Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (165)

Search Parameters:
Keywords = quality of life and renewable energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2335 KiB  
Article
Energy Mix Constraints Imposed by Minimum EROI for Societal Sustainability
by Ziemowit Malecha
Energies 2025, 18(14), 3765; https://doi.org/10.3390/en18143765 - 16 Jul 2025
Viewed by 236
Abstract
This study analyzes the feasibility of energy mixes composed of different shares of various types of power generation units, including photovoltaic (PV) and wind farms, hydropower, fossil fuel-based plants, and nuclear power. The analysis uses the concept of Energy Return on Investment (EROI), [...] Read more.
This study analyzes the feasibility of energy mixes composed of different shares of various types of power generation units, including photovoltaic (PV) and wind farms, hydropower, fossil fuel-based plants, and nuclear power. The analysis uses the concept of Energy Return on Investment (EROI), which is considered the most reliable indicator for comparing different technologies as it measures the energy required rather than monetary costs needed to build and operate each technology. Literature-based EROI values for individual generation technologies were used, along with the minimum EROI thresholds for the entire energy mix that are necessary to sustain developed societies and a high quality of life. The results show that, depending on the assumed minimum EROI value, which ranges from 10 to 30, the maximum share of intermittent renewable energy sources (IRESs), such as PV and wind farms, in the system cannot exceed 90% or 60%, respectively. It is important to emphasize that this EROI-based analysis does not account for power grid stability, which currently can only be maintained by the inertia of large synchronous generators. Therefore, the scenario with a 90% IRES share should be regarded as purely theoretical. Full article
Show Figures

Figure 1

24 pages, 1332 KiB  
Article
Ensuring Energy Efficiency of Air Quality Monitoring Systems Based on Internet of Things Technology
by Krzysztof Przystupa, Nataliya Bernatska, Elvira Dzhumelia, Tomasz Drzymała and Orest Kochan
Energies 2025, 18(14), 3768; https://doi.org/10.3390/en18143768 - 16 Jul 2025
Viewed by 223
Abstract
Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency [...] Read more.
Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency of IoT-based air quality monitoring systems. A comprehensive analysis of sensor types, data transmission protocols, and system architectures was conducted, focusing on their energy consumption. An energy-efficient system was designed using the Smart Air sensor, Zigbee gateway, and Mini UPS, with its performance evaluated through daily energy consumption, backup operation time, and annual energy use. An integrated efficiency index (IEI) was introduced to compare sensor models based on functionality, energy efficiency, and cost. The proposed system achieves a daily energy consumption of 72 W·h, supports up to 10 h of autonomous operation during outages, and consumes 26.28 kW·h annually. The IEI analysis identified the Ajax LifeQuality as the most energy-efficient sensor, while Smart Air offers a cost-effective alternative with broader functionality. The proposed architecture and IEI provide a scalable and sustainable framework for IoT air quality monitoring, with potential applications in smart cities and residential settings. Future research should explore renewable energy integration and predictive energy management. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 1925 KiB  
Perspective
Research and Development Challenges Faced by Plant Factories to Solve Global Problems: From the Perspectives of Civilization and Culture
by Toyoki Kozai, Hiroko Nakaoka, Na Lu, Duyen T. P. Nguyen and Eri Hayashi
Horticulturae 2025, 11(7), 793; https://doi.org/10.3390/horticulturae11070793 - 4 Jul 2025
Viewed by 387
Abstract
This perspective paper examines the research and development challenges faced by plant factories with artificial lighting (plant factories hereafter). The global and local challenges facing our planet can be divided into the following four categories: (1) food and agriculture; (2) environment and ecosystems; [...] Read more.
This perspective paper examines the research and development challenges faced by plant factories with artificial lighting (plant factories hereafter). The global and local challenges facing our planet can be divided into the following four categories: (1) food and agriculture; (2) environment and ecosystems; (3) depletion, uneven distribution, and the overuse of nonrenewable resources; and (4) society, economy, and quality of life. All of the aspects of this four-way deadlock problem must be resolved simultaneously, since solving only one of them could exacerbate one or more of the remaining three. In this paper, the role of plant factories in solving the four-way deadlock problem is discussed from the following perspectives: (1) civilization and culture, (2) participatory science, and (3) the integration of biotechnology and the latest nonbiological technology, such as artificial intelligence (AI). The relationship and interactions between the environment and plant ecosystems are easily observed in the plant factories’ cultivation room. Thus, it is easy to analyze their relationship and interactions. The findings from such observations can also be applied to increase the yield in plant factories, with minimum resource inputs. Moreover, if the electricity generated by renewable energy sources is used, it will become an energy-autonomous plant factory. This means that the plant factory can be operated with the minimum contribution of greenhouse gas emissions to global warming and land area use. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

