM), such as those based on an extended state observer (ESO) and quasi-resonant extended state observer (QRESO), usually require large observer bandwidth, rendering the system sensitive to noise. To address this issue, this paper proposes a cascaded quasi-resonant extended state observer-based DPCC (CQRESO-based DPCC) strategy. Specifically, the CQRESO is utilized to estimate the predicted values of d-axis and q-axis currents, as well as the system total disturbance caused by the deterministic and uncertain factors at time instant k + 1. Subsequently, the required control command voltage at time instant k + 1 is then calculated according to the deadbeat control principle. Finally, the comparative simulation results with ESO-based DPCC and QRESO-based DPCC strategies demonstrate that the proposed strategy can achieve dynamic and robust performance comparable to the ESO-based and QRESO-based DPCC strategies while utilizing a smaller observer bandwidth. Additionally, it exhibits superior steady-state performance and 5th and 7th harmonic current suppression capabilities (in the abc reference frame). Full article
(This article belongs to the Special Issue Control of Power Quality and System Stability)
Show Figures

Figure 1

19 pages, 4711 KiB  
Article
Dynamical Analysis and Optimization of Combined Vibration Isolator with Time Delay
by Yaowei Wang and Xiangyu Li
Mathematics 2025, 13(13), 2188; https://doi.org/10.3390/math13132188 - 4 Jul 2025
Viewed by 237
Abstract
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low [...] Read more.
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low dynamic stiffness near equilibrium while maintaining high static stiffness, thereby enabling superior isolation performance in the low and ultra-low frequency range. This paper proposes a novel vibration isolation system that combines a grounded dynamic absorber with a QZS isolator, incorporating time-delay feedback control to enhance performance. The dynamic equations of the system are derived using Newton’s second law. The harmonic balance method combined with the arc-length continuation technique is employed to obtain steady-state responses under harmonic force excitation. The influence of feedback gain and time delay on vibration isolation effectiveness and dynamic behavior is analyzed, demonstrating the ability of time-delay feedback to modulate system responses and suppress primary resonance peaks. To further enhance performance, a genetic algorithm is used to optimize the control parameters under harmonic force excitation. The force transmissibility is defined as fitness functions, and the effects of control parameters on these metrics are examined. The results show that the optimized time-delay feedback parameters significantly reduce the transmitted force, improving the overall isolation efficiency. The proposed system provides a promising approach for achieving high-performance vibration isolation in low-frequency environments. Full article
Show Figures

Figure 1

18 pages, 2891 KiB  
Article
Size Effects on Process-Induced Porosity in Ti6Al4V Thin Struts Additively Manufactured by Laser Powder-Bed Fusion
by Nismath Valiyakath Vadakkan Habeeb and Kevin Chou
J. Manuf. Mater. Process. 2025, 9(7), 226; https://doi.org/10.3390/jmmp9070226 - 2 Jul 2025
Viewed by 607
Abstract
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan [...] Read more.
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan lengths, affecting the melt pool behavior between transient and quasi-steady states. This study investigates the keyhole porosity in Ti6Al4V thin struts fabricated by L-PBF, incorporating a range of strut sizes, along with various levels of linear energy densities. Micro-scaled computed tomography and image analysis were employed for porosity measurements and evaluations. Generally, keyhole porosity lessens with decreasing energy density, though with varying patterns across a higher energy density range. Keyhole porosity in struts predictably becomes severe at high laser powers and/or low scan speeds. However, a major finding reveals that the porosity is reduced with decreasing strut size (if less than 1.25 mm diameter), plausibly because the keyhole formed has not reached a stable state to produce pores in a permanent way. This implies that a higher linear energy density, greater than commonly formulated in making bulk components, could be utilized in making small-scale features to ensure not only full melting but also minimum keyhole porosity. Full article
Show Figures

