Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = purslane (Portulaca oleracea L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2647 KB  
Article
Sensor-Based Evaluation of Purslane-Enriched Biscuits Using Multivariate Feature Selection and Spectral Analysis
by Stanka Baycheva, Zlatin Zlatev, Neli Grozeva, Toncho Kolev, Milena Tzanova and Zornitsa Zherkova
Sensors 2025, 25(24), 7548; https://doi.org/10.3390/s25247548 - 12 Dec 2025
Viewed by 414
Abstract
This study presents a sensor-integrated framework for evaluating purslane (Portulaca oleracea L.) stalk flour as a functional ingredient in butter biscuits. A Design of Experiments (DoEs) approach was applied using multisensor probes (electrical conductivity, pH, TDS, ORP) and digital imaging sensors (visible [...] Read more.
This study presents a sensor-integrated framework for evaluating purslane (Portulaca oleracea L.) stalk flour as a functional ingredient in butter biscuits. A Design of Experiments (DoEs) approach was applied using multisensor probes (electrical conductivity, pH, TDS, ORP) and digital imaging sensors (visible reflectance spectra) for real-time, non-destructive quality assessment. Multivariate analysis with Repeated Relief Feature Selection (RReliefF) and Principal Component Analysis (PCA) reduced 54 initial measurements to 19 informative features, with the first two principal components explaining over 96% of the variance related to flour concentration. Regression modeling combined with linear programming identified an optimal substitution level of 9.62%. Biscuits at this level showed improved texture, enhanced elemental composition (Ca, Mg, Fe, Zn), stable color, and maintained sensory acceptability. The methodology demonstrates a reliable, low-cost sensing and chemometric approach for data-driven, non-destructive quality monitoring and product optimization in food manufacturing. Full article
(This article belongs to the Special Issue Optical Sensing Technologies for Food Quality and Safety)
Show Figures

Figure 1

16 pages, 853 KB  
Article
Assessment of Purslane (Portulaca oleracea L.) Total Oxalate Content, Ascorbic Acid, and Total Organic Acids Using Near-Infrared Spectroscopy
by Zornitsa Zherkova, Mima Todorova, Neli Grozeva, Milena Tzanova, Antoniya Petrova, Petya Veleva and Stefka Atanassova
Plants 2025, 14(22), 3426; https://doi.org/10.3390/plants14223426 - 9 Nov 2025
Viewed by 1524
Abstract
Purslane (Portulaca oleracea L.) has been regaining its reputation as a valuable food and source of nutrients and biologically active compounds, but a high content of oxalates reduces mineral bioavailability and poses nutritional limitations. This study evaluated the influence of culinary processing [...] Read more.
Purslane (Portulaca oleracea L.) has been regaining its reputation as a valuable food and source of nutrients and biologically active compounds, but a high content of oxalates reduces mineral bioavailability and poses nutritional limitations. This study evaluated the influence of culinary processing on oxalate content in purslane and the potential of near-infrared (NIR) spectroscopy for non-destructive assessment of total oxalates, ascorbic acid, and total organic acid. The ascorbic acid and total organic acid in fresh samples, and the total oxalate content of fresh, blanched, and pickled samples were determined. Culinary treatments (blanching and pickling) reduced oxalate content. The highest oxalate content was observed in fresh samples (33.38–61.84 g/100 g), lower in blanched samples (19.07–34.36 g/100 g), and the lowest content in pickling samples (10.48–18.31 g/100 g). NIR spectra (900–1700 nm) of the analyzed samples were measured, and PLS regression was used for the determination of tested components. The NIR spectroscopy achieved high predictive accuracy for ascorbic acid, total organic acid, and oxalate content. Rcval > 0.98 and SECV values between 0.02 and 0.38 g/100 g for oxalate content. NIR spectroscopy provides a rapid, accurate, and non-destructive alternative to conventional methods for oxalate determination in fresh, blanched, and pickled plant tissues, ascorbic acid and organic acid in fresh samples. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 822 KB  
Article
Natural Antioxidant Enrichment of Goat Meat Pates with Portulaca oleracea and Honey Improves Oxidative Stability and Color Properties
by Tamara Tultabayeva, Gulzhan Tokysheva, Aknur Muldasheva, Aruzhan Shoman, Amirzhan Kassenov, Serik Tumenov, Kalamkas Dairova, Nuray Battalova and Kadyrzhan Makangali
Processes 2025, 13(10), 3213; https://doi.org/10.3390/pr13103213 - 9 Oct 2025
Cited by 1 | Viewed by 830
Abstract
Oxidative reactions accelerate quality loss in emulsified meats. This study evaluated a clean-label strategy in goat meat pates by co-fortifying Portulaca oleracea powder 1% and honey 4%. Control and treatment batches were cooked to 72 °C and stored as opened packs at ≤6 [...] Read more.
Oxidative reactions accelerate quality loss in emulsified meats. This study evaluated a clean-label strategy in goat meat pates by co-fortifying Portulaca oleracea powder 1% and honey 4%. Control and treatment batches were cooked to 72 °C and stored as opened packs at ≤6 °C for 10 days. Oxidative stability of lipid and protein was monitored by peroxide value (PV), TBARS, acid value, and baseline protein carbonyls; total antioxidant capacity was assessed by FRAP and DPPH; color was quantified in CIE Lab; fatty acids were profiled by GC-FID; and protein integrity was examined by SDS-PAGE. The treatment modestly increased α-linolenic acid (ALA) (1.2% vs. 0.8%) in the control and markedly enhanced antioxidant status (FRAP 10.5 ± 0.04 mg GAE/g vs. not detected; DPPH 33.02 ± 0.009% vs. 22.33 ± 0.007%; IC50 106.10 ± 10.01 vs. 138.25 ± 11.15 µg/mL). Across storage, PV showed a small, non-significant delay on day 10 (13.0 ± 0.9 vs. 14.0 ± 0.9 meq/kg), while secondary and hydrolytic indices were consistently lower (TBARS day 10: 1.91 ± 0.13 vs. 3.29 ± 0.23 mg MDA/kg; acid value day 10: 7.0 ± 0.5 vs. 8.5 ± 0.6 mg KOH/g). Protein carbonyls at baseline were comparable (99.19 vs. 95.73 nmol/mg). L* and b* remained similar before and after light exposure, with a modest, non-significant reduction in color stability and greater a* loss in the treatment. These results show that purslane–honey co-fortification nutritionally enriches pates and attenuates oxidative spoilage during refrigerated storage, with minor color trade-offs that merit process optimization. Full article
Show Figures

