Flight Dynamics, Control & Simulation (2nd Edition)

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Aeronautics".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 8049

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Castelfidardo, 39, 10129 Torino, TO, Italy
Interests: aircraft design; green aviation; aerodynamics; flight mechanics; innovation; multidisciplinary optimization; flight dynamics; new aircraft concepts; hybrid-electric aircraft
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The research in the field of transport aviation is constantly facing new complex and ambitious challenges. More and more, new aircraft concepts, new types of propulsion, novel techniques for aircraft control, and overall disruptive innovations are being studied, investigated, and developed. The study of flight dynamics has always been of particular relevance when it comes to investigate the behaviour of innovative transport aircraft, to assess their stability and controllability characteristics, and to evaluate their performance. Depending on the level of fidelity used, flight simulation models, methods, and tools make it possible to characterize the aeromechanical behaviour of aircraft at any stage of design process, from the initial conceptual stages to the most advanced detailed analysis. Such models are relevant to the advancements of different fields of transport aeronautics, such as the enhancement of flight safety, the optimization of mission performance, the development of new concepts for aircraft operations (e.g., urban air mobility), and the establishment of virtual certification methods. This Special Issue aims to collect as broadly as possible the most up-to-date contributions regarding the application of flight dynamics models for the characterization of transport aircraft aeromechanic features. In particular, great emphasis is placed on the development and application of simulation models aimed at analysing the performance of aircraft with a high degree of innovation, whether in terms of architecture, systems, or propulsion. In addition, the development and validation of new methodologies for aeromechanical analysis and optimization, advanced simulation, novel flight control techniques, and flight dynamics analysis tools for multidisciplinary design workflows, also represent contributions of great relevance to increase the knowledge in the field.

Dr. Karim Abu Salem
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flight dynamics
  • performance analysis
  • flight simulation
  • advanced controls
  • new aircraft concepts
  • innovation
  • multidisciplinary optimization
  • flight mechanics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3958 KiB  
Article
Numerical Simulation of Self-Sustained Roll Oscillations of an 80-Degree Delta Wing Caused by Leading-Edge Vortices
by Mohamed Sereez, Mikhail Goman, Nikolay Abramov and Caroline Lambert
Aerospace 2025, 12(3), 197; https://doi.org/10.3390/aerospace12030197 - 28 Feb 2025
Viewed by 258
Abstract
Numerical simulations of an 80-degree delta wing in free-to-roll motion are performed by applying the dynamic fluid–body interaction (DFBI) model and the overlap/chimera method using the URANS equations. The capabilities of modern computational fluid dynamics methods for predicting wing-rock phenomena over a wide [...] Read more.
Numerical simulations of an 80-degree delta wing in free-to-roll motion are performed by applying the dynamic fluid–body interaction (DFBI) model and the overlap/chimera method using the URANS equations. The capabilities of modern computational fluid dynamics methods for predicting wing-rock phenomena over a wide range of angles of attack at low Mach numbers and strong wing–vortex interaction, including the vortex breakdown phenomenon, were investigated by comparing simulation results with wind tunnel test data. At low angles of attack, delays in the strength and position of the leading-edge vortices above the wing have a destabilizing effect on it, leading to the emergence of self-sustained limit-cycle oscillations. At high angles of attack, where vortex breakdown occurs, the available wind tunnel data show that there are two modes of wing self-oscillations in free-to-roll motion, namely, regular large-amplitude oscillations and irregular small-amplitude oscillations, where the excitation of the latter mode depends on the angle of attack and the initial roll angle of the wing motion. The performed numerical simulation also shows the existence of these two self-oscillatory modes in roll, qualitatively and quantitatively matching the experimental data. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

20 pages, 4916 KiB  
Article
Quaternion-Based Robust Sliding-Mode Controller for Quadrotor Operation Under Wind Disturbance
by Jung-Ju Bae and Jae-Young Kang
Aerospace 2025, 12(2), 93; https://doi.org/10.3390/aerospace12020093 - 27 Jan 2025
Viewed by 529
Abstract
This paper presents a quaternion-based robust sliding-mode controller for quadrotors operating under significant wind disturbances. The proposed control method improves the reliability and efficiency of quadrotor control by eliminating the singularity problem inherent in the Euler angle method. The quadrotor dynamics and wind [...] Read more.
This paper presents a quaternion-based robust sliding-mode controller for quadrotors operating under significant wind disturbances. The proposed control method improves the reliability and efficiency of quadrotor control by eliminating the singularity problem inherent in the Euler angle method. The quadrotor dynamics and wind environment are modeled, and dynamic analysis is performed via numerical simulation. A realistic wind model is used, similar to a combination of deterministic and statistical models. The Lyapunov stability theory is utilized to prove the convergence and stability of the proposed control system. The simulation results demonstrate that the quaternion-based controller enables the quadrotor to follow the desired path and remain stable, even under external wind disturbances. Specifically, both position and attitude converge to the desired values within 10 s, demonstrating stable performance despite the challenging wind disturbances in both scenarios. Scenario 1 features turbulence with an average wind speed of 12 m/s and changing wind directions, while Scenario 2 models an environment with wind speeds that change abruptly and discretely over time, coupled with temporal variations in wind direction. Additionally, a comparative analysis with the conventional PD controller highlights the superior performance of the proposed RSMC controller in terms of trajectory tracking, stability, and energy efficiency. The rotor speeds remain within a reasonable and hardware-feasible range, ensuring practical applicability. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