Figure 1

13 pages, 1631 KiB  
Article
The Lucky Engine: Probabilistic Emergence and Persistence of Near-Maximum Dissipation States
by Ralph D. Lorenz
Entropy 2025, 27(7), 687; https://doi.org/10.3390/e27070687 - 27 Jun 2025
Viewed by 242
Abstract
A paradigm, wherein a nonequilibrium system has multiple modes of transport that can act in combination, permits the resolution of several difficulties with the notion of maximum entropy production (MaxEP or MEP). First, physical constraints, such as the density of the atmosphere or [...] Read more.
A paradigm, wherein a nonequilibrium system has multiple modes of transport that can act in combination, permits the resolution of several difficulties with the notion of maximum entropy production (MaxEP or MEP). First, physical constraints, such as the density of the atmosphere or the planetary rotation rate, merely define the portfolio of modes that can be engaged by the system: physically impossible states cannot be selected. Second, with minimal sensitivity to how the system evolves, it is seen that there are simply more numerous quasi-steady microstates (combinations of modes) that are near the maximum of work output (or dissipation rate or EP) than there are far from it, and so it is more probable that the system will be observed to be near that maximum. Third, this paradigm naturally permits exploration of the system behavior when subjected to non-steady forcing. Finally, it provides a framework to explain when a system has ‘enough’ degrees of freedom to attain a maximum dissipation state, as opposed to the minimum dissipation state expected for certain constrained systems. Full article
Show Figures

Figure 1

17 pages, 2496 KiB  
Article
High-Precision Experimental Data for Thermal Model Validation of Flat-Plate Hybrid Water PV/T Collectors
by Fahad Maoulida, Rabah Djedjig, Mourad Rahim, Mohamed Aboudou Kassim and Mohammed El Ganaoui
Energies 2025, 18(11), 2972; https://doi.org/10.3390/en18112972 - 4 Jun 2025
Viewed by 1479
Abstract
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the [...] Read more.
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the thermal model. The generated dataset was used to evaluate a thermal model derived from the literature, comparing its predictions with measured data. The model adopts a quasi-steady-state, one-dimensional approach based on heat balance equations applied to both the photovoltaic cells and the heat transfer fluid. Conducted during the summer of 2022, the experiment provides valuable insights into the accuracy of the literature-based thermal model under summer meteorological conditions. The results show a good correlation between the experimental data and the model’s predictions. The average deviation observed for the outlet fluid temperature is 0.1 °C during the day and 1.3 °C at night. Consequently, the findings underscore the model’s effectiveness for evaluating daytime performance, while also pointing out its limitations for nighttime predictions, especially when hybrid PV/T collectors are used for applications such as nighttime free cooling. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 5820 KiB  
Article
Angle-Based RGN-Enhanced ADRC for PMSM Compressor Speed Regulation Considering Aperiodic and Periodic Disturbances
by Chenchen Zhang, Yang Yang, Yimin Gong, Yibo Guo, Hongda Song and Jiannan Zhang
Actuators 2025, 14(6), 276; https://doi.org/10.3390/act14060276 - 4 Jun 2025
Viewed by 867
Abstract
Achieving excellent speed control in permanent magnet synchronous motors (PMSMs) relies on the simultaneous suppression of both aperiodic and periodic disturbances. This paper presents an enhanced Active Disturbance Rejection Control (ADRC) strategy specifically designed to address these disturbances in single-rotor compressors (SRCs). To [...] Read more.
Achieving excellent speed control in permanent magnet synchronous motors (PMSMs) relies on the simultaneous suppression of both aperiodic and periodic disturbances. This paper presents an enhanced Active Disturbance Rejection Control (ADRC) strategy specifically designed to address these disturbances in single-rotor compressors (SRCs). To achieve simultaneous suppression, a Recursive Gauss–Newton (RGN) algorithm is implemented in parallel with the conventional extended state observer (ESO) to enhance the ADRC framework. The RGN algorithm iteratively estimates the amplitude and phase information of periodic disturbances, while the ESO primarily observes the system’s aperiodic disturbances. In contrast to existing methods, the proposed angle-based approach demonstrates superior performance during speed transients. Detailed convergence and decoupling analyses are provided to facilitate parameter tuning. The effectiveness of the proposed method is validated through simulations and experiments conducted on a 650 W SRC, demonstrating its superiority over proportional–integral (PI) control, conventional ADRC, and quasi-resonant controller-based ADRC (QRC-ADRC) under both steady-state and dynamic conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

