Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,788)

Search Parameters:
Keywords = quantitative gene expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 (registering DOI) - 4 Aug 2025
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

12 pages, 1267 KiB  
Article
Exogenous 24-Epibrassinolide Alleviated Selenium Stress in Peach Seedling
by Zhiyu Hang, Qizhe Cao, Yunyao Du, Jinrong Zhang, Lijin Lin, Mingfei Zhang and Xun Wang
Horticulturae 2025, 11(8), 909; https://doi.org/10.3390/horticulturae11080909 (registering DOI) - 4 Aug 2025
Abstract
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact [...] Read more.
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact on biomass, selenium accumulation, and the expression of selenium metabolism-related genes in peach seedlings. The results demonstrated that 24-EBL could effectively mitigate biomass loss in peach seedlings exposed to selenium stress. Compared to the Se treatment alone, the 24-EBL+Se treatment resulted in a significant 16.55% increase in root selenium content and a more pronounced 30.39% increase in selenium content in the aboveground parts. Regarding the subcellular distribution, the cell wall was the primary site of Se deposition, accounting for 42.3% and 49.8% in the root and aboveground parts, respectively, in the Se treatment. 24-EBL further enhanced Se distribution at this site, reaching 42.9% and 63.2% in root and aboveground parts, respectively, in the 24-EBL+Se treatment. The 24-EBL+Se treatment significantly increased the contents of different chemical forms of Se, including ethanol-soluble, water-soluble, and salt-soluble Se. The quantitative real-time PCR (qRT-PCR) results indicated that the Se treatment promoted the expression of organic Se assimilation genes (SATs, OAS-TL B, and OAS-TL C), and 24-EBL application further increased their expression. Meanwhile, the Se-only treatment up-regulated the organic Se metabolism gene CGS1. Consequently, we propose that 24-EBL alleviates Se stress in peach seedlings by enhancing Se uptake and assimilation, and by adjusting subcellular distribution and chemical forms. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

19 pages, 3181 KiB  
Article
Comparative Analysis of Phenolic Acid Metabolites and Differential Genes Between Browning-Resistant and Browning-Sensitive luffa During the Commercial Fruit Stage
by Yingna Feng, Shuai Gao, Rui Wang, Yeqiong Liu, Zhiming Yan, Mingli Yong, Cui Feng, Weichen Ni, Yichen Fang, Simin Zhu, Liwang Liu and Yuanhua Wang
Horticulturae 2025, 11(8), 903; https://doi.org/10.3390/horticulturae11080903 (registering DOI) - 4 Aug 2025
Abstract
Browning significantly impacts the commercial value of luffa (luffa cylindrica) and is primarily driven by the metabolic processes of phenolic acids. Investigating changes in phenolic acids during browning aids in understanding the physiological mechanisms underlying this process and provides a basis [...] Read more.
Browning significantly impacts the commercial value of luffa (luffa cylindrica) and is primarily driven by the metabolic processes of phenolic acids. Investigating changes in phenolic acids during browning aids in understanding the physiological mechanisms underlying this process and provides a basis for improving storage, processing, variety breeding, and utilization of germplasm resources. This study compared browning-resistant (‘30’) and browning-sensitive (‘256’) luffa varieties using high-throughput sequencing and metabolomics techniques. The results revealed 55 genes involved in the phenylpropanoid biosynthesis pathway, including 8 phenylalanine ammonia-lyase (PAL) genes, 20 peroxidase (POD) genes, 2 polyphenol oxidase (PPO) genes associated with tyrosine metabolism, and 37 peroxisome-related genes. Real-time quantitative (qPCR) was employed to validate 15 browning-related genes, revealing that the expression levels of LcPOD21 and LcPOD6 were 12.5-fold and 25-fold higher in ‘30’ compared to ‘256’, while LcPAL5 and LcPAL4 were upregulated in ‘30’. Enzyme analysis showed that catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were higher in ‘30’ than in ‘256’. Conversely, superoxide dismutase (SOD) and polyphenol oxidase (PPO) activities were reduced in ‘30’, whereas CAT activity was upregulated. The concentrations of cinnamic acid, p-coumaric acid, trans-5-O-(4-coumaroyl)mangiferic acid, and caffealdehyde were lower in browning-resistant luffa ‘30’ than in browning-sensitive luffa ‘256’, suggesting that their levels influence browning in luffa. These findings elucidate the mechanisms underlying browning and inform strategies for the storage, processing, and genetic improvement of luffa. Full article
Show Figures