25 pages, 5316 KiB  
Article
Aircraft System Identification Using Multi-Stage PRBS Optimal Inputs and Maximum Likelihood Estimator
by Muhammad Fawad Mazhar, Muhammad Wasim, Manzar Abbas, Jamshed Riaz and Raees Fida Swati
Aerospace 2025, 12(2), 74; https://doi.org/10.3390/aerospace12020074 - 21 Jan 2025
Viewed by 735
Abstract
A new method to discover open-loop, unstable, longitudinal aerodynamic parameters, using a ‘two-stage optimization approach’ for designing optimal inputs, and with an application on the fighter aircraft platform, has been presented. System identification of supersonic aircraft requires formulating optimal inputs due to the [...] Read more.
A new method to discover open-loop, unstable, longitudinal aerodynamic parameters, using a ‘two-stage optimization approach’ for designing optimal inputs, and with an application on the fighter aircraft platform, has been presented. System identification of supersonic aircraft requires formulating optimal inputs due to the extremely limited maneuver time, high angles of attack, restricted flight conditions, and the demand for an enhanced computational effect. A pre-requisite of the parametric model identification is to have a priori aerodynamic parameter estimates, which were acquired using linear regression and Least Squares (LS) estimation, based upon simulated time histories of outputs from heuristic inputs, using an F-16 Flight Dynamic Model (FDM). In the ‘first stage’, discrete-time pseudo-random binary signal (PRBS) inputs were optimized using a minimization algorithm, in accordance with aircraft spectral features and aerodynamic constraints. In the ‘second stage’, an innovative concept of integrating the Fisher Informative Matrix with cost function based upon D-optimality criteria and Crest Factor has been utilized to further optimize the PRBS parameters, such as its frequency, amplitude, order, and periodicity. This unique optimum design also solves the problem of non-convexity, model over-parameterization, and misspecification; these are usually caused by the use of traditional heuristic (doublets and multistep) optimal inputs. After completing the optimal input framework, parameter estimation was performed using Maximum Likelihood Estimation. A performance comparison of four different PRBS inputs was made as part of our investigations. The model performance was validated by using statistical metrics, namely the following: residual analysis, standard errors, t statistics, fit error, and coefficient of determination (R2). Results have shown promising model predictions, with an accuracy of more than 95%, by using a Single Sequence Band-limited PRBS optimum input. This research concludes that, for the identification of the decoupled longitudinal Linear Time Invariant (LTI) aerodynamic model of supersonic aircraft, optimum PRBS shows better results than the traditional frequency sweeps, such as multi-sine, doublets, square waves, and impulse inputs. This work also provides the ability to corroborate control and stability derivatives obtained from Computational Fluid Dynamics (CFD) and wind tunnel testing. This further refines control law design, dynamic analysis, flying qualities assessments, accident investigations, and the subsequent design of an effective ground-based training simulator. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

27 pages, 5387 KiB  
Article
Control-Oriented System Identification of Turbojet Dynamics
by Francisco Villarreal-Valderrama, Eduardo Liceaga-Castro, Diana Hernandez-Alcantara, Carlos Santana-Delgado, Selcuk Ekici and Luis Amezquita-Brooks
Aerospace 2024, 11(8), 630; https://doi.org/10.3390/aerospace11080630 - 1 Aug 2024
Cited by 2 | Viewed by 1530
Abstract
The autonomous operation of turbojets requires reliable, accurate, and manageable dynamical models for several key processes. This article describes a practical robust method for obtaining turbojet thrust and shaft speed models from experimental data. The proposed methodology combines several data mining tools with [...] Read more.
The autonomous operation of turbojets requires reliable, accurate, and manageable dynamical models for several key processes. This article describes a practical robust method for obtaining turbojet thrust and shaft speed models from experimental data. The proposed methodology combines several data mining tools with the intention of handling typical difficulties present during experimental turbojet modeling, such as high noise levels and uncertainty in the plant dynamics. The resulting shaft speed and thrust models achieved a percentage error of 0.8561% and 3.3081%, respectively, for the whole operating range. The predictive power of the resulting models is also assessed in the frequency domain. The turbojet cut frequencies are experimentally determined and were found to match those predicted by the identified models. Finally, the proposed strategy is systematically tested with respect to popular aeroengine models, outperforming them both in the time and frequency domains. These results allow us to conclude that the proposed modeling method improves current modeling approaches in both manageability and predictive power. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

