Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (129)

Search Parameters:
Keywords = punicalagins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5927 KiB  
Article
Modeling the Anti-Adhesive Role of Punicalagin Against Listeria Monocytogenes from the Analysis of the Interaction Between Internalin A and E-Cadherin
by Lorenzo Pedroni, Sergio Ghidini, Javier Vázquez, Francisco Javier Luque and Luca Dellafiora
Int. J. Mol. Sci. 2025, 26(15), 7327; https://doi.org/10.3390/ijms26157327 - 29 Jul 2025
Viewed by 259
Abstract
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational [...] Read more.
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational pipeline envisioned to identify the molecular determinants for the recognition between the bacterial protein internalin A (InlA) and the human E-cadherin (Ecad), which is the first step leading to internalization. This pipeline consists of molecular docking and extended atomistic molecular dynamics simulations to identify key interaction clusters between InlA and Ecad. It exploits this information in the screening of chemical libraries of natural compounds that might competitively interact with InIA and hence impede the formation of the InIA–Ecad complex. This strategy was effective in providing a molecular model for the anti-adhesive activity of punicalagin and disclosed two natural phenolic compounds with a similar interaction pattern. Besides elucidating key aspects of the mutual recognition between InIA and Ecad, this study provides a molecular basis about the mechanistic underpinnings of the anti-adhesive action of punicalagin that enable application against L. monocytogenes. Full article
(This article belongs to the Special Issue Computational Approaches for Protein Design)
Show Figures

Figure 1

25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 317
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

16 pages, 6845 KiB  
Article
Antimicrobial and Immunomodulatory Effects of Punicalagin and Meropenem in a Murine Model of Sublethal Sepsis
by Liliane dos Santos Rodrigues, Priscila Mendonça Mendes, André Alvares Marques Vale, José Lima Pereira-Filho, Elizabeth Soares Fernandes, Joicy Cortez de Sá Sousa, Márcia Cristina Gonçalves Maciel and Valério Monteiro-Neto
Antibiotics 2025, 14(7), 626; https://doi.org/10.3390/antibiotics14070626 - 20 Jun 2025
Cited by 1 | Viewed by 493
Abstract
Background: Punicalagin (Pg), a major ellagitannin derived from pomegranates, possesses antimicrobial, antioxidant, and immunomodulatory properties, suggesting its potential as an adjunctive therapy for sepsis. Objectives: This study investigated the synergistic effects of punicalagin and meropenem in a murine model of sublethal sepsis induced [...] Read more.
Background: Punicalagin (Pg), a major ellagitannin derived from pomegranates, possesses antimicrobial, antioxidant, and immunomodulatory properties, suggesting its potential as an adjunctive therapy for sepsis. Objectives: This study investigated the synergistic effects of punicalagin and meropenem in a murine model of sublethal sepsis induced by cecal ligation and puncture (CLP). Methods: Mice were treated with punicalagin and meropenem, and multiple parameters were analyzed, including hematological indices, bacterial burden, lymphoid organ cellularity, cytokine profiles (IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, TNF-α), nitric oxide (NO) production, and organ histopathology. Results: Punicalagin enhanced NO-mediated antimicrobial responses, increased neutrophil migration, preserved lymphoid cellularity, and significantly reduced the bacterial translocation. Combined therapy with meropenem improved systemic IL-10 levels and mitigated histopathological damage in the liver, kidney, intestine, and lung. Importantly, punicalagin did not induce thrombocytopenia. Conclusions: These results support the potential of punicalagin as an adjunctive agent to antibiotics for sepsis treatment, offering both antimicrobial and immunoregulatory benefits. Further studies are required to explore its clinical applicability. Full article
Show Figures

Figure 1

16 pages, 3242 KiB  
Article
Rapid Bactericidal Activity of Punica granatum L. Peel Extract: A Natural Alternative for Mastitis Prevention in Dairy Cattle
by Carenn Rodrigues e Almeida Silva, Camila Silva Vidal, Sergio Martins de Andrade Filho, Izabela Martins Agatão, Lidiane Coelho Berbert, João Bosco de Salles, Alexander Machado Cardoso, Ricardo Machado Kuster, Cristiane Pimentel Victório and Maria Cristina de Assis
Molecules 2025, 30(11), 2387; https://doi.org/10.3390/molecules30112387 - 29 May 2025
Viewed by 521
Abstract
The increasing prevalence of bacterial resistance to conventional disinfectants and antibiotics has intensified the search for effective, natural alternatives in the dairy industry. This study evaluates the bactericidal efficacy of Punica granatum L. (pomegranate) peel ethanolic extract, focusing on its application in pre- [...] Read more.
The increasing prevalence of bacterial resistance to conventional disinfectants and antibiotics has intensified the search for effective, natural alternatives in the dairy industry. This study evaluates the bactericidal efficacy of Punica granatum L. (pomegranate) peel ethanolic extract, focusing on its application in pre- and post-dipping procedures for mastitis prevention. The extract exhibited potent activity against Escherichia coli and Staphylococcus aureus, two major mastitis pathogens. At a concentration of 10 mg/mL, the extract induced significant membrane disruption within 30 s of exposure, as evidenced by propidium iodide uptake and elevated extracellular DNA levels (Escherichia coli: 64.25 ng/μL; Staphylococcus aureus: 83.25 ng/μL) compared to controls (11.20 ng/μL and 35.20 ng/μL, respectively; p < 0.05). Complete growth inhibition (100%) was achieved within 30 s at 25 and 50 mg/mL, matching the efficacy of commercial chlorhexidine and high-concentration hypochlorite. Phytochemical analysis identified punicalagin as the predominant bioactive compound. These findings establish Punica granatum peel extract as a fast-acting bactericidal agent, exhibiting an efficacy comparable to or exceeding that of conventional disinfectants. Its rapid action and plant-based origin highlight its potential as a viable alternative for the prevention and control of bovine mastitis in dairy farming. Full article
(This article belongs to the Special Issue Biological Activity of Plant Compounds and Extract, 3rd Edition)
Show Figures

