Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = quantitative NMR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3054 KB  
Article
Identification of Cholesterol in Plaques of Atherosclerotic Using Magnetic Resonance Spectroscopy and 1D U-Net Architecture
by Angelika Myśliwiec, Dawid Leksa, Avijit Paul, Marvin Xavierselvan, Adrian Truszkiewicz, Dorota Bartusik-Aebisher and David Aebisher
Molecules 2026, 31(2), 352; https://doi.org/10.3390/molecules31020352 - 19 Jan 2026
Abstract
Cholesterol plays a fundamental role in the human body—it stabilizes cell membranes, modulates gene expression, and is a precursor to steroid hormones, vitamin D, and bile salts. Its correct level is crucial for homeostasis, while both excess and deficiency are associated with serious [...] Read more.
Cholesterol plays a fundamental role in the human body—it stabilizes cell membranes, modulates gene expression, and is a precursor to steroid hormones, vitamin D, and bile salts. Its correct level is crucial for homeostasis, while both excess and deficiency are associated with serious metabolic and health consequences. Excessive accumulation of cholesterol leads to the development of atherosclerosis, while its deficiency disrupts the transport of fat-soluble vitamins. Magnetic resonance spectroscopy (MRS) enables the detection of cholesterol esters and the differentiation between their liquid and crystalline phases, but the technical limitations of clinical MRI systems require the use of dedicated coils and sequence modifications. This study demonstrates the feasibility of using MRS to identify cholesterol-specific spectral signatures in atherosclerotic plaque through ex vivo analysis. Using a custom-designed experimental coil adapted for small-volume samples, we successfully detected characteristic cholesterol peaks from plaque material dissolved in chloroform, with spectral signatures corresponding to established NMR databases. To further enhance spectral quality, a deep-learning denoising framework based on a 1D U-Net architecture was implemented, enabling the recovery of low-intensity cholesterol peaks that would otherwise be obscured by noise. The trained U-Net was applied to experimental MRS data from atherosclerotic plaques, where it significantly outperformed traditional denoising methods (Gaussian, Savitzky–Golay, wavelet, median) across six quantitative metrics (SNR, PSNR, SSIM, RMSE, MAE, correlation), enhancing low-amplitude cholesteryl ester detection. This approach substantially improved signal clarity and the interpretability of cholesterol-related resonances, supporting more accurate downstream spectral assessment. The integration of MRS with NMR-based lipidomic analysis, which allows the identification of lipid signatures associated with plaque progression and destabilization, is becoming increasingly important. At the same time, the development of high-resolution techniques such as μOCT provides evidence for the presence of cholesterol crystals and their potential involvement in the destabilization of atherosclerotic lesions. In summary, nanotechnology-assisted MRI has the potential to become an advanced tool in the proof-of-concept of atherosclerosis, enabling not only the identification of cholesterol and its derivatives, but also the monitoring of treatment efficacy. However, further clinical studies are necessary to confirm the practical usefulness of these solutions and their prognostic value in assessing cardiovascular risk. Full article
Show Figures

Figure 1

15 pages, 2706 KB  
Article
Analysis of Distillate Fractions Collected from a Small Commercial Pot Still Using NMR and GC-MS
by Hina Ali, Mohamed A. Abdelaziz, J. Andrew Jones, Neil D. Danielson and Michael W. Crowder
Separations 2026, 13(1), 27; https://doi.org/10.3390/separations13010027 - 12 Jan 2026
Viewed by 130
Abstract
In an effort to evaluate the performance of a 5-gallon pot still in separating yeast-derived congeners during the distillation of a grain-based distiller’s beer, the distillates of a fermented mash of cracked corn, malted barley, and wheat were characterized using 1H NMR [...] Read more.
In an effort to evaluate the performance of a 5-gallon pot still in separating yeast-derived congeners during the distillation of a grain-based distiller’s beer, the distillates of a fermented mash of cracked corn, malted barley, and wheat were characterized using 1H NMR spectroscopy and GC-MS. A quantitative comparison using these two techniques is uncommon. Results revealed significant variation in congener concentrations across runs, with a notable discrepancy in the third run possibly due to bacterial contamination, as indicated by high 1-propanol levels. Key congeners, such as acetaldehyde, ethyl acetate, furfural, phenylethanol, and 1,1-diethoxyethane, showed expected distillation behavior across ten fractions, based on their respective boiling points. However, methanol and 1-propanol showed a fairly flat concentration profile across all ten fractions, while those for ethyl octanoate and ethyl hexanoate decreased rapidly and were undetected at fraction 5. White dog (unaged whiskey) fractions from column and combination stills were also analyzed, and the results demonstrate that the small 5-gallon still separates congeners as well as these stills. Finally, a comparison of congener concentrations demonstrates that NMR and GC-MS do not yield identical concentrations of congeners, despite exhibiting similar trends in congener concentrations in the fractions from the still, with GC-MS suggesting higher levels. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Graphical abstract