Figure 1

16 pages, 587 KB  
Article
Portulaca oleracea as a Functional Ingredient in Organic Cooked Frankfurters: A Sustainable Approach to Shelf-Life Extension and Oxidative Stability Without Synthetic Nitrites
by Kadyrzhan Makangali, Gulnazym Ospankulova, Gulzhan Tokysheva, Aknur Muldasheva and Kalamkas Dairova
Processes 2025, 13(10), 3167; https://doi.org/10.3390/pr13103167 - 5 Oct 2025
Viewed by 840
Abstract
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. [...] Read more.
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. This study investigated the application of Portulaca oleracea powder as a multifunctional ingredient to fully replace sodium nitrite in organic cooked frankfurters. Two formulations were produced: control frankfurters with sodium nitrite and experimental frankfurters with purslane powder 1.2%. Physicochemical, oxidative, proteomic, and antioxidant parameters were monitored during refrigerated storage. Purslane incorporation improved the lipid profile by increasing α-linolenic acid and lowering the ω-6/ω-3 ratio, while peroxide, thiobarbituric acid reactive substances (TBARS), and acid values remained significantly lower than in nitrite-containing controls after 10 days. Protein oxidation was also reduced, and SDS-PAGE profiles confirmed that the major structural muscle proteins remained stable, indicating that purslane addition did not disrupt the core proteome. Antioxidant assays showed strong ferric-reducing antioxidant power (FRAP) activity 13.7 mg GAE/g and enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity 22.3%, highlighting purslane’s contribution to oxidative stability. Although redness (a*) was lower than in nitrite controls, overall color stability (L*, b*) remained high. Taken together, purslane enhanced oxidative stability and quality attributes of nitrite-free organic frankfurters; microbiological validation is ongoing and will be reported separately. Full article
(This article belongs to the Special Issue Development of Innovative Processes in Food Engineering)
Show Figures