19 pages, 2709 KiB  
Review
Enabling Sustainable Solar Energy Systems Through Electromagnetic Monitoring of Key Components Across Production, Usage, and Recycling: A Review
by Mahdieh Samimi and Hassan Hosseinlaghab
J. Manuf. Mater. Process. 2025, 9(7), 225; https://doi.org/10.3390/jmmp9070225 - 1 Jul 2025
Viewed by 492
Abstract
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and [...] Read more.
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and performance optimization throughout the solar lifecycle. During production, eddy current testing and impedance spectroscopy improve quality control while reducing waste. In operational phases, RFID-based monitoring enables continuous performance tracking and early fault detection of photovoltaic panels. For recycling, electrodynamic separation efficiently recovers materials, supporting circular economies. The analysis demonstrates the unique advantages of EM techniques in non-contact evaluation, real-time monitoring, and material-specific characterization, addressing critical sustainability challenges in photovoltaic systems. By examining capabilities and limitations, we highlight EM monitoring’s transformative potential for sustainable manufacturing, from production quality assurance to end-of-life material recovery. The frequency-based framework provides manufacturers with physics-guided solutions that enhance efficiency while minimizing environmental impact. This comprehensive assessment establishes EM technologies as vital tools for advancing solar energy systems, offering practical monitoring approaches that align with global sustainability goals. The review identifies current challenges and future opportunities in implementing these techniques, emphasizing their role in facilitating the renewable energy transition through improved resource efficiency and lifecycle management. Full article
Show Figures

Figure 1

15 pages, 435 KiB  
Article
Harnessing the Energy Potential of Nut Residues: A Comprehensive Environmental and Carbon Footprint Assessment
by João H. Bento, Miguel Oliveira and Amadeu Duarte da Silva Borges
Sustainability 2025, 17(12), 5573; https://doi.org/10.3390/su17125573 - 17 Jun 2025
Viewed by 418
Abstract
This study provides a comprehensive thermochemical characterization of common nut residues—almonds, walnuts, hazelnuts, peanuts, and pistachios shells—as potential biomass fuels, examining their chemical composition, calorific values, and emissions profiles. Their suitability as renewable energy sources was systematically assessed by verifying compliance with ISO [...] Read more.
This study provides a comprehensive thermochemical characterization of common nut residues—almonds, walnuts, hazelnuts, peanuts, and pistachios shells—as potential biomass fuels, examining their chemical composition, calorific values, and emissions profiles. Their suitability as renewable energy sources was systematically assessed by verifying compliance with ISO 17225-2 standards for pellet production. The nut residues demonstrated promising energy characteristics, with higher heating values ranging from 17.75 to 19.12 MJ/kg and most samples fulfilling ISO 17225-2 classifications A1 or A2. Specifically, the walnut residues met the highest quality classification (A1), whereas the almond, hazelnut, and pistachio residues met the A2 classification, and the peanut residues were classified as B due to higher nitrogen content. A Life Cycle Assessment (LCA) was also performed to quantify the environmental impacts, focusing on CO2 emissions from energy recovery and transportation. The results showed significantly lower CO2 emissions from all the nut residues compared to fossil fuels such as coal, natural gas, fuel oil (HFO), and LPG. The almond residues exhibited the lowest total CO2 emissions at 1669.27 kg CO2 per ton, while the peanuts had the highest at 1945.93 kg CO2 per ton. Even the highest-emitting nut residues produced substantially lower emissions compared to coal, which emitted approximately 4581.12 kg CO2 per ton. These findings highlight the potential of nut residues as low-carbon, renewable energy sources, providing both environmental advantages and opportunities to support local agricultural economies. Full article
Show Figures