29 pages, 8991 KB  
Article
Exploration and Preliminary Investigation of Wiled Tinospora crispa: A Medicinal Plant with Promising Anti-Inflammatory and Antioxidant Properties
by Salma Saddeek
Curr. Issues Mol. Biol. 2026, 48(1), 70; https://doi.org/10.3390/cimb48010070 - 9 Jan 2026
Viewed by 196
Abstract
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in [...] Read more.
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in chemotype, bioactivity, and safety, and how this might support or refine traditional use. Study Objectives: This study aimed to compare wild and cultivated ecotypes of T. crispa from the Nile Delta (Egypt) in terms of quantitative and qualitative phytochemical profiles; selected in vitro biological activities (especially antioxidant and cytotoxic actions); genetic markers potentially associated with metabolic variation; and short-term oral safety in an animal model. Core Methodology: Standardized extraction of plant material from wild and cultivated ecotypes. Determination of total phenolics, total flavonoids, and major phytochemical classes (alkaloids, tannins, terpenoids). Metabolomic characterization using UHPLC-ESI-QTOF-MS, supported by NMR, to confirm key compounds such as berberine, palmatine, chlorogenic acid, rutin, and borapetoside C. In vitro bioassays including: Antioxidant activity (e.g., radical-scavenging assay with EC50 determination). Cytotoxicity against human cancer cell lines, with emphasis on HepG2 hepatoma cells and calculation of IC50 values. Targeted genetic analysis to detect single-nucleotide polymorphisms (SNPs) in the gen1 locus that differentiate ecotypes. A 14-day oral toxicity study in rats, assessing liver and kidney function markers and performing histopathology of liver and kidney tissues. Principal Results: The wild ecotype showed a 43–65% increase in total flavonoid and polyphenol content compared with the cultivated ecotype, as well as substantially higher levels of key alkaloids, particularly berberine (around 12.5 ± 0.8 mg/g), along with elevated chlorogenic acid and borapetoside C. UHPLC-MS and NMR analyses confirmed the identity of the main bioactive constituents and defined a distinct chemical fingerprint for the wild chemotype. Bioassays demonstrated stronger antioxidant activity of the wild extract than the cultivated one and selective cytotoxicity of the wild extract against HepG2 cells (IC50 ≈ 85 µg/mL), being clearly more potent than extracts from cultivated plants. Genetic profiling detected a C → T SNP within the gen1 region that differentiates the wild ecotype and may be linked to altered biosynthetic regulation. The 14-day oral toxicity study (up to 600 mg/kg) revealed no evidence of hepatic or renal toxicity, with biochemical markers remaining within physiological limits and normal liver and kidney histology. Conclusions and Future Perspectives: The wild Nile-Delta ecotype of T. crispa appears to be a stress-adapted chemotype characterized by enriched levels of multiple bioactive metabolites, superior in vitro bioactivity, and an encouraging preliminary safety margin. These findings support further evaluation of wild T. crispa as a candidate source for standardized botanical preparations targeting oxidative stress-related and hepatic pathologies, while emphasizing the need for: More comprehensive in vivo efficacy studies. Cultivation strategies that deliberately maintain or mimic beneficial stress conditions to preserve phytochemical richness. Broader geographical and genetic sampling to assess how generalizable the present chemotypic and bioactivity patterns are across the species. Full article
(This article belongs to the Special Issue Advances in Phytochemicals: Biological Activities and Applications)
Show Figures