Figure 1

19 pages, 2326 KB  
Article
Substrate–Genotype Interaction Influences Growth and Phytochemical Composition of Wild and Commercial Purslane (Portulaca oleracea L.) Microgreens
by Ivana Kollárová, Ivana Mezeyová, Lucia Galovičová, Jana Žiarovská, Silvia Farkasová, Peter Pencák and Marcel Golian
Agronomy 2025, 15(9), 2141; https://doi.org/10.3390/agronomy15092141 - 6 Sep 2025
Cited by 1 | Viewed by 1239
Abstract
Purslane is highly suitable for intensive microgreen cultivation due to its rapid growth, high germination rate, and exceptional nutritional profile, including omega-3 fatty acids, essential vitamins, and minerals. While previous studies have mostly emphasized its basic composition, our research investigated additional functional traits, [...] Read more.
Purslane is highly suitable for intensive microgreen cultivation due to its rapid growth, high germination rate, and exceptional nutritional profile, including omega-3 fatty acids, essential vitamins, and minerals. While previous studies have mostly emphasized its basic composition, our research investigated additional functional traits, such as pigment accumulation and antioxidant activity. We also explored the cultivation potential of a wild purslane genotype (G2), naturally growing in the Botanical Garden of the Slovak University of Agriculture in Nitra, as a sustainable alternative to commercially available seeds (G1). This study examined how genotype and substrate interactions influence growth performance, pigment concentration, and antioxidant capacity in Portulaca oleracea microgreens. Both genotypes were grown on two different substrates: agar mixed with perlite and mineral wool. Although conserved DNA-derived polymorphism marker analysis revealed a high degree of genetic similarity between G1 and G2, significant phenotypic differences were observed. G1 exhibited greater fresh biomass and shoot length, making it more visually appealing for commercial microgreen production. In contrast, G2 showed higher dry matter content and enhanced accumulation of chlorophylls and carotenoids. Antioxidant activity, measured by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), and FRAP (Ferric Reducing Antioxidant Power) assays, peaked in G1 cultivated on agar–perlite mix. These findings emphasize the importance of selecting the right genotype–substrate combination to optimize both quality and productivity in microgreen systems. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 888 KB  
Article
Enhancing Nutritional and Functional Properties of Hydroponically Grown Underutilised Leafy Greens Through Selenium Biofortification
by George P. Spyrou, Theodora Ntanasi, Ioannis Karavidas, Sofia Marka, Evangelos Giannothanasis, Lorena Vultaggio, Gholamreza Gohari, Leo Sabatino and Georgia Ntatsi
Plants 2025, 14(17), 2716; https://doi.org/10.3390/plants14172716 - 1 Sep 2025
Cited by 1 | Viewed by 1213
Abstract
Nutrient intake is vital for human health, yet micronutrient deficiencies remain widespread despite sufficient calorie consumption. Biofortification is the process by which the nutrient density of food crops is increased through various strategies without altering key agronomic characteristics. This approach is widely recognised [...] Read more.
Nutrient intake is vital for human health, yet micronutrient deficiencies remain widespread despite sufficient calorie consumption. Biofortification is the process by which the nutrient density of food crops is increased through various strategies without altering key agronomic characteristics. This approach is widely recognised as a cost-effective method for addressing micronutrient malnutrition. When combined with the nutritional properties and inherent resilience of underutilised crops to harsh conditions, biofortification emerges as highly promising and sustainable solution. This study investigates the effects of selenium biofortification by adding different doses of SeO2 (0, 1, 2, and 4 μM) in the nutrient solution in three underutilised leafy vegetables [Portulaca oleracea L. (purslane), Taraxacum officinale L. (dandelion), and Mesembryanthemum crystallinum L. (iceplant)] grown in an open soilless system. The addition of SeO2 to the nutrient solution increased yield in all three species, although iceplant exhibited reduced yield at the highest SeO2 dose. In particular, the total yield of purslane was enhanced by 14–19% when treated with 1, 2, and 4 doses of SeO2, whilst the dandelion yield increased by 25% under 4 μM SeO2. Furthermore, the yield of iceplant increased by 14.7–17.8% at 1 and 2 μM SeO2. SeO2 application led to a dose-dependent increase in selenium concentration in the shoot tissues while remaining within safe intake limits. More specifically, selenium concentration in purslane, dandelion, and iceplant tissues increased by 92%, 91%, and 89%, respectively, at the highest SeO2 dose (4 μΜ) compared to untreated plants. Selenium treatment also influenced the nutritional profile of the examined plant species. With regard to the antioxidant activity, the highest recorded value was observed at 1 μM SeO2 for purslane and iceplant, and at 4 μM SeO2 for dandelion. These values were enhanced by 20%, 12%, and 27%, respectively, in comparison with 0 μM SeO2. In conclusion, rootzone SeO2 supplementation via a nutrient solution can be considered an effective biofortification strategy that enhances growth characteristics and antioxidant properties of the three investigated underutilised leafy vegetables without compromising their nutritional value. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 1779 KB  
Article
Chloride as a Partial Nitrate Substitute in Hydroponics: Effects on Purslane Yield and Quality
by George P. Spyrou, Ioannis Karavidas, Theodora Ntanasi, Sofia Marka, Evangelos Giannothanasis, Gholamreza Gohari, Enrica Allevato, Leo Sabatino, Dimitrios Savvas and Georgia Ntatsi
Plants 2025, 14(14), 2160; https://doi.org/10.3390/plants14142160 - 13 Jul 2025
Cited by 3 | Viewed by 1295
Abstract
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either [...] Read more.
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either adequate or limiting N conditions. More specifically, under adequate N conditions, plants were supplied with NS where ammonium nitrogen (NH4-N) accounted for either 7% (Nr7) or 14% (Nr14) of the total-N. The limiting N conditions were achieved through the application of either an NS where 30% of N inputs were compensated with Cl (N30), or an NS where 50% of N inputs were balanced by elevating Cl and S by 30% and 20%, respectively (N50). The results demonstrated that mild N stress enhanced the quality characteristics of purslane without significant yield losses. However, further and more severe N restrictions in the NS resulted in significant yield losses without improving product quality. The highest yield reduction (20%) occurred under high NH4-N supply (Nr14), compared to Nr7-treated plants, which was strongly associated with impaired N assimilation and reduced biomass production. Both N-limiting treatments (N30 and N50) effectively reduced nitrate accumulation in edible tissues by 10% compared to plants grown under adequate N supply (Nr7 and Nr14); however, nitrate levels remained relatively high across all treatments, even though the environmental conditions of the experiment favored nitrate reduction. All applied N regimes and compensation strategies improved the antioxidant and flavonoid content, with the highest antioxidant activity observed in plants grown under high NH4-N application, indirectly revealing the susceptibility of purslane to NH4-N-rich conditions. Overall, the form and rate of N supply significantly influenced both plant performance and biochemical quality. Partial replacement of N with Cl (N30) emerged as the most promising strategy, benefiting quality traits and effectively reducing nitrate content without significantly compromising yield. Full article
Show Figures