Figure 1

27 pages, 8872 KiB  
Article
Drilling Machinability of Glass, Basalt, and Hybrid Epoxy Composites: Thrust Force, Thermal Load, and Hole Quality
by Eser Yarar, Mehmet İskender Özsoy, Sinan Fidan, Satılmış Ürgün and Mustafa Özgür Bora
Polymers 2025, 17(12), 1643; https://doi.org/10.3390/polym17121643 - 13 Jun 2025
Viewed by 550
Abstract
The drilling machinability of glass fiber G14, basalt fiber B14, and two hybrid laminates (B4G6B4, G4B6G4) was evaluated through 36 full-factorial experiments employing an HSS-G drill, three [...] Read more.
The drilling machinability of glass fiber G14, basalt fiber B14, and two hybrid laminates (B4G6B4, G4B6G4) was evaluated through 36 full-factorial experiments employing an HSS-G drill, three spindle speeds (715, 1520, 3030 rpm), and three feed rates (0.1–0.3 mm rev−1). Peak thrust force varied from 65.8 N for B14 at 0.1 mm rev−1 to 174.3 N for G14 at 0.3 mm rev−1; hybrids occupied the intermediate range of 101–163 N. Infra-red thermography recorded maximum drill temperatures of 110–120 °C for G14, almost double those of B14, while both hybrids attenuated hotspots to below 90 °C. ANOVA attributed 73.4% of thrust force variance to feed rate, with material type and spindle speed contributing 15.5% and 1.7%, respectively; for temperature, material type governed 41.5% of variability versus 17.0% for speed. Dimensional quality tests revealed that the symmetric hybrid G4B6G4 maintained entrance and exit diameters within ±2% of the nominal 6 mm, whereas B4G6B4 over-expansion exceeded 8% at the lowest feed and G14 exit diameters grew to 6.1 mm at 0.3 mm rev−1. Integrating basalt compliance with glass stiffness, therefore, halves thrust force relative to G14, suppresses delamination and overheating, and offers a practical strategy to prolong tool life and improve hole quality in multi-material composite structures. These insights guide parameter selection for lightweight hybrid composites in aerospace, renewable-energy installations, and marine components worldwide. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

26 pages, 3346 KiB  
Article
Environmental Life Cycle Assessment of the Materials, Components, and Elements of a Mono-Si Photovoltaic Power Plant
by Patryk Leda, Izabela Piasecka and Grzegorz Szala
Materials 2025, 18(12), 2748; https://doi.org/10.3390/ma18122748 - 11 Jun 2025
Viewed by 497
Abstract
The main objective of this study is to assess the environmental life cycle of the materials, components, and elements of a mono-Si photovoltaic power plant towards their sustainable development. Currently, photovoltaic installations are considered to be environmentally friendly systems that produce “green” energy. [...] Read more.
The main objective of this study is to assess the environmental life cycle of the materials, components, and elements of a mono-Si photovoltaic power plant towards their sustainable development. Currently, photovoltaic installations are considered to be environmentally friendly systems that produce “green” energy. During their exploitation, no pollutants are emitted into the environment. However, the processes of manufacturing and post-used management of their materials, components and elements are associated with both high demand for energy and matter, as well as with emissions of harmful substances into the atmosphere, water, and soil. For this reason, from the perspective of the entire life cycle, photovoltaic power plants may contribute to the deterioration of human health, the reduction in the quality of the environment, and the depletion of non-renewable fossil resources. Due to these potential threats, it was considered appropriate to conduct a Life Cycle Assessment of a real 2 MW photovoltaic power plant located in northern Poland, in terms of compliance with the main assumptions of sustainable development. The analysis was conducted using the Life Cycle Assessment (LCA) methodology (the ReCiPe 2016 model). Impacts on the environment was assessed in three areas: human health, ecosystem quality, and material resources. Two scenarios were adopted for the post-used management of materials, components, and elements: landfill disposal and recycling. Based on the conducted research, it was found that, among the assessed groups of photovoltaic power plant components (photovoltaic modules, supporting structure, inverter station, and electrical infra-structure), photovoltaic modules have the highest level of harmful impact on the environment (especially the manufacturing stage). The use of recycling processes at the end of their use would reduce their harmful impact over the entire life cycle of a photovoltaic power plant and better fit with the main principles of sustainable development. Full article
Show Figures