Figure 1

15 pages, 1162 KiB  
Article
Effects of Adding Punicalagin or Oleuropein to TRIS Diluent on Quality of Frozen–Thawed Semen from Rams
by Mohamed Shehab-El-Deen, Mohamed Ali, Ibrahim Alolayan, Abdullah Aljuaythin, Yasser Alrauji, Soliman Aldobaib and Shaaban S. Elnesr
Animals 2025, 15(9), 1242; https://doi.org/10.3390/ani15091242 - 28 Apr 2025
Viewed by 530
Abstract
This study aimed to investigate the effects of adding different levels of punicalagin or oleuropein to TRIS diluent on the quality of frozen–thawed semen from Najdi rams. Semen was diluted using TRIS-based diluter with 15% egg yolk (control group); supplemented with 0.1, 0.5, [...] Read more.
This study aimed to investigate the effects of adding different levels of punicalagin or oleuropein to TRIS diluent on the quality of frozen–thawed semen from Najdi rams. Semen was diluted using TRIS-based diluter with 15% egg yolk (control group); supplemented with 0.1, 0.5, or 1 mg/100 mL punicalagin (in Experiment 1); or supplemented with 1, 2.5, or 5 mg/100 mL oleuropein (in Experiment 2). The collected semen was evaluated and cryopreserved, with the motility and concentration of sperm assessed using a CASA system. The results showed that the total motile spermatozoa (TMS), percentage of progressive motile spermatozoa (PMS), curvilinear velocity (VCL), rectilinear velocity, average path velocity (VAP), linearity coefficient, straightness index, minor defects, and sperm vitality were higher in the 0.1 mg/100 mL punicalagin group (p < 0.05) than in other groups. HOST% post-thawing was significantly higher in all punicalagin groups compared to the control group (p < 0.001). The percentages of PMS, TMS, VCL, minor defects, and sperm vitality were higher in the 1 mg/100 mL oleuropein group (p < 0.05) than in other groups. Oleuropein supplementation at 5 mg/100 mL decreased VAP in cooled sperms, while all levels increased VAP post-thawing. HOST-positive sperms% post-thawing was higher in all oleuropein-treated groups than the control group (p < 0.001). Moreover, oleuropein nonsignificantly increased the acrosome integrity in cooled sperms, while higher studied concentrations of oleuropein (2.5 and 5 mg/100 mL) decreased the acrosome integrity in frozen sperms. In conclusion, adding punicalagin (0.1 mg/100 mL) or oleuropein (1 mg/100 mL) to TRIS diluent improved the quality of frozen–thawed semen from rams. Full article
(This article belongs to the Special Issue Conservation and Sperm Quality in Domestic Animals)
Show Figures

Figure 1

21 pages, 24649 KiB  
Article
In Silico Insights into the Inhibition of ADAMTS-5 by Punicalagin and Ellagic Acid for the Treatment of Osteoarthritis
by Austen N. Breland, Matthew K. Ross, Nicholas C. Fitzkee and Steven H. Elder
Int. J. Mol. Sci. 2025, 26(9), 4093; https://doi.org/10.3390/ijms26094093 - 25 Apr 2025
Viewed by 653
Abstract
ADAMTS-5 (aggrecanase-2) is a major metalloprotease involved in regulating the cartilage extracellular matrix. Due to its role in removing aggrecan in the progression of osteoarthritis (OA), ADAMTS-5 is often regarded as a potential therapeutic target for OA. Punicalagin (PCG), a polyphenolic ellagitannin found [...] Read more.
ADAMTS-5 (aggrecanase-2) is a major metalloprotease involved in regulating the cartilage extracellular matrix. Due to its role in removing aggrecan in the progression of osteoarthritis (OA), ADAMTS-5 is often regarded as a potential therapeutic target for OA. Punicalagin (PCG), a polyphenolic ellagitannin found in pomegranate (Punica grunatum L.), and ellagic acid (EA), a hydrolytic metabolite of PCG, have been widely investigated as potential disease-modifying osteoarthritis drugs (DMOADs) due to their potent antioxidant and anti-inflammatory properties, but their interaction with ADAMTS-5 has yet to be determined. In this study, molecular docking simulations were used to predict enzyme–inhibitor binding interactions. The results suggest that both compounds may be able to bind within the active site via the formation of H bonds and interactions between the ligand’s aromatic rings and hydrophobic residue in the enzyme with inhibition constants of 183.3 µM and 1.13 µM for PCG and EA, respectively. Biochemical activity against recombinant human ADAMTS-5 was assessed using a dimethylmethylene blue-based assay to determine residual sulfated glycosaminoglycan (sGAG) in porcine articular cartilage. Although its loss could not be attributed to ADAMTS-5, sGAG was effectively persevered by PCG and EA. The potential conversion of PCG to EA by enzyme-catalyzed hydrolysis activity was then investigated using liquid chromatography–mass spectroscopy to determine the potential for the use of PCG and EA as a prodrug–proactive metabolite pair in the development of drug delivery systems to arthritic synovial joints. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Figure 1