Figure 1

18 pages, 1937 KB  
Article
Mycorrhizal Fungi Modulate the Development and Composition of Purslane (Portulaca oleracea L.) Bioactive Compounds
by Marieta Hristozkova, Katrin Valkova and Maria Geneva
Agriculture 2025, 15(13), 1458; https://doi.org/10.3390/agriculture15131458 - 7 Jul 2025
Cited by 2 | Viewed by 900
Abstract
The present research focused on the physiological alterations and antioxidant potential of Portulaca oleracea L. due to mycorrhizal symbiosis with diverse strains. Purslane belongs to the plants that form a symbiosis with mycorrhizal fungi and show tolerance to various strains. Inoculation with Funneliformis [...] Read more.
The present research focused on the physiological alterations and antioxidant potential of Portulaca oleracea L. due to mycorrhizal symbiosis with diverse strains. Purslane belongs to the plants that form a symbiosis with mycorrhizal fungi and show tolerance to various strains. Inoculation with Funneliformis mosseae gave better mycorrhizal colonization results and positively affected biomass accumulation and the concentration of reducing sugars. The total accumulation of plastid pigments was higher in symbiotic plants, although this effect was not specific to any particular strain. Mycorrhizal fungi increased the levels of carotenes in the shoots, while xanthophylls decreased, with the highest values observed in non-inoculated plants. Both strains influenced the ratio of betalains: Funneliformis mosseae promoted the accumulation of β-cyanins, while Claroideoglomus claroideum increased β-xanthines. The association with Funneliformis mosseae also affected antioxidant capacity, as indicated by the FRAP test, by altering the concentrations of secondary metabolites, particularly phenols and flavonoids. Targeted inoculation with specific strains boosts both non-enzymatic (including water-soluble and lipid-soluble metabolites) and enzymatic antioxidant activity; however, it was not dependent on the strain. These findings underscore the benefits of mycorrhizal associations in purslane cultivation, promoting sustainable ecological practices and enhancing its quality as a food product. Full article
(This article belongs to the Special Issue Arbuscular Mycorrhiza in Cropping Systems)
Show Figures