14 pages, 8581 KiB  
Article
Analysis Based on a Two-Dimensional Mathematical Model of the Thermo-Stressed State of a Copper Plate During Its Induction Heat Treatment
by Roman Musii, Myroslava Klapchuk, Eugeniusz Koda, Ivan Kernytskyy, Inga Svidrak, Ruslan Humeniuk, Yaroslav Sholudko, Mykola Nagirniak, Joanna Andrzejak and Yuriy Royko
Symmetry 2025, 17(5), 754; https://doi.org/10.3390/sym17050754 - 14 May 2025
Viewed by 312
Abstract
A two-dimensional physical and mathematical model is proposed for determining the components of the stress tensor and stress intensity in an electroconductive plate of rectangular cross-section under the action of an unsteady electromagnetic field. The two-dimensional thermomechanics problem for such a plate is [...] Read more.
A two-dimensional physical and mathematical model is proposed for determining the components of the stress tensor and stress intensity in an electroconductive plate of rectangular cross-section under the action of an unsteady electromagnetic field. The two-dimensional thermomechanics problem for such a plate is formulated. The determining functions are the component of the magnetic field intensity vector tangent to the plate bases, temperature, and components of the stress tensor. The methodology for solving the formulated thermomechanics problem by approximating all the determining functions by the thickness variable with cubic polynomials is developed. As a result, the original two-dimensional problems related to the determining functions are reduced to one-dimensional problems on the integral characteristics of these functions. To solve the obtained systems of equations for the integral characteristics of the determining functions, a finite integral transformation in the transverse variable is used. During induction heating of a copper plate by a homogeneous quasi-steady-state electromagnetic field, the change in the stress intensity depending on the Fourier time, as well as its distribution across the plate cross-section depending on the parameters of induction heating and the Biot criterion, is numerically analyzed. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 5641 KiB  
Article
A Numerical Investigation of Sinusoidal Flow in Porous Media with a Simple Cubic Beam Structure at 1 Hz and 100 Hz Under Different Porosity Conditions
by Sin-Mao Chen, Boe-Shong Hong and Shiuh-Hwa Shyu
Fluids 2025, 10(5), 126; https://doi.org/10.3390/fluids10050126 - 12 May 2025
Viewed by 445
Abstract
This study aims to clarify how porosity and frequency interact to influence permeability and flow behavior in porous media subjected to sinusoidal pressure variations. Specifically, we investigate oscillatory flow at 1 Hz and 100 Hz under varying porosity conditions using a pore-scale Computational [...] Read more.
This study aims to clarify how porosity and frequency interact to influence permeability and flow behavior in porous media subjected to sinusoidal pressure variations. Specifically, we investigate oscillatory flow at 1 Hz and 100 Hz under varying porosity conditions using a pore-scale Computational Fluid Dynamics (CFD) model. The model is validated against the Johnson–Koplik–Dashen (JKD) model to ensure accuracy in capturing dynamic permeability. At 1 Hz, where the oscillation period greatly exceeds the system’s time constant τ, the flow reaches a quasi-steady state with dynamic permeability approximating static permeability. Increasing porosity enhances Darcy velocity, with minimal phase difference between velocity and pressure. At 100 Hz, flow behavior depends on the ratio of the oscillation period T to τ. For high porosity (φ=0.840, Tτ), the flow does not fully develop before the pressure gradient reverses, leading to significant phase lag. For low porosity (φ=0.370, T12τ), the phase lag is smaller but remains non-zero due to the smooth temporal variation in pressure. This work contributes to the understanding of porous flow dynamics by revealing how porosity modulates both the amplitude and phase angle of dynamic permeability in frequency-dependent porous flows, providing a framework for predicting phase lag in frequency-sensitive applications. Full article
(This article belongs to the Collection Feature Paper for Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