Figure 1

24 pages, 5283 KiB  
Article
Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology
by Lina Wang
Processes 2025, 13(6), 1689; https://doi.org/10.3390/pr13061689 - 28 May 2025
Viewed by 497
Abstract
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be [...] Read more.
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be properly improved. The model predictive control with a current inner loop is employed for current tracking, which enhances the response speed and control performance. Applying the proposed hybrid energy storage system in an oilfield DC microgrid, the fault-ride-through ability of renewable energy generators and the reliable power supply ability for oil pumping unit loads can be improved, the dynamic response characteristics of the system can be enhanced, and the service life of energy storage devices can be extended. This paper elaborates on the series-parallel compensation topology, operational principles, and control methodology of the supercapacitor-battery hybrid energy storage. A MATLAB/Simulink model of the oilfield DC microgrid employing the proposed scheme was established for verification. The results demonstrate that the proposed scheme can effectively isolate voltage sags/swells caused by upstream grid faults, maintaining DC bus voltage fluctuations within ±5%. It achieves peak shaving of oil pumping unit load demand, recovery of reverse power generation, stabilization of photovoltaic output, and reduction of power backflow. This study presents an advanced technical solution for enhancing power supply quality in high-penetration renewable energy microgrids with numerous sensitive and critical loads. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

45 pages, 1253 KiB  
Article
Governance, Energy Policy, and Sustainable Development: Renewable Energy Infrastructure Transition in Developing MENA Countries
by Michail Michailidis, Eleni Zafeiriou, Apostolos Kantartzis, Spyridon Galatsidas and Garyfallos Arabatzis
Energies 2025, 18(11), 2759; https://doi.org/10.3390/en18112759 - 26 May 2025
Viewed by 880
Abstract
This study provides a comparative analysis of the environmental and economic performance of Oman, Egypt, and Morocco, focusing on the critical interplay between their economic structures, governance frameworks, and energy policies. Morocco stands out as a regional leader in renewable energy, driven by [...] Read more.
This study provides a comparative analysis of the environmental and economic performance of Oman, Egypt, and Morocco, focusing on the critical interplay between their economic structures, governance frameworks, and energy policies. Morocco stands out as a regional leader in renewable energy, driven by significant investments in solar, wind, and hydroelectric projects, positioning itself as a model for clean energy transition. Egypt, despite its rapid industrialization and urbanization, faces mounting environmental pressures that challenge its economic diversification efforts. Oman, heavily dependent on hydrocarbons, confronts significant sustainability risks due to its reliance on fossil fuels, despite the political stability that could support renewable integration. The research underscores that while these nations share common challenges, including regulatory weaknesses and energy policy inconsistencies, their distinct economic contexts demand tailored approaches. Morocco’s path to energy leadership must focus on integrating renewables across all sectors, enhancing grid infrastructure, and expanding green technology innovations to maintain momentum. Egypt should prioritize scaling up renewable infrastructure, reducing dependency on fossil fuels, and investing in clean technology to address its carbon footprint. For Oman, the strategic diversification of its economy, combined with aggressive renewable energy integration, is critical to reducing CO2 emissions and mitigating climate impacts. This study contributes novel insights by highlighting the role of political stability, institutional quality, and policy coherence as critical enablers of long-term sustainability. It also identifies the importance of regional cooperation and knowledge sharing to overcome shared challenges like data limitations, geopolitical complexities, and methodological gaps in sustainability assessments. The findings advocate for a multi-method approach, integrating economic modeling, life-cycle analysis, and policy evaluation, to guide future sustainability efforts and foster resilient, low-carbon economies in the MENA region. Full article
(This article belongs to the Special Issue The Future of Renewable Energy: 2nd Edition)
Show Figures

