Assessment of Purslane (Portulaca oleracea L.) Total Oxalate Content, Ascorbic Acid, and Total Organic Acids Using Near-Infrared Spectroscopy
Abstract
1. Introduction
- Estimate the total oxalate content in P. oleracea subjected to different types of treatments—fresh, blanched, and pickled.
- Estimate the ability of near-infrared (NIR) spectroscopy for nondestructive determination of total oxalate content, ascorbic acid (vitamin C), and total organic acids in purslane samples.
2. Materials and Methods
2.1. Purslane Samples
2.2. Chemical Analysis
2.3. NIR Spectral Measurements and Spectral Data Processing
2.4. Statistical Data Analysis
3. Results and Discussion
3.1. Total Oxalate Content of Purslane Samples
3.2. NIR Spectroscopy Determination of Total Oxalate Content
3.3. NIR Spectroscopy Quantitative Determination of Total Oxalate in Purslane Samples
3.4. NIR Spectroscopy Determination of Ascorbic Acid and Total Organic Acids Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NIR | near-infrared |
| NIRS | near-infrared spectroscopy |
| DM | dry matter |
| FW | fresh weight |
| SD | standard deviations |
| RPD | ratio performance to deviation |
| MSC | multiplicative scatter correction |
| PLS | partial least squares |
| SECV | standard error of cross-validation |
| SEC | standard error of calibration |
References
- Medicinal Plants Act. State Gazette, No. 29, 7 April 2000. Available online: https://eea.government.bg/bg/legislation/biodiversity/ZLR_en.pdf (accessed on 4 November 2025).
- Anchev, M. Portulacaceae. In Field Guide to the Vascular Plants in Bulgaria; Kozhuharov, S., Ed.; Naouka and Izkoustvo: Sofia, Bulgaria, 1992; pp. 565–626. [Google Scholar]
- Delipavlov, D.; Cheshmedzhiev, I.; Popova, M.; Tersiyski, D.; Kovachev, I. Key to the Bulgarian Plants; Agrarian University Press: Plovdiv, Bulgaria, 2003. [Google Scholar]
- Assyov, B.; Petrova, A. (Eds.) Distribution Maps and Floristic Elements, Fourth revised and enlarged edition. In Conspectus of the Bulgarian Vascular Flora; Bulgarian Biodiversity Foundation: Sofia, Bulgaria, 2012. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional Value, Chemical Composition and Cytotoxic Properties of Common Purslane (Portulaca oleracea L.) in Relation to Harvesting Stage and Plant Part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef]
- Apicella, M.; Amato, G.; de Bartolomeis, P.; Barba, A.A.; De Feo, V. Natural Food Resource Valorization by Microwave Technology: Purslane Stabilization by Dielectric Heating. Foods 2023, 12, 4247. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Zengin, G.; Tzortzakis, N. Purslane (Portulaca oleracea L.) Growth, Nutritional, and Antioxidant Status under Different Nitrogen Levels in Hydroponics. Horticulturae 2024, 10, 1007. [Google Scholar] [CrossRef]
- Xu, X.; Yu, L.; Chen, G. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal. 2006, 41, 493–499. [Google Scholar] [CrossRef]
- Zherkova, Z.; Grozeva, N.; Todorova, M.; Tzanova, M. Nutritional value and chemical composition of common purslane (Portulaca oleracea L.) from different regions in Bulgaria. Ecol. Balk. 2024, 16, 176–186. [Google Scholar] [CrossRef]
- Savage, G.P.; Vanhanen, L.; Mason, S.M.; Ross, A.B. Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J. Food Compos. Anal. 2000, 13, 201–206. [Google Scholar] [CrossRef]
- Palaniswamy, U.R.; Bible, B.B.; McAvoy, R.J. Oxalic acid concentrations in purslane (Portulaca oleracea L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hortic. 2004, 102, 267–275. [Google Scholar] [CrossRef]
- Chai, W.; Liebman, M. Effect of different cooking methods on vegetable oxalate content. J. Agric. Food Chem. 2005, 53, 3027–3030. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Israr, B.; Bhatty, N.; Ali, A. Effect of cooking on soluble and insoluble oxalate contents in selected Pakistani vegetables and beans. Int. J. Food Prop. 2011, 14, 241–249. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar] [CrossRef]
- Rocha, S.R.S. Procedimentos e Avaliação Química de Parâmetros de Interesse Nutricional de Espinafre Comercializado na Bahia. 2009. Available online: https://repositorio.ufba.br/handle/ri/10014 (accessed on 4 November 2025).