Figure 1

16 pages, 2512 KB  
Article
The Effect of Grinding Techniques on the Microstructural Properties of Purslane (Portulaca oleracea L.) Powder, Its Total Phenolics Before and After In Vitro Simulated Gastrointestinal Digestion, and Its Antioxidant Capacity
by Tea Bilušić, Dora Runtić, Ivana Šola, Maja Benković, Ante Bilušić, Marija Ćosić and Dani Đorđević
Appl. Sci. 2025, 15(13), 7448; https://doi.org/10.3390/app15137448 - 2 Jul 2025
Cited by 1 | Viewed by 1540
Abstract
Purslane (Portulaca oleracea L.) is a plant recognized as a valuable source of nutrients and bioactive compounds such as omega-3 fatty acids, antioxidants, vitamins, and minerals. This study investigates the effects of grinding techniques (knife, ball, and planetary ball mill) on the [...] Read more.
Purslane (Portulaca oleracea L.) is a plant recognized as a valuable source of nutrients and bioactive compounds such as omega-3 fatty acids, antioxidants, vitamins, and minerals. This study investigates the effects of grinding techniques (knife, ball, and planetary ball mill) on the properties of purslane powder (surface microstructure, particle size distribution, and color), their influence on the phenolic content in the extracts of purslane powder before and after in vitro simulated digestion process, and the antioxidant activity of the purslane extracts. The results showed that applied grinding techniques affected the particle size distribution and surface morphology of the powder, which in turn influenced the gastrointestinal stability of the dominant phenolic compounds in purslane powder extracts. The powder obtained via ball milling, characterized by the highest proportion of fine particles (x < 100 µm), showed the highest content of total phenolics (656 mg GAE/L). Ball milling resulted in high preservation of the dominant phenolic acids in the powder extract after simulated gastric and intestinal digestion (83.55% and 69.42%) and high free radical scavenging activity (DPPH and ABTS) and ferric reducing power (FRAP). The results obtained emphasize the nutritional and biological benefits of purslane in the form of a fine powder. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

12 pages, 1198 KB  
Article
Purslane-Fortified Yogurt: In-Line Process Control by FT-NIR Spectroscopy and Storage Monitoring
by Ayse Burcu Aktas, Silvia Grassi, Claudia Picozzi and Cristina Alamprese
Foods 2025, 14(12), 2053; https://doi.org/10.3390/foods14122053 - 11 Jun 2025
Viewed by 2901
Abstract
Yogurt fortification with purslane (Portulaca oleracea L.) can improve its health benefits, but it may alter the fermentation step and its final properties. Thus, the current study investigated the suitability of Fourier Transform-Near Infrared (FT-NIR) spectroscopy for in-line monitoring of lactic acid [...] Read more.
Yogurt fortification with purslane (Portulaca oleracea L.) can improve its health benefits, but it may alter the fermentation step and its final properties. Thus, the current study investigated the suitability of Fourier Transform-Near Infrared (FT-NIR) spectroscopy for in-line monitoring of lactic acid fermentation of purslane-fortified yogurt compared with fundamental rheology. Changes in the yogurt properties during storage were also assessed. Set-type yogurts without and with lyophilized purslane leaves (0.55%) were produced and stored at 4 °C for up to 18 days. Lactic acid bacteria concentrations before and after fermentation at 43 °C for 2.5 h showed that the presence of purslane did not interfere with bacterial growth. The purslane addition increased the milk viscosity, resulting in a yogurt with complex modulus values higher than those of the reference sample (360 vs. 172 Pa). The elaboration of spectral data with Principal Component Analysis and the Gompertz equation enabled calculation of the kinetic critical points. Applying the Gompertz equation to the rheological data, it was evident that FT-NIR spectroscopy detected earlier the fermentation progression (the critical times were about 18% earlier on average), thus enabling better control of yogurt production. No significant changes in microbial or textural properties were noted during yogurt storage, demonstrating that purslane addition did not affect the product stability. Full article
(This article belongs to the Special Issue Near-Infrared Spectroscopy for the Monitoring of Food Fermentation)
Show Figures