Figure 1

13 pages, 2265 KiB  
Article
Sustainable Bioelectricity: Transformation of Chicha de Jora Waste into Renewable Energy
by Rojas-Flores Segundo, Cabanillas-Chirinos Luis, Nélida Milly Otiniano and Magaly De La Cruz-Noriega
Sustainability 2025, 17(10), 4499; https://doi.org/10.3390/su17104499 - 15 May 2025
Viewed by 531
Abstract
Corn is one of the most widely produced cereals worldwide, generating large amounts of waste, represents an environmental and economic challenge. In regions such as Africa and rural areas of Peru, access to electricity is limited, affecting quality of life and economic development. [...] Read more.
Corn is one of the most widely produced cereals worldwide, generating large amounts of waste, represents an environmental and economic challenge. In regions such as Africa and rural areas of Peru, access to electricity is limited, affecting quality of life and economic development. This study proposes using microbial fuel cells (MFCs) to convert chicha de jora waste—a traditional fermented beverage made from corn—into electrical energy. Single-chamber MFCs with activated carbon (anode) and zinc (cathode) electrodes were used. A total of 100 ml of chicha de jora waste was added in each MFC, and three MFCs were used in total. The MFCs demonstrated the viability of chicha de jora waste as a substrate for bioelectricity generation. Key findings include a notable peak in voltage (0.833 ± 0.041 V) and current (2.794 ± 0.241 mA) on day 14, with a maximum power density of 5.651 ± 0.817 mW/cm2. The pH increased from 3.689 ± 0.001 to 5.407 ± 0.071, indicating microorganisms’ degradation of organic acids. Electrical conductivity rose from 43.647 ± 1.025 mS/cm to 186.474 ± 6.517 mS/cm, suggesting ion release due to microbial activity. Chemical oxygen demand (COD) decreased from 957.32 ± 5.18 mg/L to 251.62 ± 61.15 mg/L by day 18, showing efficient degradation of organic matter. Oxidation-reduction potential (ORP) increased, reaching a maximum of 115.891 ± 4.918 mV on day 14, indicating more oxidizing conditions due to electrogenic microbial activity. Metagenomic analysis revealed Bacteroidota (48.47%) and Proteobacteria (29.83%) as the predominant phyla. This research demonstrates the potential of chicha de jora waste for bioelectricity generation in MFCs, offering a sustainable method for waste management and renewable energy production. Implementing MFC technology can reduce environmental pollution caused by corn waste and provide alternative energy sources for regions with limited access to electricity. Full article
(This article belongs to the Collection Advances in Biomass Waste Valorization)
Show Figures

Figure 1

23 pages, 3055 KiB  
Article
Integrated Coordinated Control of Source–Grid–Load–Storage in Active Distribution Network with Electric Vehicle Integration
by Shunjiang Wang, Yiming Luo, Peng Yu and Ruijia Yu
Processes 2025, 13(5), 1285; https://doi.org/10.3390/pr13051285 - 23 Apr 2025
Cited by 1 | Viewed by 428
Abstract
In line with the strategic plan for emerging industries in China, renewable energy sources like wind power and photovoltaic power are experiencing vigorous growth, and the number of electric vehicles in use is on a continuous upward trend. Alongside the optimization of the [...] Read more.
In line with the strategic plan for emerging industries in China, renewable energy sources like wind power and photovoltaic power are experiencing vigorous growth, and the number of electric vehicles in use is on a continuous upward trend. Alongside the optimization of the distribution network structure and the extensive application of energy storage technology, the active distribution network has evolved into a more flexible and interactive “source–grid–load–storage” diversified structure. When electric vehicles are plugged into charging piles for charging and discharging, it inevitably exerts a significant impact on the control and operation of the power grid. Therefore, in the context of the extensive integration of electric vehicles, delving into the charging and discharging behaviors of electric vehicle clusters and integrating them into the optimization of the active distribution network holds great significance for ensuring the safe and economic operation of the power grid. This paper adopts the two-stage “constant-current and constant-voltage” charging mode, which has the least impact on battery life, and classifies the electric vehicle cluster into basic EV load and controllable EV load. The controllable EV load is regarded as a special “energy storage” resource, and a corresponding model is established to enable its participation in the coordinated control of the active distribution network. Based on the optimization and control of the output behaviors of gas turbines, flexible loads, energy storage, and electric vehicle clusters, this paper proposes a two-layer coordinated control model for the scheduling layer and network layer of the active distribution network and employs the improved multi-target beetle antennae search optimization algorithm (MTTA) in conjunction with the Cplex solver for solution. Through case analysis, the results demonstrate that the “source–grid–load–storage” coordinated control of the active distribution network can fully tap the potential of resources such as flexible loads on the “load” side, traditional energy storage, and controllable EV clusters; realize the economic operation of the active distribution network; reduce load and voltage fluctuations; and enhance power quality. Full article
Show Figures