- Lopes, C.O.; Dessimoni, G.V.; Silva, M.C.; Vieira, G.; Pinto, N.A.V.D. Aproveitamento, composição nutricional e antinutricional da farinha de quinoa (Chenopodium quinoa). Alim. Nutr. 2009, 20, 669–675. [Google Scholar]
- de Jesus Benevides, C.M.; Souza, R.D.B.; de Souza, M.V.; Lopes, M.V. Efeito do processamento sobre os teores de oxalato e tanino em maxixe (Cucumis anguria L.), Jiló (Solanum gilo), feijão verde (Vigna unguiculata (L.) Walp) e feijão andu (Cajanus cajan (L.) Mill sp.). Alimentos e Nutrição. 2013, Vol. Aliment. E Nutr. 2013, 24, 321–327. [Google Scholar]
- Vanhanen, L.; Savage, G. Comparison of oxalate contents and recovery from two green juices prepared using a masticating juicer or a high speed blender. NFS J. 2015, 1, 20–23. [Google Scholar] [CrossRef]
- Savage, G.; Klunklin, W. Oxalates are found in many different European and Asian foods-effects of cooking and processing. J. Food Res. 2018, 7, 76–81. [Google Scholar] [CrossRef]
- Moreau, A.G.; Savage, G.P. Oxalate content of purslane leaves and the effect of combining them with yoghurt or coconut products. J. Food Compos. Anal. 2009, 22, 303–306. [Google Scholar] [CrossRef]
- Heise, H.M.; Schulenburg, R. Near-infrared spectroscopy for medical, food and forage applications. In Molecular and Laser Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 189–247. [Google Scholar] [CrossRef]
- Cozzolino, D. A review on the use of near infrared spectroscopy for plant analysis. Med. Plants-Int. J. Phytomed. Relat. Ind. 2010, 2, 13–20. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation. J. Pharm. Biomed. Anal. 2021, 193, 113686. [Google Scholar] [CrossRef]
- Cozzolino, D. An overview of the successful application of vibrational spectroscopy techniques to quantify nutraceuticals in fruits and plants. Foods 2022, 11, 315. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023, 28, 3215. [Google Scholar] [CrossRef]
- Sperkowska, B.; Bazylak, G. Zastosowanie spektroskopii w bliskiejpodczerwieni (NIR) do oznaczania szczawianóww wieloziołowych produktach funkcjonalnych. In Application of Near-Infrared Spectroscopy (NIR) for Determination of Oxalatesin Multi-Herbal Functional Products, Proceedings of the Rośliny zielarskie, kosmetyki naturalne i żywność funkcjonalna: II Międzynarodowa Konferencja Naukowa, Krosno, Poland, 6–7 May 2015; Chrzanowska, J., Różański, H., Eds.; Wyd. PWSZ im. St. Pigonia w Krośnie: Krosno, Poland; Wrocław, Poland, 2015; Volume 3, pp. 445–475. ISBN 978-83-64457-16-6. [Google Scholar]
- Gouveia, C.S.S.; Lebot, V.; Pinheiro de Carvalho, M. NIRS Estimation of Drought Stress on Chemical Quality Constituents of Taro (Colocasia esculenta L.) and Sweet Potato (Ipomoea batatas L.). Flours. Appl. Sci. 2020, 10, 8724. [Google Scholar] [CrossRef]
- Naik, V.V.; Patil, N.S.; Aparadh, V.T.; Karadge, B.A. Methodology in determination of oxalic acid in plant tissue: A comparative approach. J. Glob. Trends Pharm. Sci. 2014, 5, 1662–1672. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20143229078 (accessed on 4 November 2025).