Figure 1

18 pages, 3267 KiB  
Article
Sodium Caseinate Induces Apoptosis in Cytarabine-Resistant AML by Modulating SIRT1 and Chemoresistance Genes, Alone or in Combination with Cytarabine or Daunorubicin
by Daniel Romero-Trejo, Itzen Aguiñiga-Sánchez, Amanda Velasco-García, Katia Michell Rodríguez-Terán, Fabian Flores-Borja, Isabel Soto-Cruz, Martha Legorreta-Herrera, Víctor Manuel Macías-Zaragoza, Ernesto Romero-López, Benny Weiss-Steider, Karen Miranda-Duarte, Claudia Itzel Sandoval-Franco and Edelmiro Santiago-Osorio
Int. J. Mol. Sci. 2025, 26(15), 7468; https://doi.org/10.3390/ijms26157468 (registering DOI) - 1 Aug 2025
Viewed by 174
Abstract
Resistance to cytarabine (Ara-C) remains a major obstacle to the successful treatment of acute myeloid leukemia (AML). Therefore, modulating Ara-C resistance is indispensable for improving clinical outcomes. We previously demonstrated that sodium caseinate (SC), a salt derived from casein, the principal milk protein, [...] Read more.
Resistance to cytarabine (Ara-C) remains a major obstacle to the successful treatment of acute myeloid leukemia (AML). Therefore, modulating Ara-C resistance is indispensable for improving clinical outcomes. We previously demonstrated that sodium caseinate (SC), a salt derived from casein, the principal milk protein, inhibits proliferation and modulates the expression of Ara-C resistance-related genes in chemoresistant cells. However, it remains unclear whether the combination of SC with antineoplastic agents enhances apoptosis, modulates chemoresistance-related genes, and prolongs the survival of tumor-bearing mice implanted with chemoresistant cells. Here, we investigated the effects of SC in combination with Ara-C or daunorubicin (DNR) on cell proliferation, apoptosis, the expression of chemoresistance-associated genes, and the survival of tumor-bearing mice. Crystal violet assays, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence, flow cytometry, and Kaplan–Meier survival curves were used to evaluate the effects of combinations in chemoresistant cells. We demonstrate that the IC25 concentration of SC, when combined with antileukemic agents, increases the sensitivity of chemoresistant WEHI-CR50 cells to Ara-C by downregulating SIRT1 and MDR1, upregulating the expression of ENT1 and dCK, enhancing apoptosis, and prolonging the survival of WEHI-CR50 tumor-bearing mice. Our data suggest that SC in combination with antileukemic agents could be an effective adjuvant for Ara-C-resistant AML. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Graphical abstract

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 141
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 (registering DOI) - 31 Jul 2025
Viewed by 218
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 180
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

18 pages, 3824 KiB  
Article
Prognostic Risk Model of Megakaryocyte–Erythroid Progenitor (MEP) Signature Based on AHSP and MYB in Acute Myeloid Leukemia
by Ting Bin, Ying Wang, Jing Tang, Xiao-Jun Xu, Chao Lin and Bo Lu
Biomedicines 2025, 13(8), 1845; https://doi.org/10.3390/biomedicines13081845 - 29 Jul 2025
Viewed by 269
Abstract
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between [...] Read more.
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between AML-MEP and normal MEP groups. Univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression selected biomarkers to build a risk model and nomogram for 1-, 3-, and 5-year survival prediction. Results: Ten differentially expressed genes (DEGs) related to overall survival (OS), six (AHSP, MYB, VCL, PIM1, CDK6, as well as SNHG3) were retained post-LASSO. The model exhibited excellent efficiency (the area under the curve values: 0.788, 0.77, and 0.847). Pseudotime analysis of UMAP-defined subpopulations revealed that MYB and CDK6 exert stage-specific regulatory effects during MEP differentiation, with MYB involved in early commitment and CDK6 in terminal maturation. Finally, although VCL, PIM1, CDK6, and SNHG3 showed significant associations with AML survival and prognosis, they failed to exhibit pathological differential expression in quantitative real-time polymerase chain reaction (qRT-PCR) experimental validations. In contrast, the downregulation of AHSP and upregulation of MYB in AML samples were consistently validated by both qRT-PCR and Western blotting, showing the consistency between the transcriptional level changes and protein expression of these two genes (p < 0.05). Conclusions: In summary, the integration of single-cell/transcriptome analysis with targeted expression validation using clinical samples reveals that the combined AHSP-MYB signature effectively identifies high-risk MEP-AML patients, who may benefit from early intensive therapy or targeted interventions. Full article
Show Figures