Figure 1

29 pages, 10882 KiB  
Review
Renovation Strategies for Green Spaces in Aging Residential Communities in Cold Regions to Enhance Carbon Sequestration and Wellness
by Xia Rong, Haonian Fang and Chunlin He
Buildings 2025, 15(8), 1257; https://doi.org/10.3390/buildings15081257 - 10 Apr 2025
Viewed by 693
Abstract
This study explores renovation strategies for green spaces in aging residential communities in cold regions, with a particular focus on enhancing carbon sequestration capacity and residents’ well-being. Under the framework of the “dual carbon” goals, a combination of literature analysis and resident surveys [...] Read more.
This study explores renovation strategies for green spaces in aging residential communities in cold regions, with a particular focus on enhancing carbon sequestration capacity and residents’ well-being. Under the framework of the “dual carbon” goals, a combination of literature analysis and resident surveys reveals that (1) the existing layouts of green spaceand plant selections have not fully considered their carbon sequestration potential, leaving significant room for optimization; (2) low outdoor temperatures, the lack of heating facilities, and monotonous winter landscapes contribute to reduced green space utilization, limiting outdoor activities and diminishing the health benefits of green spaces; and (3) the integration of glass sunrooms with renewable energy systems, such as photovoltaic power generation, can effectively improve winter green space utilization, regulate micro climates, and enhance vegetation-based carbon sequestration while also providing residents with comfortable spaces for social interaction and wellness activities. The findings indicate that scientifically optimizing green space layouts, selecting plant species with high carbon sequestration potential, and incorporating climate-adaptive architectural designs can significantly enhance the ecological value of green spaces and residents’ quality of life. It is recommended that future community renewal initiatives integrate green technologies, policy support, and interdisciplinary collaboration to promote low-carbon and livable urban development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 3675 KiB  
Article
Smart Farming Technologies for Sustainable Agriculture: A Case Study of a Mediterranean Aromatic Farm
by Carlo Greco, Raimondo Gaglio, Luca Settanni, Lino Sciurba, Salvatore Ciulla, Santo Orlando and Michele Massimo Mammano
Agriculture 2025, 15(8), 810; https://doi.org/10.3390/agriculture15080810 - 8 Apr 2025
Cited by 3 | Viewed by 1929
Abstract
Consumer interest in medicinal and aromatic herbs is on the rise, with buyers increasingly concerned about the microbiological quality of nutraceutical and aromatic plants. The use of Unmanned Aerial Vehicles (UAVs) and sensor technology allows for high-resolution crop monitoring, particularly in the production [...] Read more.
Consumer interest in medicinal and aromatic herbs is on the rise, with buyers increasingly concerned about the microbiological quality of nutraceutical and aromatic plants. The use of Unmanned Aerial Vehicles (UAVs) and sensor technology allows for high-resolution crop monitoring, particularly in the production of rosemary and sage in Grotte (Italy), Agrigento District. The aim of this study is to evaluate the efficacy of UAV-based time series remote sensing data and multimodal data fusion using RGB and multispectral sensors in rosemary and sage harvesting time individuation and the microbiological quality of these nutraceutical and aromatic plants before and after an innovative and sustainable drying process. The multispectral data were acquired with a DJI multispectral camera mounted on a Phantom 4 UAV. The use of drones in the aromatic plant crops can lead to improved efficiency, productivity, and profitability for farmers and businesses. Italian producers follow strict hygiene regulations to reduce bacterial contamination, particularly during the crucial drying process. A rapid drying method at low temperature using a dryer powered by a photovoltaic renewable energy source (RES) helps preserve the quality of the plants. Real-time monitoring of the drying process is enabled through a system based on wireless sensor networks (WSN), providing valuable data on moisture content, drying rates, and microbial stability. Overall, the innovative use of drones, sensor technology, and renewable energy sources in the production of aromatic herbs like rosemary and sage holds great potential for enhancing crop quality, shelf life, and overall sustainability in the chain food industry. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