Graphical abstract

20 pages, 2159 KB  
Article
1H-NMR Analysis of Wine Metabolites: Method Development and Validation
by Guillaume Leleu, Rémi Butelle, Daniel Jacob, Lou-Ann Kurkiewicz, Jean-Claude Boulet, Catherine Deborde, Matthieu Dubernet, Laetitia Gaillard, Antoine Galvan, Karen Gaudin, Alexandra Gossé, Markus Herderich, Annick Moing, Sophie Rosset, Flynn Watson, Gregory Da Costa and Tristan Richard
Molecules 2026, 31(1), 65; https://doi.org/10.3390/molecules31010065 - 24 Dec 2025
Viewed by 386
Abstract
Wine, as a high-value product, is vulnerable to counterfeiting. To tackle increasingly sophisticated fraud, innovative analytical approaches are required. However, they must undergo rigorous validation. Proton nuclear magnetic resonance spectroscopy (1H-NMR) is intrinsically quantitative, reproducible, and fast, making it a promising [...] Read more.
Wine, as a high-value product, is vulnerable to counterfeiting. To tackle increasingly sophisticated fraud, innovative analytical approaches are required. However, they must undergo rigorous validation. Proton nuclear magnetic resonance spectroscopy (1H-NMR) is intrinsically quantitative, reproducible, and fast, making it a promising tool for official control. This study presents the development and validation of a standardised and fully automated workflow for the quantification of 20 oenologically relevant compounds, including organic acids, sugars, alcohols, esters, phenolics, and an alkaloid. The method combines optimised sample preparation, external quantification standards, spectrometer calibration, and a dedicated R package (RnmrQuant1D) for fully automated spectral processing, enabling high-throughput and operator-independent analysis. Validation was performed under intermediate precision according to OIV metrological standards, evaluating accuracy, precision, robustness, limits of quantification, and measurement uncertainty. The results demonstrated excellent linearity, trueness, and reproducibility, matching the targeted analytical performance. Measurement uncertainties were estimated both by conventional linear modelling and by a dynamic approach better suited to detection limits. The workflow is easy to implement, requires minimal sample consumption, and substantially reduces operator bias. Beyond validating a robust method, this study provides a framework for harmonised, transferable 1H-NMR workflows that could support large-scale databases, integration with chemometric models, and ultimately, 1H-NMR’s recognition as a relevant method for wine authentication and quality control. This work fills a crucial gap in wine analysis by uniting practical application and rigorous methods, enabling broader adoption in control laboratories worldwide. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Food Chemistry)
Show Figures

Figure 1

25 pages, 1399 KB  
Article
Coupled Mechanisms of Shale Oil Occurrence and Spontaneous Imbibition in the Chang 7 Member: Pore Structure Response and Evolution
by Tao Fan, Yufeng Zhou, Dongpo Shi, Yu Zhang, Shuobin Xiong and Hujun Gong
Processes 2026, 14(1), 46; https://doi.org/10.3390/pr14010046 - 22 Dec 2025
Viewed by 274
Abstract
Lacustrine shale oil in the Chang 7 Member of the Ordos Basin is controlled by a multi-scale pore–throat system in which oil occurrence, spontaneous imbibition, and pore-structure evolution are tightly coupled. In this study, nitrogen adsorption and micro-computed tomography (μCT) were employed to [...] Read more.
Lacustrine shale oil in the Chang 7 Member of the Ordos Basin is controlled by a multi-scale pore–throat system in which oil occurrence, spontaneous imbibition, and pore-structure evolution are tightly coupled. In this study, nitrogen adsorption and micro-computed tomography (μCT) were employed to characterize pore-size distribution and connectivity, whereas nuclear magnetic resonance (NMR) T2 relaxation was utilized to classify oil occurrence states, and X-ray diffraction (XRD) and total organic carbon (TOC) analyses were performed to determine mineralogical and organic compositions. Spontaneous imbibition experiments were conducted at 60 °C and subsequently extended to temperature–pressure sequence tests. The Chang 7 shale exhibits a stratified pore system in which micropores, mesopores, and macropores jointly define a three-tier “micropore adsorption–mesopore confinement–macropore mobility” pattern. As pore size and connectivity increase, the equilibrium imbibed mass and initial imbibition rate both rise, while enhanced wettability (contact angle decreasing from 81.2° to 58.7°) further strengthens capillary uptake. Temperature elevation promotes imbibition, whereas increasing confining pressure suppresses it, revealing a “thermal enhancement–pressure suppression” behavior. μCT-based network analysis shows that imbibition activates previously ineffective pore–throat elements, increasing coordination number and connectivity and reducing tortuosity, which collectively represents a capillary-driven structural reconfiguration of the pore network. When connectivity exceeds a threshold of about 0.70, the flow regime shifts from interface-dominated to channel-dominated. Building on these observations, a multi-scalecoupling framework and a three-stage synergistic mechanism of “pore-throat activation–energy conversion–structural reconstruction” are established. These results provide a quantitative basis for predicting imbibition efficiency and optimizing capillary-driven development strategies in deep shale oil reservoirs. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