Figure 1

23 pages, 3615 KB  
Article
Lipophilic Extracts of Portulaca oleracea L.: Analysis of Bioactive Fatty Acids Targeting Microbial and Cancer Pathways
by Dejan Stojković, Jelena Živković, Stefani Bolevich, Gokhan Zengin, Mehmet Veysi Cetiz, Sergey Bolevich and Marina Soković
Pharmaceuticals 2025, 18(4), 587; https://doi.org/10.3390/ph18040587 - 17 Apr 2025
Cited by 1 | Viewed by 1776
Abstract
Background/Objectives: Portulaca oleracea L. (purslane) is a widely distributed plant known for its medicinal and nutritional properties. This study aims to evaluate the fatty acid composition and bioactivities of crude lipophilic extracts (chloroform/methanol 2:1) from purslane collected in Serbia and Greece, with [...] Read more.
Background/Objectives: Portulaca oleracea L. (purslane) is a widely distributed plant known for its medicinal and nutritional properties. This study aims to evaluate the fatty acid composition and bioactivities of crude lipophilic extracts (chloroform/methanol 2:1) from purslane collected in Serbia and Greece, with a focus on its antimicrobial and anticancer potential. Methods: Chemical analysis was conducted to determine the fatty acid composition of the extracts. Antibacterial activity was assessed using standard microdilution assays, while antibiofilm assays evaluated the extracts’ ability to inhibit biofilm formation. Cytotoxicity was tested on cancer cell lines (MCF7, HeLa, CaCo2, HepG2) and normal keratinocyte cells (HaCaT). Molecular docking and dynamics simulations were performed to explore the interactions of bioactive fatty acids with microbial and cancer-related proteins. Results: The analysis revealed significant levels of polyunsaturated fatty acids, with linoleic acid as the predominant fatty acid in both samples (31.42% and 34.51%). The Greek extract exhibited stronger antibacterial activity than the Serbian extract, particularly against Aspergillus versicolor, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiofilm assays showed up to 89.54% destruction at MIC levels, with notable reductions in exopolysaccharide and extracellular DNA production, especially for Greek samples. Cytotoxicity testing indicated moderate effects on cancer cell lines (IC50 = 178.17–397.31 µg/mL) while being non-toxic to keratinocytes. Molecular docking identified strong interactions between key fatty acids and microbial and cancer-related proteins. Conclusions: These results highlight purslane’s potential as a source of bioactive compounds, particularly in antimicrobial and anticancer applications. The findings suggest that purslane extracts could be developed for therapeutic purposes targeting microbial infections and cancer. Full article
Show Figures

Graphical abstract

14 pages, 741 KB  
Article
The Effect of Roasting on Oil Content, Fatty Acids, Bioactive Compounds and Mineral Contents of Purslane (Portulaca oleracea L.) Seeds
by Fahad Al Juhaimi, Zehra Beyza Atasoy, Nurhan Uslu, Mehmet Musa Özcan, Isam A. Mohamed Ahmed and Noman Walayat
Foods 2025, 14(5), 732; https://doi.org/10.3390/foods14050732 - 21 Feb 2025
Cited by 3 | Viewed by 2060
Abstract
In this study, the effect of oven and microwave roasting at different times on oil content, total phenol, flavonoid, fatty acids, phenolic components and mineral contents of purslane seeds was investigated. The total phenolic quantities of the purslane seeds roasted in the oven [...] Read more.
In this study, the effect of oven and microwave roasting at different times on oil content, total phenol, flavonoid, fatty acids, phenolic components and mineral contents of purslane seeds was investigated. The total phenolic quantities of the purslane seeds roasted in the oven and microwave were characterized to be between 252.0 ± 1.80 (180 °C/5 min in the oven) and 256.6 ± 3.51 (10 min in the oven), and between 216.3 ± 0.28 (720 W/15 min in the microwave) and 203.7 ± 1.93 GAE/100 g (30 min in the microwave), respectively. The highest total flavonoid (613.8 ± 4.36 mg QE/100 g) was detected in the application of roasting in the oven for 10 min. Roasting in the oven for 5 min caused a decrease in the total flavonoid content (584.3 ± 4.95 mg QE/100 g), while roasting for 10 min caused an increase in the flavonoid content (613.8 ± 4.36 mg QE/100 g). The oil yields of purslane seed samples roasted in the oven for 5 min and 10 min were defined as 40.40 ± 0.99% and 45.00 ± 0.71%, respectively. Statistical differences were observed between the oil, total phenol and flavonoid contents of the samples depending on the roasting times in the oven and microwave (p ≤ 0.01). The protein contents of the purslane seeds were established to be between 27.89 ± 0.279% (control) and 37.24 ± 0.407% (10 min in the oven). The calcium (Ca) contents of the purslane seeds changed between 8314.99 ± 327.53 ppm (5 min in the oven) and 4340.62 ± 498.45 ppm (15 min in the microwave), while the phosphorus contents varied between 4905.13 ± 43.02 ppm (15 min in the microwave) and 4051.23 ± 6.39 ppm (unroasted). In addition, the potassium content was found to be between 4565.89 ± 153.47 (5 min in the oven) and 3904.02 ± 7.17 ppm (unroasted). It was also observed that the purslane seeds roasted in the oven for 10 min maintained a linolenic fatty acid content of up to 65.57%. Considering the bioactive properties and phytochemical components of purslane seeds roasted in both roasting systems, they are important in terms of the nutritional enrichment of foods as a food supplement. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