- Association of Official Analytical Chemists. Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC International: Washington, DC, USA, 1990. [Google Scholar]
- Tsenkova, R. Aquaphotomics: Dynamic Spectroscopy of Aqueous and Biological Systems Describes Peculiarities of Water. J. Near Inf. Spec. 2009, 17, 303–314. [Google Scholar] [CrossRef]
- Vitalis, F.; Muncan, J.; Anantawittayanon, S.; Kovacs, Z.; Tsenkova, R. Aquaphotomics Monitoring of Lettuce Freshness During Cold Storage. Foods 2023, 12, 258. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef]
- Libert, B.; Franceschi, V.R. Oxalate in crop plants. J. Agric. Food Chem. 1987, 35, 926–938. [Google Scholar] [CrossRef]
- Jaworska, G. Nitrates, nitrites, and oxalates in products of spinach and New Zealand spinach. Food Chem. 2005, 93, 395–401. [Google Scholar] [CrossRef]
- Streeter, J.G. Effects of nitrogen and calcium supply on the accumulation of oxalate in soybean seeds. Crop Sci. 2005, 45, 1464–1468. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Zhang, Y.; Zheng, S.J.; Du, S. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Nakagawa, K.; Kobayashi, T.; Tokieda, S.; Nagai, S. Studies on high quality production and shipment of spinach I: Effects of varieties and growth stage on oxalic acid content. Kinki Chogoku Agric. Res. 1988, 75, 71–76. [Google Scholar]
- Poeydomenge, G.Y.; Savage, G.P. Oxalate content of raw and cooked purslane. J. Food Agric. Environ. 2007, 5, 124. [Google Scholar]
- Juajun, O.; Vanhanen, L.; Sangketkit, C.; Savage, G. Effect of cooking on the oxalate content of selected Thai vegetables. Food and Nutrition Sciences 2012, 3, 1631–1635. [Google Scholar] [CrossRef]
- Kitchen, J.W.; Burns, E.E.; Langston, R. The effects of light, temperature and ionic balance on oxalate formation in spinach. Proc. Am. Soc. Hortic. Sci. 1964, 85, 465–470. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19650305840 (accessed on 4 November 2025).
- Macrae, R.; Robinson, R.K.; Sadler, M.J. Encyclopaedia of Food Science, Food Technology and Nutrition; Academic Press Inc.: San Diego, CA, USA, 1993; ISBN 0-12-226850-4. [Google Scholar]
- de Souza, P.G.; Pallone, J.A.L.; Orlando, E.A.; Costa-Santos, A.C.; Ayres, E.M.M.; Rosenthal, A.; Teodoro, A.J. Evaluation of oxalic acid extraction and quantification methods in the different purslane (Portulaca oleracea L.) matrices and spinach (Spinacea oleracea). MethodsX 2024, 13, 102863. [Google Scholar] [CrossRef]
- Waleed, Z.B.; Salwa, G.A.; Czakó, M. Optimization of purslane plant using cooking and pickling processes for reducing oxalate content. J. Adv. Agric. 2018, 8, 1384–1398. [Google Scholar] [CrossRef]
- Tabekhia, M.M.; Toma, R.B.; El-Mahdy, A.R. Effect of Egyptian Cooking Methods on Total, Free Oxalates and Mineral Contents of Two Leafy, Green Vegetables (Jew’s Mallow and Purslane). 1978. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19791480432 (accessed on 4 November 2025).
- Huynh, N.K.; Nguyen, D.H.; Nguyen, H.V. Effects of processing on oxalate contents in plant foods: A review. J. Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Muncan, J.; Anantawittayanon, S.; Furuta, T.; Kaneko, T.; Tsenkova, R. Aquaphotomics monitoring of strawberry fruit during cold storage—A comparison ot two cooling systems. Front. Nutr. 2022, 9, 1058173. [Google Scholar] [CrossRef]
- Mitroi, C. Purslane (Portulaca oleracea)—Nutritional value and food uses. J. Agroaliment. Process. Technol. 2024, 30, 357–365. [Google Scholar] [CrossRef]
- Ignat, T.; Schmilovitch, Z.; Fefoldi, J.; Steiner, B.; Alkalai-Tuvia, S. Non-destructive measurement of ascorbic acid content in bell peppers by VIS-NIR and SWIR spectrometry. Postharvest Biol. Technol. 2012, 74, 91–99. [Google Scholar] [CrossRef]
- Malegoria, C.; Marquesb, E.J.N.; Tonetto de Freitasc, S.; Pimenteld, M.F.; Pasquinie, C.; Casiraghia, E. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 167, 112–116. [Google Scholar] [CrossRef]