15 pages, 1179 KB  
Article
Development and Validation of a Stability-Indicating RP-HPLC Method for Bexagliflozin and Structural Elucidation of a Novel Acidic Degradation Product
by Hadeel Alhourani, Nafisah Al-Rifai and Anas Alshishani
Separations 2025, 12(12), 340; https://doi.org/10.3390/separations12120340 - 15 Dec 2025
Viewed by 427
Abstract
A robust and stability-indicating Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) method was developed and validated for the quantitative determination of bexagliflozin and its related impurities in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH Q2(R1)) [...] Read more.
A robust and stability-indicating Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) method was developed and validated for the quantitative determination of bexagliflozin and its related impurities in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH Q2(R1)) guidelines. Chromatographic separation was achieved on a C18 column using a mobile phase of methanol and ammonium acetate buffer (pH 4.2) in a 60:40 (v/v) ratio, with a flow rate of 1.0 mL·min−1 and UV detection at 220 nm. The method was validated for linearity, sensitivity (LOD and LOQ), precision, robustness, and system suitability, all within acceptable limits for low-concentration analysis. Excellent linearity (r2 > 0.999) and precision (%RSD 0.3–4.4%) confirmed its reliability for stability assessment. The assay was performed at 100 µg·mL−1, where all validation parameters showed %RSD values ≤ 2%, demonstrating high precision and robustness. Forced degradation studies under acidic, basic, oxidative, photolytic, and thermal conditions revealed a major degradation product formed under acidic stress. This product was isolated and structurally characterized using LC–MS, 1H NMR, and 13C NMR, and is reported here for the first time. The proposed RP-HPLC method proved to be specific, precise, and reliable for the determination of bexagliflozin and its related impurities, making it suitable for routine stability testing, quality control, and pharmaceutical development applications. Full article
Show Figures

Figure 1

12 pages, 1009 KB  
Article
Comparative Analysis of Metabolite Profiles of Perilla frutescens Britton var. acuta Kudo (Lamiaceae) Leaves Collected from Different Regions in South Korea
by Na Rae Kang, Yun Gon Son, Seungjae Jang, Seungyu Lee and Jeong Yoon Kim
Appl. Sci. 2025, 15(24), 13118; https://doi.org/10.3390/app152413118 - 12 Dec 2025
Viewed by 326
Abstract
Perilla frutescens Britton var. acuta Kudo leaves are widely consumed in East Asia due to their culinary and medicinal properties, which are largely attributed to their high levels of bioactive metabolites such as rosmarinic acid. In this study, we investigated the variation in [...] Read more.
Perilla frutescens Britton var. acuta Kudo leaves are widely consumed in East Asia due to their culinary and medicinal properties, which are largely attributed to their high levels of bioactive metabolites such as rosmarinic acid. In this study, we investigated the variation in rosmarinic acid content and overall metabolite profile of P. frutescens leaves collected from six different provinces in Republic of Korea. Quantitative analysis of the rosmarinic acid content was performed using HPLC, revealing significant regional differences, with the highest concentration observed in the leaves collected in Gyeongsangbuk-do and the lowest concentration in those from Jeollanam-do. HRESIMS and 1H-NMR spectrometry were used to determine the chemical structure of the isolated rosmarinic acid. LC-Q-TOF/MS analysis identified ten major metabolites, including phenolic acids, flavonoids, and triterpenoids. Multivariate statistics (OPLS-DA) revealed distinct clustering of populations, indicating a strong relationship between metabolites and environmental parameters. The distribution of the metabolite fingerprints and rosmarinic acid contents in P. frutescens leaves were also found to differ according to the cultivation region, suggesting that secondary metabolite expression is influenced by environmental and geographic factors. This work shows that metabolome profiles can be used in quality control and the development of high-quality products derived from P. frutescens. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