Figure 1

22 pages, 6395 KiB  
Article
Investigation of Novel Therapeutic Targets for Rheumatoid Arthritis Through Human Plasma Proteome
by Hong Wang, Chengyi Huang, Kangkang Huang, Tingkui Wu and Hao Liu
Biomedicines 2025, 13(8), 1841; https://doi.org/10.3390/biomedicines13081841 - 29 Jul 2025
Viewed by 341
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune disease that remains incurable. An increasing number of proteomic genome-wide association studies (GWASs) are emerging, offering immense potential for identifying novel therapeutic targets for diseases. This study aims to identify potential therapeutic targets for RA [...] Read more.
Background: Rheumatoid arthritis (RA) is an autoimmune disease that remains incurable. An increasing number of proteomic genome-wide association studies (GWASs) are emerging, offering immense potential for identifying novel therapeutic targets for diseases. This study aims to identify potential therapeutic targets for RA based on human plasma proteome. Methods: Protein quantitative trait loci were extracted and integrated from eight large-scale proteomic GWASs. Proteome-wide Mendelian randomization (Pro-MR) was performed to prioritize proteins causally associated with RA. Further validation of the reliability and stratification of prioritized proteins was performed using MR meta-analysis, colocalization, and transcriptome-wide summary-data-based MR. Subsequently, prioritized proteins were characterized through protein–protein interaction and enrichment analyses, pleiotropy assessment, genetically engineered mouse models, cell-type-specific expression analysis, and druggability evaluation. Phenotypic expansion analyses were also conducted to explore the effects of the prioritized proteins on phenotypes such as endocrine disorders, cardiovascular diseases, and other immune-related diseases. Results: Pro-MR prioritized 32 unique proteins associated with RA risk. After validation, prioritized proteins were stratified into four reliability tiers. Prioritized proteins showed interactions with established RA drug targets and were enriched in an immune-related functional profile. Four trans-associated proteins exhibited vertical or horizontal pleiotropy with specific genes or proteins. Genetically engineered mouse models for 18 prioritized protein-coding genes displayed abnormal immune phenotypes. Single-cell RNA sequencing data were used to validate the enriched expression of several prioritized proteins in specific synovial cell types. Nine prioritized proteins were identified as targets of existing drugs in clinical trials or were already approved. Further phenome-wide MR and mediation analyses revealed the effects and potential mediating roles of some prioritized proteins on other phenotypes. Conclusions: This study identified 32 plasma proteins as potential therapeutic targets for RA, expanding the prospects for drug discovery and deepening insights into RA pathogenesis. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

12 pages, 1508 KiB  
Article
Impact of Copper Nanoparticles on Keratin 19 (KRT19) Gene Expression in Breast Cancer Subtypes: Integrating Experimental and Bioinformatics Approaches
by Safa Taha, Ameera Sultan, Muna Aljishi and Khaled Greish
Int. J. Mol. Sci. 2025, 26(15), 7269; https://doi.org/10.3390/ijms26157269 - 27 Jul 2025
Viewed by 425
Abstract
This study investigates the effects of copper nanoparticles (CuNPs) on KRT19 gene expression in four breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF7, and T47D), representing triple-negative and luminal subtypes. Using cytotoxicity assays, quantitative RT-PCR, and bioinformatics tools (STRING, g:Profiler), we demonstrate subtype-specific, dose-dependent [...] Read more.
This study investigates the effects of copper nanoparticles (CuNPs) on KRT19 gene expression in four breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF7, and T47D), representing triple-negative and luminal subtypes. Using cytotoxicity assays, quantitative RT-PCR, and bioinformatics tools (STRING, g:Profiler), we demonstrate subtype-specific, dose-dependent KRT19 suppression, with epithelial-like cell lines showing greater sensitivity. CuNPs, characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) with a mean size of 179 ± 15 nm, exhibited dose-dependent cytotoxicity. Bioinformatics analyses suggest KRT19′s potential as a biomarker for CuNP-based therapies, pending in vivo and clinical validation. These findings highlight CuNPs’ therapeutic potential and the need for further studies to optimize their application in personalized breast cancer treatment. Full article
(This article belongs to the Special Issue Nanoparticles for Cancer Treatment)
Show Figures