17 pages, 1474 KB  
Article
Nitrogen, Phosphorus, and Potassium Requirements to Improve Portulaca oleracea L. Growth, Nutrient and Water Use Efficiency in Hydroponics
by Antonios Chrysargyris and Nikolaos Tzortzakis
Agronomy 2025, 15(1), 111; https://doi.org/10.3390/agronomy15010111 - 4 Jan 2025
Cited by 4 | Viewed by 2972
Abstract
Purslane (Portulaca oleracea L.) is an herbaceous species that is traditionally consumed across the world due to its nutraceutical quality, boasting anticancer, anti-inflammatory and antidiabetic properties. These traits render purslane an attractive wild edible species for research and commercial exploitation. The current [...] Read more.
Purslane (Portulaca oleracea L.) is an herbaceous species that is traditionally consumed across the world due to its nutraceutical quality, boasting anticancer, anti-inflammatory and antidiabetic properties. These traits render purslane an attractive wild edible species for research and commercial exploitation. The current study examined the effect of different nitrogen (N) concentrations (100–200 mg L−1; as N100, N200) in combination with different levels (decreased 0.66-fold: dec, recommended 1-fold: rec, or increased 1.5-fold: inc) of phosphorus (P; 47–70–105 mg L−1) and potassium (K; 250–350–525 mg L−1) in the nutrient solution (NS) used in hydroponic nutrient film technique (NFT) cultivation. The N200_PKinc NS resulted in improved crop growth compared to N200_PKrec NS, suggesting a positive correlation between optimal N levels (i.e., 200 mg L−1) and increased P and K levels (105 and 525 mg L−1, respectively). Plants grown in N200_PKinc revealed decreased antioxidant activity (e.g., DPPH, FRAP, and ABTS), phenols and flavonoids, while simultaneously increased total soluble solids levels. The recommended levels of P and K mirrored low levels in lipid peroxidation, mainly due to the increase in catalase enzymatic activity. Higher nutrient use efficiency was observed when both N100_PKinc and N200_PKinc were applied, resulting in higher yield and enhanced plant growth, while N100_PKinc produced plants with increased antioxidant activity. These findings suggest that both (N200_PKinc and N100_PKinc) NS have potential benefits for the hydroponic cultivation of purslane, with the latter NS offering additional advantages in terms of higher produce quality. Full article
Show Figures