21 pages, 3777 KiB  
Article
On Dynamics of a Copter-Slung Spherical Payload Partially Filled with Liquid
by Yury Selyutskiy, Marat Dosaev, Boris Lokshin and Gusztáv Fekete
Aerospace 2025, 12(5), 408; https://doi.org/10.3390/aerospace12050408 - 6 May 2025
Viewed by 285
Abstract
The motion of a copter with a suspended payload in a vertical plane is considered. The payload has a spherical shape and contains a concentric spherical cavity partially filled with ideal liquid. The system is subjected to horizontal stationary wind. The aerodynamic load [...] Read more.
The motion of a copter with a suspended payload in a vertical plane is considered. The payload has a spherical shape and contains a concentric spherical cavity partially filled with ideal liquid. The system is subjected to horizontal stationary wind. The aerodynamic load on the payload is described within the framework of a quasi-steady approach. The dynamics of the liquid are simulated using the phenomenological pendulum model. The points of this study are the controllability and observability of a stationary flight of a copter with the payload. A control strategy is proposed, which aims to bring the system from a certain initial state to a certain final state, such that the center of mass of the copter moves along a given sufficiently smooth curve. The control is designed to ensure the suppression of oscillations of the payload and the liquid along the entire trajectory. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

20 pages, 580 KiB  
Article
Analysis of BMAP/PH/N-Type Queueing System with Flexible Retrials Admission Control
by Sergei A. Dudin, Olga S. Dudina, Azam A. Imomov and Dmitry Y. Kopats
Mathematics 2025, 13(9), 1434; https://doi.org/10.3390/math13091434 - 27 Apr 2025
Viewed by 296
Abstract
This research examines a multi-server retrial queueing system with a batch Markov arrival process and a phase-type service time distribution. The system’s distinguishing feature is its ability to control the admission of retrial customers. An attempt by a customer to retry is successful [...] Read more.
This research examines a multi-server retrial queueing system with a batch Markov arrival process and a phase-type service time distribution. The system’s distinguishing feature is its ability to control the admission of retrial customers. An attempt by a customer to retry is successful only if the number of busy servers does not exceed certain threshold values, which may depend on the state of the fundamental process of the primary customer’s arrival. Impatient retrying customers may abandon the system without obtaining service. A group of primary customers that arrives while the number of available servers is fewer than the group size is either entirely rejected or occupies all available servers, while the remainder of the group transitions to the orbit. The system’s behavior, under a defined set of thresholds, is characterized by a multidimensional Markov chain classified as asymptotically quasi-Toeplitz. This enables the acquisition of the ergodicity condition and the computation of the steady-state distribution of the Markov chain and the system’s performance measures. The presented numerical examples demonstrate the impact of threshold value variation. An example of solving an optimization problem is presented. The importance of the account of the batch arrivals is shown. Full article
(This article belongs to the Special Issue Advances in Queueing Theory and Applications)
Show Figures