17 pages, 8733 KB  
Article
Logging Evaluation of Shale Porosity with Variable Matrix Parameters in Continental Facies: A Case Study of the Lianggaoshan Formation, Sichuan Basin
by Bing Xie, Xiaoqing Zhao, Li Bai, Xuquan He, Yuexiang Wang, Yan Lv and Yuan Gao
Processes 2025, 13(12), 4004; https://doi.org/10.3390/pr13124004 - 11 Dec 2025
Viewed by 310
Abstract
Accurate porosity evaluation is critical for the assessment of continental shale oil reservoirs, yet remains challenging due to complex lithology and significant burial depth variations, as exemplified by the Lianggaoshan Formation in the Sichuan Basin. Conventional fixed-matrix-density models often yield unsatisfactory accuracy in [...] Read more.
Accurate porosity evaluation is critical for the assessment of continental shale oil reservoirs, yet remains challenging due to complex lithology and significant burial depth variations, as exemplified by the Lianggaoshan Formation in the Sichuan Basin. Conventional fixed-matrix-density models often yield unsatisfactory accuracy in porosity estimation from density logs. This study proposes a variable matrix-density logging method to improve porosity calculation. The approach integrates core X-ray diffraction and lithology scanning logs to convert mineral mass fractions into volumes, constructing a petrophysical model that accounts for crystalline minerals, clay minerals, kerogen, and fluids. A depth-dependent dynamic matrix density model was established by analyzing compaction effects across varying depths. By incorporating this model into the density-log response equation, shale porosity was quantitatively derived. Application to the Lianggaoshan Formation demonstrates that the method reduces the absolute error in porosity estimation by 2.55 porosity units compared to conventional approaches, while also addressing the limitations of NMR-based porosity evaluation in shales. The proposed method provides a reliable, applicable technique for porosity assessment in continental shale reservoirs with similar geological conditions. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

24 pages, 1671 KB  
Review
Authentication of Propolis: Integrating Chemical Profiling, Data Analysis and International Standardization—A Review
by Kristian Pastor, Slobodan Dolašević and Nataša Nastić
Foods 2025, 14(24), 4259; https://doi.org/10.3390/foods14244259 - 10 Dec 2025
Viewed by 651
Abstract
Propolis is an apicultural product known for its antioxidant, antimicrobial and anti-inflammatory properties. However, its composition varies with botanical sources, geography, season and bee species, complicating quality control and creating opportunities for adulteration, such as the addition of poplar bud extracts or non-propolis [...] Read more.
Propolis is an apicultural product known for its antioxidant, antimicrobial and anti-inflammatory properties. However, its composition varies with botanical sources, geography, season and bee species, complicating quality control and creating opportunities for adulteration, such as the addition of poplar bud extracts or non-propolis resins. This review synthesizes the latest primary studies and reviews addressing chemical markers identified through analytical platforms, such as TLC, HPTLC, HPLC, LC-MS, GC-MS, NMR, FTIR and ICP, often integrated with chemometrics and machine learning for authentication and standardization. Marker panels are linked to regional chemotypes, including poplar-type, Brazilian green, red and brown, Cuban variants, and stingless bee propolis. Fraud detection strategies using marker-based screening and spectral pattern recognition are also summarized. Multi-marker and chemometric approaches consistently differentiate botanical types, origins and commercial extracts. Common marker families include flavonoids (pinocembrin, chrysin, galangin), phenolic esters (CAPE, benzyl/allyl caffeates), prenylated cinnamates like artepillin C, lignans, and volatile terpenoids or benzenoids. Rapid screening by ATR-FTIR and NMR is often complemented with LC-MS for confirmatory quantitation. Propolis quality control is moving toward harmonized workflows combining FTIR/NMR/HPTLC screening with LC-MS verification and optional elemental or volatile profiling, paving the way for shared marker sets and international standards similar to those for honey. Full article
Show Figures

Figure 1

17 pages, 6110 KB  
Article
Noise Modeling of the Overhauser Magnetometer
by Xiaorong Gong, Shuang Zhang and Shudong Chen
Sensors 2025, 25(24), 7491; https://doi.org/10.3390/s25247491 - 9 Dec 2025
Viewed by 377
Abstract
The Overhauser magnetometer (OVM) is an electron resonance-enhanced nuclear magnetic resonance (NMR) magnetometer, which significantly enhances the Larmor signal, hence the signal-to-noise ratio (SNR) and sensitivity compared to traditional proton magnetometers (PM). In this paper, we intended to improve SNR and sensitivity only [...] Read more.
The Overhauser magnetometer (OVM) is an electron resonance-enhanced nuclear magnetic resonance (NMR) magnetometer, which significantly enhances the Larmor signal, hence the signal-to-noise ratio (SNR) and sensitivity compared to traditional proton magnetometers (PM). In this paper, we intended to improve SNR and sensitivity only by reducing system noise. For this purpose, an equivalent circuit model of noise is established, and the contributions of sensor and transmission characteristics of the circuit are calculated quantitatively. By sensor parameter optimization, matching resistance, and preamplifier selection to reduce the noise of the system, the root mean square (rms) of system noise is 26.7 mV, which is consistent with the theoretical 23.9 mV. By reducing the noise of the system, the SNR of the Larmor signal can reach 39 dB. The measured results in the natural environment show that the sensitivity of the OVM is 0.0079 nT at 3 s cycling time. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