- Borba, K.R.; Spricigo, P.C.; Aykas, D.P.; Mitsuyuki, M.C.; Colnago, L.A.; Ferreir, M.D. Non-invasive quantification of vitamin C, citric acid, and sugar in ‘Valencia’ oranges using infrared spectroscopies. Food Sci. Technol. 2021, 58, 731–738. [Google Scholar] [CrossRef] [PubMed]




| Voucher Speciments | Locations and Geographic Coordinates | |||
|---|---|---|---|---|
| Region | Longitude | Latitude | Altitude | |
| SOA 063610 | Thracian lowland, town ofStara Zagora, in the Kolyo Ganchev neighborhood | 42°24′06.8′′ N | 25°38′10.8′′ E | 196 |
| SOA 063611 | Thracian lowland, village of Madzherito | 42°21′48.2′′ N | 25°38′43.7′′ E | 160 |
| SOA 063612 | Sredna gora mountain, village of Malka Vereya | 42°25′07.9′′ N | 25°33′22.7′′ E | 353 |
| SOA 063613 | Sredna gora mountain, village of Pryaporets | 42°27′51.4′′ N | 25°31′57.2′′ E | 466 |
| Tests of Normality | ||||||||
|---|---|---|---|---|---|---|---|---|
| Shapiro–Wilk | Series 1 | Series 2 | Series 3 | |||||
| Total oxalate content g/100 g (DM) | Treatment | df | Statistic | Sig. | Statistic | Sig. | Statistic | Sig. |
| Fresh, (control) | 4 | 0.960 | 0.778 | 0.998 | 0.992 | 0.861 | 0.262 | |
| Blanched | 4 | 0.873 | 0.308 | 0.886 | 0.365 | 0.874 | 0.314 | |
| Pickled | 4 | 0.760 | 0.051 | 0.925 | 0.563 | 0.964 | 0.804 | |
| Treatment | Total Oxalate Content (g/100 g DM) | ||
|---|---|---|---|
| Series 1 | Series 2 | Series 3 | |
| Fresh, (control) | 61.84 ± 17.99 a | 33.38 ± 3.85 a | 34.60 ± 4.91 a |
| Blanched | 19.07 ± 7.90 a (−69.16) | 22.29 ± 6.00 a (−33.22) | 34.36 ± 1.88 b (−0.69) |
| Pickled | 10.48 ± 3.46 a (−83.06) | 17.40 ± 5.44 a (−47.86) | 18.31 ± 4.65 ab (−47.07) |
| Levene’s Test | 0.003 | 0.769 | 0.225 |
| Sig.; R2 | 0.001; 0.835 | 0.005; 0.690 | 0.001; 0.825 |
| Total Oxalates, g 100 g−1 | PLS Factors | SECV | rcval | SEC | rcal |
|---|---|---|---|---|---|
| All samples | 4 | 0.388 | 0.97 | 0.383 | 0.97 |
| Fresh samples | 4 | 0.017 | 0.99 | 0.014 | 0.99 |
| Blanched samples | 5 | 0.012 | 0.99 | 0.010 | 0.99 |
| Pickled samples | 8 | 0.029 | 0.99 | 0.01 | 0.99 |
| Parameter | Min | Max | Average | SD |
|---|---|---|---|---|
| Ascorbic acid, mg·100 g−1 FW | 8.86 | 30.50 | 16.37 | 6.34 |
| Total organic acids, g·100 g−1 FW | 0.14 | 0.37 | 0.22 | 0.08 |
| PLS Factors | SECV | rcval | SEC | rcal | |
|---|---|---|---|---|---|
| Ascorbic acid, mg·100 g−1 FW | 3 | 0.173 | 0.99 | 0.042 | 0.99 |
| Total organic acids, g·100 g−1 FW | 4 | 0.0034 | 0.99 | 0.0004 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zherkova, Z.; Todorova, M.; Grozeva, N.; Tzanova, M.; Petrova, A.; Veleva, P.; Atanassova, S. Assessment of Purslane (Portulaca oleracea L.) Total Oxalate Content, Ascorbic Acid, and Total Organic Acids Using Near-Infrared Spectroscopy. Plants 2025, 14, 3426. https://doi.org/10.3390/plants14223426
Zherkova Z, Todorova M, Grozeva N, Tzanova M, Petrova A, Veleva P, Atanassova S. Assessment of Purslane (Portulaca oleracea L.) Total Oxalate Content, Ascorbic Acid, and Total Organic Acids Using Near-Infrared Spectroscopy. Plants. 2025; 14(22):3426. https://doi.org/10.3390/plants14223426
Chicago/Turabian StyleZherkova, Zornitsa, Mima Todorova, Neli Grozeva, Milena Tzanova, Antoniya Petrova, Petya Veleva, and Stefka Atanassova. 2025. "Assessment of Purslane (Portulaca oleracea L.) Total Oxalate Content, Ascorbic Acid, and Total Organic Acids Using Near-Infrared Spectroscopy" Plants 14, no. 22: 3426. https://doi.org/10.3390/plants14223426
APA StyleZherkova, Z., Todorova, M., Grozeva, N., Tzanova, M., Petrova, A., Veleva, P., & Atanassova, S. (2025). Assessment of Purslane (Portulaca oleracea L.) Total Oxalate Content, Ascorbic Acid, and Total Organic Acids Using Near-Infrared Spectroscopy. Plants, 14(22), 3426. https://doi.org/10.3390/plants14223426