Figure 1

27 pages, 7046 KiB  
Article
Design, Optimization, and Realization of a Magnetic Multi-Layer Quasi-Zero-Stiffness Isolation Platform Supporting Different Loads
by Shuaijie Yang, Xiuting Sun, Jiawei Qian, Jian Xu and Kaixiang Li
Materials 2025, 18(7), 1676; https://doi.org/10.3390/ma18071676 - 6 Apr 2025
Viewed by 616
Abstract
This study presents a Multi-layer Quasi-Zero-Stiffness (ML-QZS) vibration isolation platform for variable loads in large-amplitude and low-frequency dynamic environments. In one isolation mount of the proposed ML-QZS isolation platform, Multi-layer permanent magnets are constructed to generate discontinuous Multi-layer negative-stiffness regions. The first design [...] Read more.
This study presents a Multi-layer Quasi-Zero-Stiffness (ML-QZS) vibration isolation platform for variable loads in large-amplitude and low-frequency dynamic environments. In one isolation mount of the proposed ML-QZS isolation platform, Multi-layer permanent magnets are constructed to generate discontinuous Multi-layer negative-stiffness regions. The first design criterion is to achieve the low-frequency and wide-amplitude vibration isolation range for different loads. The second design criterion is carried out for the dynamic performances of transient and steady states. Since both structural design and damping determine vibration transient time and the displacement transmissibility, which often exhibit contradictions depending on system parameters, a bi-objective Pareto optimization criterion is proposed to balance the vibration transients between different layers while ensuring significant isolation effectiveness in one layer. Finally, the relevant experimental prototype is constructed, and the results verify the design principle of Multi-layer double magnetic ring construction and optimization criterions for structural parameters and damping coefficients. This study provides an advanced nonlinear isolation platform with a wide QZS range for different loads, and the optimization method to coordinate the vibration performances, which provides important theoretical and experimental guidance for the design and realization of isolation platforms in practical engineering applications for large-amplitude and low-frequency dynamic environments. Full article
Show Figures

Figure 1

13 pages, 5237 KiB  
Article
A Control-Oriented Model for Polymer-Dispersed Liquid Crystal Films as an Actuator for Natural Light Control
by Alexander H. Pesch and Chiara Vetter
Actuators 2025, 14(4), 167; https://doi.org/10.3390/act14040167 - 28 Mar 2025
Viewed by 810
Abstract
A polymer-dispersed liquid crystal (PDLC) film is a device that can transition from opaque to transparent when electrically charged. These films can be used as actuators to control light levels in response to changing natural light. However, the current state of the art [...] Read more.
A polymer-dispersed liquid crystal (PDLC) film is a device that can transition from opaque to transparent when electrically charged. These films can be used as actuators to control light levels in response to changing natural light. However, the current state of the art for controlling PDLC films is limited to on/off functionality, and few works in the current body of literature have explored continuous control. This study develops a novel nonlinear model for PDLCs in the context of the feedback control of light. This study also demonstrates the model’s utility by comparing experimental data of a PDLC in feedback with a proportional–integral (PI) controller for disturbance rejection and tracking of a desired light setpoint. This development is motivated by the need for a smart greenhouse that can provide programmable optimized light levels for plant growth. Specifically, a light sensor is composed of a circuit with photodiodes and calibrated for the photosynthetically active radiation range. The light sensor is placed under the film, separate from an exogenous light source, allowing for feedback control to be applied. A proportional–integral type control law is selected for stiffness and the ability to eliminate steady-state error, and it is implemented using a microcontroller. An equivalent analog control effort is applied to the PDLC via a PWM voltage signal and an H-bridge type driver. Details necessary for the driving of the PDLC are presented. Open-loop identification of the nonlinear quasi-static and dynamic step-response transients of the PDLC at different control levels are presented and modeled. Finally, closed-loop experimental and simulated results are presented for both light disturbance rejection and setpoint tracking. This shows that the proposed control framework allows for continuous control of light. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