31 pages, 4075 KB  
Article
Oxidative Dissolution Effects on Shale Pore Structure, Mechanical Properties, and Gel-Breaking Performance
by Jingyang Chen, Liangbin Dou, Tao Li, Yanjun Zhang, Kelong Deng, Xuebin Cheng, Zhifa Kang, Ruxu Wang and Yang Shi
Gels 2025, 11(12), 982; https://doi.org/10.3390/gels11120982 - 7 Dec 2025
Viewed by 252
Abstract
Shale reservoirs contain abundant organic matter, pyrite, and clay minerals, making them highly susceptible to fluid-sensitivity damage; consequently, conventional hydraulic fracturing often yields poor stimulation performance, with low fracturing fluid flowback and rapid post-treatment production decline. Oxidative dissolution, however, can significantly alter the [...] Read more.
Shale reservoirs contain abundant organic matter, pyrite, and clay minerals, making them highly susceptible to fluid-sensitivity damage; consequently, conventional hydraulic fracturing often yields poor stimulation performance, with low fracturing fluid flowback and rapid post-treatment production decline. Oxidative dissolution, however, can significantly alter the physical properties of shale reservoirs and improve stimulation effectiveness. In this study, nuclear magnetic resonance (NMR), contact-angle measurements, and triaxial compression tests are combined to systematically evaluate the effects of oxidative dissolution on the pore structure, wettability, and mechanical properties of Wufeng Formation shale from the Sichuan Basin. Core-flooding experiments with NaClO solutions show that, as the oxidant dosage (pore volume) increases, shale permeability rises by 66.67–266.67% and porosity by 1.79–9.58%, while the hydrophilic surface fraction increases from 5.45% to 61.73%. These changes are accompanied by a steady reduction in rock strength: the compressive strength decreases by up to 57.8%, and the elastic modulus exhibits a non-monotonic response to oxidation. Oxidative dissolution preferentially enlarges micropores, improves pore connectivity, and strengthens water wetness by consuming oil-wet organic matter and pyrite, which also enhances gel-breaking efficiency. Based on the experimental results, a series of characterization models are developed for oxidized shale reservoirs, including quantitative relationships linking porosity to compressive strength, elastic modulus, and contact angle, as well as a model relating oxidant dosage to microscopic pore structure evolution and imbibition enhancement. Overall, the coupled modifications of pore structure, wettability, and mechanical behavior produced by oxidative dissolution synergistically broaden the effective action range of fracturing fluids, promote shale gas desorption, and improve hydrocarbon seepage, providing a theoretical basis and practical guidance for oxidation-assisted stimulation in shale reservoirs. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

30 pages, 8888 KB  
Article
Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin
by Lei Bao, Yuming Liu, Qi Chen, Zhanyang Zhang and Jiagen Hou
Fractal Fract. 2025, 9(12), 799; https://doi.org/10.3390/fractalfract9120799 - 5 Dec 2025
Viewed by 514
Abstract
Pore–throat structure and gas distribution are critical factors in evaluating the quality of tight sandstone reservoirs and hydrocarbon resource potential. Twelve tight sandstone samples from the Lower Permian Shihezi Formation in Hangjin Banner, Ordos Basin, were selected for CTS, X-ray diffraction, HPMI, and [...] Read more.
Pore–throat structure and gas distribution are critical factors in evaluating the quality of tight sandstone reservoirs and hydrocarbon resource potential. Twelve tight sandstone samples from the Lower Permian Shihezi Formation in Hangjin Banner, Ordos Basin, were selected for CTS, X-ray diffraction, HPMI, and gas displacement NMR analyses. By converting the T2 spectra into pore–throat distributions and applying fractal methods, we quantitatively analyzed the influences of multiple factors on gas distribution characteristics across different pore–throat sizes. The main results are as follows: All samples exhibit a three-stage pore–throat distribution, defining mesopores, micropores, and nanopores; quartz content mainly influences the fractal dimension of mesopores by enhancing structural stability and gas storage capacity, whereas clay minerals control the fractal characteristics of nanopores by increasing pore–throat complexity. An increase in clay mineral content increases the fractal dimension, indicating stronger reservoir heterogeneity and consequently poorer gas-bearing capacity. Larger pore–throat parameters (Rm, Sk, and Smax) correspond to lower fractal dimensions, indicating better connectivity and greater gas storage capacity. Among these factors, pore–throat parameters exert the most significant influence on the fractal dimensions of mesopores and micropores, jointly determining the overall connectivity and the upper limit of the reservoir’s gas-bearing capacity. The results demonstrate that larger pore–throat parameters and higher quartz content help reduce the fractal dimension and enhance the gas-bearing capacity of tight reservoirs. This research enhances understanding of pore–throat structures and gas-bearing capacity in low-permeability reservoirs and provides a theoretical basis for exploration, development, and enhanced recovery in the study area. Full article
Show Figures