Figure 1

22 pages, 4619 KiB  
Article
Physiological and Transcriptomic Analyses Reveal Regulatory Mechanisms of Adventitious Root Formation in In Vitro Culture of Cinnamomum camphora
by Yuntong Zhang, Ting Zhang, Yongjie Zheng, Jun Wang, Chenglin Luo, Yuhua Li and Xinliang Liu
Int. J. Mol. Sci. 2025, 26(15), 7264; https://doi.org/10.3390/ijms26157264 - 27 Jul 2025
Viewed by 342
Abstract
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots [...] Read more.
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots (ARs). This study investigated AR formation from callus tissue, focusing on associated physiological changes and gene expression dynamics. During AR induction, contents of soluble sugars and proteins decreased, alongside reduced activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) decreased significantly throughout AR formation. Zeatin riboside (ZR) levels initially declined and then rose, whereas gibberellic acid (GA) levels displayed the opposite trend. Comparative transcriptomic and temporal expression analyses identified differentially expressed genes (DEGs), which were grouped into four distinct expression patterns. KEGG pathway enrichment indicated that 67 DEGs are involved in plant hormone signaling pathways and that 38 DEGs are involved in the starch and sucrose metabolism pathway. Additionally, protein–protein interaction network (PPI) analysis revealed ten key regulatory genes, which are mainly involved in auxin, cytokinin, GA, ABA, and ethylene signaling pathways. The reliability of the transcriptome data was further validated by quantitative real-time PCR. Overall, this study provides new insights into the physiological and molecular mechanisms underlying AR formation in C. camphora and offers valuable guidance for optimizing tissue culture systems. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

25 pages, 2098 KiB  
Review
Recent Advances in Experimental Functional Characterization of GWAS Candidate Genes in Osteoporosis
by Petra Malavašič, Jasna Lojk, Marija Nika Lovšin and Janja Marc
Int. J. Mol. Sci. 2025, 26(15), 7237; https://doi.org/10.3390/ijms26157237 - 26 Jul 2025
Viewed by 388
Abstract
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the [...] Read more.
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the biological mechanisms underlying osteoporosis. This review focuses on current methodologies and key examples of successful functional studies aimed at evaluating gene function in osteoporosis research. Functional evaluation typically follows a multi-step approach. In silico analyses using omics datasets expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and DNA methylation quantitative trait loci (mQTLs) help prioritize candidate genes and predict relevant biological pathways. In vitro models, including immortalized bone-derived cell lines and primary mesenchymal stem cells (MSCs), are used to explore gene function in osteogenesis. Advanced three-dimensional culture systems provide additional physiological relevance for studying bone-related cellular processes. In situ analyses of patient-derived bone and muscle tissues offer validation in a disease-relevant context, while in vivo studies using mouse and zebrafish models enable comprehensive assessment of gene function in skeletal development and maintenance. Integration of these complementary methodologies helps translate GWAS findings into biological insights and supports the identification of novel therapeutic targets for osteoporosis. Full article
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 193
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

17 pages, 2789 KiB  
Article
Interferon-Induced Transmembrane Protein 3 (IFITM3) Restricts PRRSV Replication via Post-Entry Mechanisms
by Pratik Katwal, Shamiq Aftab, Eric Nelson, Michael Hildreth, Shitao Li and Xiuqing Wang
Microorganisms 2025, 13(8), 1737; https://doi.org/10.3390/microorganisms13081737 - 25 Jul 2025
Viewed by 306
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a member of the family of interferon-stimulated genes (ISGs) that inhibits a diverse array of enveloped viruses which enter host cells by endocytosis. Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus causing significant [...] Read more.
Interferon-induced transmembrane protein 3 (IFITM3) is a member of the family of interferon-stimulated genes (ISGs) that inhibits a diverse array of enveloped viruses which enter host cells by endocytosis. Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus causing significant economic losses to the swine industry. Very little is known regarding how IFITM3 restricts PRRSV. In this study, the role of IFITM3 in PRRSV infection was studied in vitro using MARC-145 cells. IFITM3 over-expression reduced PRRSV replication, while the siRNA-induced knockdown of endogenous IFITM3 increased PRRSV RNA copies and virus titers. The colocalization of the virus with IFITM3 was observed at both 3 and 24 h post infection (hpi). Quantitative analysis of confocal microscopic images showed that an average of 73% of IFITM3-expressing cells were stained positive for PRRSV at 3 hpi, while only an average of 27% of IFITM3-expressing cells were stained positive for PRRSV at 24 hpi. These findings suggest that IFITM3 may restrict PRRSV at the post-entry steps. Future studies are needed to better understand the mechanisms by which this restriction factor inhibits PRRSV. Full article
(This article belongs to the Special Issue Advances in Porcine Virus: From Pathogenesis to Control Strategies)
Show Figures

Figure 1

Back to TopTop