29 pages, 9042 KiB  
Article
Investigation of Fluid Dynamics in Various Aircraft Wing Tank Designs Using 1D and CFD Simulations
by Kerem Karahan and Sertac Cadirci
Aerospace 2024, 11(7), 519; https://doi.org/10.3390/aerospace11070519 - 27 Jun 2024
Viewed by 1245
Abstract
Jet fuel in aircraft fuel tanks moves due to acceleration resulting from maneuvers. The movement mentioned here directly impacts the Center of Gravity (CG). The aircraft’s flight mechanics are significantly affected by the deviation of its CG on the aircraft body, and excessive [...] Read more.
Jet fuel in aircraft fuel tanks moves due to acceleration resulting from maneuvers. The movement mentioned here directly impacts the Center of Gravity (CG). The aircraft’s flight mechanics are significantly affected by the deviation of its CG on the aircraft body, and excessive deviation is undesirable. Preventing CG deviation is achieved by designing various baffles within the fuel tank. In this study, design details of the baffles were investigated with the help of an artificial neural network (ANN) model, 1D simulations, and computational fluid dynamics (CFD) calculations. The 1D simulations, which model the fuel movement, were used to understand the general behavior of the fluid in the tank. CFD calculations simulating turbulent fluid flow in three dimensions were used to confirm the results of the 1D simulations and provide more detailed information. A simulation set is created utilizing five parameters: barrier usage, volume fraction, cutout diameter, number of cutouts, and cutout location. Compared to the barrierless design, the barrier usage as a parameter changes either on baffle number 1, 3, and 6, or on baffle number 2, 4, and 7. The fuel volume fraction parameter accounts for 30%, 45%, and 60% of the interior volume. The diameters of the cutout holes vary between 30 mm and 156 mm and are used as categorized among the baffles. Cutout holes are applied on baffles in single, twin, and triplet forms and their locations are subjected to a divergence of either −20 mm or +20 mm from the z-axis. Based on these parameters, the maximum deviation and the retreat time of CG constitute the output parameters. The importance of the input parameters on the outputs was obtained with the help of an ANN algorithm created from the results of all possible combinations of a sufficient number of 1D simulations. To obtain more detailed results and confirm the importance of input parameters on outputs, selected cases were simulated with CFD. As a result of all analyses, it was revealed that barrier usage is the most dominant input parameter on CG deviation followed by volume fraction, cutout hole diameter, cutout divergence, and finally, the number of cutout holes. This study identifies the dominant input parameters to control fuel sloshing, specifically CG deviation and retreat time in the fuel tank, and proposes baffle designs to promote robust flight stability. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

24 pages, 2586 KiB  
Article
Robust Approximate Optimal Trajectory Tracking Control for Quadrotors
by Rong Li, Zhengliang Yang, Gaowei Yan, Long Jian, Guoqiang Li and Zhiqiang Li
Aerospace 2024, 11(2), 149; https://doi.org/10.3390/aerospace11020149 - 13 Feb 2024
Cited by 2 | Viewed by 1587
Abstract
This paper uses the adaptive dynamic programming (ADP) method to achieve optimal trajectory tracking control for quadrotors. Relying on an established mathematical model of a quadrotor, the approximate optimal trajectory tracking control, which consists of the steady-state control input and the approximate optimal [...] Read more.
This paper uses the adaptive dynamic programming (ADP) method to achieve optimal trajectory tracking control for quadrotors. Relying on an established mathematical model of a quadrotor, the approximate optimal trajectory tracking control, which consists of the steady-state control input and the approximate optimal feedback control input, is designed for a nominal system. Considering the compound disturbances in position and attitude dynamic models, disturbance observers are introduced. The estimated values are used to design robust compensation inputs to suppress the effect of the compound disturbances for good trajectory tracking performance. Theoretically, the Lyapunov theorem demonstrates the stability of a closed-loop system. The robustness and effectiveness of the proposed controller are confirmed by the simulation results. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

Review

Jump to: Research

48 pages, 14566 KiB  
Review
High-Speed Aircraft Stability and Control Metrics
by Timothy T. Takahashi, Jack A. Griffin and Ramana V. Grandhi
Aerospace 2025, 12(1), 12; https://doi.org/10.3390/aerospace12010012 - 29 Dec 2024
Viewed by 1087
Abstract
This review paper identifies key stability and control screening parameters needed to design low-risk, general-purpose high-speed aircraft. These derive from MIL-STD-8785C, MIL-STD-1797, and older AGARD reports, and are suitable for assessing conceptual high-speed vehicles. We demonstrate their applicability using published ground test, computation, [...] Read more.
This review paper identifies key stability and control screening parameters needed to design low-risk, general-purpose high-speed aircraft. These derive from MIL-STD-8785C, MIL-STD-1797, and older AGARD reports, and are suitable for assessing conceptual high-speed vehicles. We demonstrate their applicability using published ground test, computation, and flight test data from the Bell X-2, North American X-15, Martin X-24A, Northrop HL-10, Lockheed Blackbird (YF-12/SR-71), and North American XB-70 as well as the Rockwell Space Shuttle Orbiter. The relative success of the X-15 and Blackbird and the performance limitations of the others indicate the need to scrutinize lateral-directional stability at the preliminary design phase. Our work reveals the need for strong bare-airframe static directional stability to obtain favorable flying qualities. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

Back to TopTop