Figure 1

15 pages, 4638 KB  
Article
Electrospun Carbon Fibers from Green Solvent-Fractionated Kraft Lignin
by Marta Goliszek-Chabros and Omid Hosseinaei
Fibers 2025, 13(12), 162; https://doi.org/10.3390/fib13120162 - 4 Dec 2025
Viewed by 459
Abstract
High production costs and sustainability issues are the main factors limiting the widespread application of carbon fibers in various industrial sectors. Lignin, a by-product from the paper and pulping industry, due to its high carbon content of up to 60%, can be considered [...] Read more.
High production costs and sustainability issues are the main factors limiting the widespread application of carbon fibers in various industrial sectors. Lignin, a by-product from the paper and pulping industry, due to its high carbon content of up to 60%, can be considered a potential replacement for polyacrylonitrile in carbon fiber production. The production of lignins with distinct molecular weight distributions as well as group functionalities is essential to enhance high-value applications of lignin. In this study, we present a simple, green solvent-based fractionation method for LignoBoost softwood kraft lignin to obtain a lignin fraction with tailored physicochemical properties for electrospun carbon fiber production without polymeric spinning additives. Sequential solvent extraction was used to produce two fractions with distinct molecular weights: low-molecular-weight softwood kraft lignin (LMW-SKL) and high-molecular-weight softwood kraft lignin (HMW-SKL). The lignin fractions were characterized using size exclusion chromatography (SEC) for the molar mass distribution. The thermal properties of lignins were studied using thermogravimetry (TGA) and differential scanning calorimetry (DSC). Hydroxyl group content was quantified using quantitative 31P NMR spectroscopy. We successfully demonstrated the electrospinning of a high-molecular-weight lignin fraction—obtained in high yield from the fractionation process—without the use of any additives, followed by thermal conversion to produce electrospun carbon fibers. The presented results contribute to the valorization of lignin as well as to the development of green and sustainable technologies. Full article
Show Figures

Figure 1

27 pages, 6279 KB  
Article
Sedimentary Paleo-Environment and Reservoir Heterogeneity of Shale Revealed by Fractal Analysis in the Inter-Platform Basin: A Case Study of Permian Shale from Outcrop of Nanpanjiang Basin
by Meng Wang, Xinan Yu, Shu Liu, Yulin Cheng, Jingjing Guo, Zhanlei Wang and Xingming Duan
Fractal Fract. 2025, 9(12), 795; https://doi.org/10.3390/fractalfract9120795 - 4 Dec 2025
Viewed by 507
Abstract
The Upper Permian marine shale of the inter-platform basin in the Nanpanjiang Basin are rich in organic matter, widely distributed, and relatively thick, indicating abundant resource potential for hydrocarbon exploration. To clarify the sedimentary condition and the variability of reservoir properties, the paleo-environment [...] Read more.
The Upper Permian marine shale of the inter-platform basin in the Nanpanjiang Basin are rich in organic matter, widely distributed, and relatively thick, indicating abundant resource potential for hydrocarbon exploration. To clarify the sedimentary condition and the variability of reservoir properties, the paleo-environment was reconstructed by using geochemical, mineralogical, rock-property, and pore-structure data. Building on a lithofacies classification, the development patterns of different shale lithofacies were revealed. Reservoir characteristics among lithofacies were compared using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and low-temperature Nuclear Magnetic Resonance Cryoporometry (NMRC) experiments. A fractal analysis was performed based on NMR and NMRC data to quantify pore-scale heterogeneity, calculate fractal dimensions (D1, D2, and Dc), and evaluate the complexity of pore systems across lithofacies. Correlation analysis and redundancy analysis were applied to further explore the controlling factors of reservoir heterogeneity. The results showed that organic-rich shale in the Permian Linghao Formation occurred mainly in the 1st Member, with average total organic carbon (TOC) content of 2.57%, and the lower part of the 3rd Member (average TOC content 2.88%). In the 1st Member, high-carbon shale was deposited under humid conditions with intense weathering, abundant fine-grained clastic input from basin margins, strongly reducing (anoxic) bottom waters, vigorous phosphorus recycling, and moderate to low primary productivity. Using TOC and mineral composition, seven shale lithofacies were identified in the Linghao Formation, and their development patterns were established based on depositional paleo-environment characteristics and evolution. In the 1st Member, organic-rich shale was dominated by mixed lithofacies with moderate to high TOC. The paleo-environment exerted a primary control on reservoir properties, gas content, pore structure, and heterogeneity. The high-carbon lithofacies had the most favorable rock properties—higher porosity, greater pore volume, and higher gas content—and contained a larger proportion of well-developed organic pores. Fractal analysis revealed that seepage pores exhibited greater structural complexity than adsorption-related pores, with the high-carbon lithofacies showing the highest overall fractal dimensions and thus the strongest heterogeneity. Across the formation, higher clay content and TOC were the primary drivers of increased pore-scale heterogeneity, whereas greater feldspar and quartz contents tended to diminish it. Carbonates exerted a minor effect. Heterogeneity in adsorption pores exerted the strongest influence on differences among lithofacies. These results highlighted the utility of fractal analysis in quantitatively linking shale mineralogy and organic content to multiscale heterogeneity in inter-platform basin settings. Full article
Show Figures