12 pages, 2383 KiB  
Article
Experimental Verification and Multi-Physics-Based Computer-Aided Engineering Simulation Methods for Dynamic Characteristics Analysis of Gas Foil Bearings at Lift-Off State
by Tai-Yuan Yu and Pei-Jen Wang
Lubricants 2025, 13(2), 75; https://doi.org/10.3390/lubricants13020075 - 10 Feb 2025
Cited by 1 | Viewed by 987
Abstract
This paper presents an analysis of the dynamic characteristics observed and studied during the startup process of a gas foil radial bearing. It utilizes a comparison of both experimental data and three-dimensional fluid–solid interaction computational fluid dynamics simulations to investigate a gas foil [...] Read more.
This paper presents an analysis of the dynamic characteristics observed and studied during the startup process of a gas foil radial bearing. It utilizes a comparison of both experimental data and three-dimensional fluid–solid interaction computational fluid dynamics simulations to investigate a gas foil bearing with three bump-type pads. The analytical model employs the fluid–structure interaction finite element method to examine the relationship between the components and the thin working fluid film within the bearing. This analysis was conducted under various operational conditions, including ambient pressure and temperature, shaft rotational speed, and the load applied to the shaft within the bearing. The foil structure of the bearing was modeled by representing the top and bump foils as a series of linear springs that are interconnected with the rigid housing. Meanwhile, the hydrodynamic pressure distribution acting on the top foil was modeled as a gas film operating under steady-state lubrication conditions. The comprehensive three-dimensional multi-physics model was developed using a commercial computer-aided engineering package, enabling independent finite element calculations for both fluid and solid domains. Following these calculations, the model exchanged analysis results across the interface between domains, allowing simulations to continue until the system achieved a quasi-steady state. An in-house experimental system was designed to evaluate the performance of the gas foil bearing under different working conditions, including the load applied to the shaft and the rotational speed. The experiment investigated the operational state of a gas foil radial bearing under ambient pressure (1 bar), ambient temperature (303 K), rotational speeds ranging from 1.5 to 9.5 krpm, and a load of 0.5602 kgw. Some operational conditions of the bearing were defined as boundary condition inputs for the simulation model. The model’s results, notably the predicted lift-off rotational speed of the bearing, show strong alignment with results from in-house experiments. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

20 pages, 883 KiB  
Article
Nonlinear Coupled Equations Free-Boundary Problem in Atherosclerosis: Symmetry Analysis of Solutions and Numerical Simulation
by Yarong Zhang, Xiaoya Mu, Xinyu Shi and Jihuan He
Symmetry 2025, 17(2), 244; https://doi.org/10.3390/sym17020244 - 6 Feb 2025
Viewed by 896
Abstract
Atherosclerosis, a chronic inflammatory cardiovascular disease closely related to plaque formation during arteriosclerosis, poses a significant threat to global health. To deepen the understanding of the multifaceted interactions driving atherosclerosis progression and provide theoretical support for designing targeted therapeutic strategies, this study establishes [...] Read more.
Atherosclerosis, a chronic inflammatory cardiovascular disease closely related to plaque formation during arteriosclerosis, poses a significant threat to global health. To deepen the understanding of the multifaceted interactions driving atherosclerosis progression and provide theoretical support for designing targeted therapeutic strategies, this study establishes a nonlinear coupled atherosclerotic free-boundary model integrating inflammatory immune cells, cytokines, and oxidized low-density lipoprotein. By applying the compression mapping principle, the local and global existence and uniqueness of solutions are proven, while revealing certain symmetries in the model’s solution structure. Under specific assumptions, a quasi-steady-state approximate model is derived, and the existence of its solution is demonstrated. Through numerical simulations of the quasi-steady-state approximate model using the finite difference method, the temporal and spatial evolution of pro-inflammatory macrophages and oxidized low-density lipoprotein is analyzed. The findings highlight the model’s strength in capturing the intricate dynamics of atherosclerosis, uncovering underlying mechanisms and identifying therapeutic targets. By evaluating inflammatory dynamics across plaque types and stenosis levels, the experimental design further validated the model’s ability to replicate clinical processes and reinforced its predictive accuracy. Notably, in the process of model analysis and solution, symmetries in the equations and boundary conditions play a crucial role in determining the solution properties. However, the current one-dimensional model has limitations. Future research should focus on developing higher-dimensional models and integrating more influencing factors to enhance the model’s clinical applicability and deepen the understanding of this complex disease. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

Back to TopTop