34 pages, 2370 KiB  
Review
Enhancing the Performance of Natural Ester Insulating Liquids in Power Transformers: A Comprehensive Review on Antioxidant Additives for Improved Oxidation Stability
by Esther Ogwa Obebe, Yazid Hadjadj, Samson Okikiola Oparanti and Issouf Fofana
Energies 2025, 18(7), 1690; https://doi.org/10.3390/en18071690 - 28 Mar 2025
Cited by 2 | Viewed by 1139
Abstract
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with [...] Read more.
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with a global shift toward sustainability, renewable insulating materials like natural esters are gaining attention due to their environmental and fire safety benefits. These biodegradable liquids are poised to replace hydrocarbon-based oils in transformers, aligning with Sustainable Development Goals 7 and 13 by promoting clean energy and climate action. Despite their advantages, natural esters face challenges in high-voltage applications, particularly due to oxidation stability issues linked to their fatty acid composition. Various antioxidants have been explored to address this, with synthetic antioxidants proving more effective than natural ones, especially under high-temperature conditions. Their superior thermal stability ensures that natural esters retain their cooling and dielectric properties, essential for transformer performance. Furthermore, integrating machine learning and artificial intelligence in antioxidant development and monitoring presents a transformative opportunity. This review provides insights into the role of antioxidants in natural ester-filled power equipment, supporting their broader adoption and contributing to a more sustainable energy future. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

38 pages, 842 KiB  
Article
Sustainability Assessment of an Oscillating Water Column During the Design, Installation, Operation, and Disassembly Phases
by Carolina Gallego-Ramírez, Jhorman López-Mosquera, Edwin Chica and Ainhoa Rubio-Clemente
Sustainability 2025, 17(7), 2996; https://doi.org/10.3390/su17072996 - 27 Mar 2025
Viewed by 619
Abstract
The increasing global demand for renewable energy sources for electricity generation, coupled with the urgent need to reduce reliance on fossil fuels, has made the transition to cleaner alternatives more critical in recent years due to the environmental degradation caused by fossil fuel [...] Read more.
The increasing global demand for renewable energy sources for electricity generation, coupled with the urgent need to reduce reliance on fossil fuels, has made the transition to cleaner alternatives more critical in recent years due to the environmental degradation caused by fossil fuel consumption. Among renewable energy sources, wave energy stands out as one of the most promising options because its resource, ocean waves, is inexhaustible. To harness wave energy, one effective device is the oscillating water column (OWC), which converts the kinetic energy of waves into electrical power. Despite the significant capacity of wave energy, particularly through the implementation of OWCs, the environmental and socio-economic impacts remain insufficiently studied. This research addresses this gap by analyzing the potential impacts associated with the deployment of wave energy systems, such as OWCs. Specifically, a sustainability assessment of OWCs was conducted, and a cause-and-effect matrix was developed using Conesa’s methodology to evaluate the impacts linked to their design, installation, operation, maintenance, and disassembly phases. The results obtained revealed that the majority of impacts caused by an OWC are moderate. Notably, the most significant positive effects are related to improvements in the quality of life of communities benefiting from the technology studied. The findings underscore the sustainability of OWCs in harnessing wave energy to generate electricity. Full article
Show Figures

Figure 1

Back to TopTop