Figure 1

30 pages, 3460 KB  
Article
Steam-Induced Aluminum Speciation and Catalytic Enhancement in ZSM-5 Zeolites
by Luigi Madeo, Niels Blom, Finn Joensen, Janos B. Nagy and Pierantonio De Luca
Catalysts 2025, 15(12), 1130; https://doi.org/10.3390/catal15121130 - 2 Dec 2025
Viewed by 539
Abstract
ZSM-5 zeolites with varying aluminum content were subjected to steam treatments of different severities by adjusting the temperature, duration, and water vapor pressure. The steamed samples were characterized using a range of analytical techniques. A quantitative assessment of the aluminum species—namely, tetrahedrally coordinated [...] Read more.
ZSM-5 zeolites with varying aluminum content were subjected to steam treatments of different severities by adjusting the temperature, duration, and water vapor pressure. The steamed samples were characterized using a range of analytical techniques. A quantitative assessment of the aluminum species—namely, tetrahedrally coordinated framework Al, dislodged framework Al, non-framework pentacoordinated Al, and non-framework hexacoordinated Al—was achieved through a combination of EDX analysis on Cs-exchanged materials and quantitative 27Al MAS NMR spectroscopy, including spectral simulation. Contrary to previous reports, the catalytic activity per framework Al site in unsteamed ZSM-5 increases with aluminum content at low Si/Al ratios, aligning with recently proposed medium effects. Notably, at the point of maximum activity enhancement due to steaming, equivalent amounts (1:1) of framework and dislodged framework Al—both in tetrahedral coordination—are observed. The maximum enhancement factor per framework Al site, for a given material and reaction, remains independent of the specific steaming conditions (temperature, time, and pressure). However, the degree of activity enhancement varies with the type of reaction: it is more pronounced for n-hexane cracking (α-test) than for m-xylene isomerization. This suggests that both catalyst modification and reaction characteristics contribute to the observed steam-induced activity enhancement. A synergistic interaction between Brønsted and Lewis acid sites appears to underpin these effects. One plausible mechanism involves the strengthening of Brønsted acidity in the presence of adjacent Lewis acid sites. This enhancement is expected to be more significant for n-hexane cracking, which demands higher acid strength compared to m-xylene isomerization. In cases of n-hexane cracking, the increased acid strength and the formation of olefins via reactions on Lewis acid sites may act cooperatively. Importantly, the dislodged framework Al species—tetrahedrally coordinated in the hydrated catalyst at ambient temperature and functioning as Lewis acid sites in the dehydrated zeolite under reaction conditions—are directly responsible for the observed enhancement in acid activity. The transformation of framework Al into dislodged framework Al species is reversible, as demonstrated by hydrothermal treatment of the steamed samples at 150–200 °C. Nonetheless, reinsertion of Al into the framework is not fully quantitative: a portion of the dislodged framework Al is irreversibly converted into non-framework penta- and hexacoordinated species during the hydrothermal process. Among these, non-framework pentacoordinate Al species may serve as counterions to balance the lattice charges associated with framework Al. Full article
Show Figures

Figure 1

Back to TopTop