Figure 1

18 pages, 2453 KB  
Article
The Application of Conventional and Organic Fertilizers During Wild Edible Species Cultivation: A Case Study of Purslane and Common Sowthistle
by Efraimia Hajisolomou, Giannis Neofytou, Spyridon A. Petropoulos and Nikolaos Tzortzakis
Horticulturae 2024, 10(11), 1222; https://doi.org/10.3390/horticulturae10111222 - 19 Nov 2024
Cited by 6 | Viewed by 1871
Abstract
The introduction of alternative crops, including wild edible and medicinal plants, in organic cultivation systems presents an attractive approach to producing healthy and high-quality products due to their content in beneficial compounds and increased nutritional value. The current study evaluated the impact of [...] Read more.
The introduction of alternative crops, including wild edible and medicinal plants, in organic cultivation systems presents an attractive approach to producing healthy and high-quality products due to their content in beneficial compounds and increased nutritional value. The current study evaluated the impact of organic and conventional fertilization on the growth, quality, nutrient status and stress response of the two wild edible species, e.g., purslane (Portulaca oleracea L.) and common sowthistle (Sonchus oleraceus L.), under field conditions. The fertilization treatments included the following: a control (NoFert) treatment with no fertilizers added, base dressing with conventional fertilization (CoFert), base dressing with organic fertilization (OrFert), base dressing and side dressing with conventional fertilization (OrFert + SCoFert) and base dressing and side dressing with organic fertilization (CoFert + SCoFert). Organic fertilization was carried out using a commercial vinasse-based organic fertilizer. In both purslane and common sowthistle, the application of organic fertilizers provided comparable or even enhanced plant growth traits, macronutrient content (i.e., P and K for purslane, and N for sowthistle) and quality (i.e., total soluble solids) compared to the application of conventional fertilizers. On the other hand, conventional fertilization with supplementary fertilization positively influenced the plant growth of purslane (i.e., plant height and stems biomass), as well as its physiological parameters (i.e., chlorophylls content), total phenolics content and antioxidant capacity (i.e., DPPH and FRAP). Similarly, conventional fertilization led to increased total phenolics and antioxidants in common sowthistle, while variable effects were observed regarding plant physiology, stress response and antioxidant capacity indices. In conclusion, the use of organic fertilization in both purslane and common sowthistle exhibited a performance similar to that of conventional fertilization, although further optimization of fertilization regimes is needed to improve the quality of the edible products. Full article
Show Figures

Figure 1

17 pages, 1158 KB  
Article
Purslane (Portulaca oleracea L.) Growth, Nutritional, and Antioxidant Status under Different Nitrogen Levels in Hydroponics
by Antonios Chrysargyris, Panayiota Xylia, Gokhan Zengin and Nikolaos Tzortzakis
Horticulturae 2024, 10(9), 1007; https://doi.org/10.3390/horticulturae10091007 - 23 Sep 2024
Cited by 11 | Viewed by 4547
Abstract
Purslane (Portulaca oleracea L.) is a common weed that attracts research and agricultural attention because of its significant nutritional value, and it is used commercially. The present work rated the effect of different nitrogen (N) concentrations, i.e., N50: 50 mg L−1 [...] Read more.
Purslane (Portulaca oleracea L.) is a common weed that attracts research and agricultural attention because of its significant nutritional value, and it is used commercially. The present work rated the effect of different nitrogen (N) concentrations, i.e., N50: 50 mg L−1; N100: 100 mg L−1; N200: 200 mg L−1; and N300: 300 mg L−1, on the growth, physiology, antioxidant capacity, and nutrient accumulation in the different plant parts of hydroponically grown purslane. Seedlings were transplanted to a Nutrient Film Technique (NFT) system and exposed to different N levels. The plants grown in high N levels of 300 mg L−1 had decreased biomass production, leaf number, leaf stomatal conductance, and total flavonoid content because of the increased oxidative stress, as shown by the elevated lipid peroxidation levels. Several enzymatic (superoxide dismutase) and non-enzymatic (ascorbic acid, total phenolics) plant antioxidant activities were activated to counteract the oxidative factors. Plants grown in intermediate N levels in the NS (i.e., 100 mg L−1) had decreased oxidative stress as several enzymatic antioxidant activities, i.e., peroxidases and catalases, were increased. Additionally, the water use efficiency and nitrogen uptake, as well as leaf stomatal conductance and leaf chlorophyll fluorescence, were increased in plants grown at a N level of 200 mg L−1. The mineral accumulation in the leaves, stems, and roots fluctuated, with increased calcium, magnesium, and sodium content being observed in the plants grown at high N levels in the nutrient solution. The stems accumulated less N compared with the leaves, but the N content and accumulation rates in purslane leaves were not affected by the N levels in the nutrient solution. Therefore, to increase the yield, nutritional value, and water use efficiency of purslane that is grown hydroponically, a concentration of 200 mg L−1 N in the nutrient solution is recommended. Full article
(This article belongs to the Special Issue Indoor Farming and Artificial Cultivation)
Show Figures

Figure 1

Back to TopTop