13 pages, 6410 KiB  
Article
In Vitro Inhibitory Activity of Corilagin and Punicalagin Against Toxoplasma gondii and Their Mechanism(s) of Action
by Nicole T. Green-Ross, Homa Nath Sharma, Audrey Napier, Boakai K. Robertson, Robert L. Green and Daniel A. Abugri
Antibiotics 2025, 14(4), 336; https://doi.org/10.3390/antibiotics14040336 - 24 Mar 2025
Cited by 1 | Viewed by 589
Abstract
Background/Objectives: Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii. The parasite infection in humans continues to rise due to an increasing seroprevalence rate in domestic and wild warm-blooded animals that serve as a major reservoir of the parasite. There are fewer [...] Read more.
Background/Objectives: Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii. The parasite infection in humans continues to rise due to an increasing seroprevalence rate in domestic and wild warm-blooded animals that serve as a major reservoir of the parasite. There are fewer drugs available for the treatment of toxoplasmosis. However, these drugs are limited in efficacy against tachyzoites and bradyzoites. Also, there are clinical side effects and geographical barriers to their use, especially in immunocompromised patients, children, and pregnant women. Tannins, a class of natural products, are known to have antimicrobial properties. However, little is known about the effects of Corilagin (CG) and Punicalagin (PU), which are classified as tannins, on T. gondii growth and their possible mechanism of action in vitro. We hypothesize that CG and PU could inhibit T. gondii growth in vitro and cause mitochondria membrane disruption via oxidative stress. Methods: Here, we investigated the anti-T. gondii activity of the two named tannins using a fluorescent-based reporter assay. Results: The 50% effective concentrations (EC50s) values for CG and PU that inhibited T. gondii parasites growth in vitro were determined to be 3.09 and 19.33 µM, respectively. Pyrimethamine (PY) was used as a standard control which gave an EC50 value of 0.25 µM. Interestingly, CG and PU were observed to cause high reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production in tachyzoites. This resulted in a strong mitochondria membrane potential (MMP) disruption in T. gondii tachyzoites. Conclusions: Therefore, the possible mechanism(s) of action of CG and PU against T. gondii is associated with the disruption of the mitochondria redox biology. Thus, the high ROS and MitoSOX produced as a result of these compounds created high oxidative stress, leading to mitochondrial dysfunction. Full article
(This article belongs to the Special Issue Advance in Natural Products: Potential Antimicrobial Targets)
Show Figures

Figure 1

14 pages, 1905 KiB  
Article
Study on the Effects of Tannase on the De Astringency of Pomegranate Juice
by Guida Zhu, Longwen Wang, Han Wang, Zihan Chen, Xue Li, Yi Ji, Jing Yu and Ping Song
Foods 2025, 14(6), 985; https://doi.org/10.3390/foods14060985 - 14 Mar 2025
Viewed by 854
Abstract
Reducing the punicalagin content is an effective strategy for eliminating the astringency of pomegranate juice. In this study, pomegranate juice was used as the raw material, and tannase was applied to convert punicalagin into ellagic acid and gallic acid. The effects of tannase [...] Read more.
Reducing the punicalagin content is an effective strategy for eliminating the astringency of pomegranate juice. In this study, pomegranate juice was used as the raw material, and tannase was applied to convert punicalagin into ellagic acid and gallic acid. The effects of tannase concentration, reaction time, and temperature on juice deastringency were evaluated, along with the antioxidant and physicochemical properties of the treated juice. The results demonstrated that, under optimal conditions (33.9 U/100 mL tannase, 30 °C, 90 min reaction time), the punicalagin content decreased by 27.8%, while the ellagic acid and gallic acid levels increased by 24.2% and 32.3%, respectively, effectively reducing the juice’s astringency. Under these conditions, the total phenolic content reached 110 mg/100 g, with a free radical scavenging capacity of 69.8%, significantly enhancing the juice’s antioxidant properties. These results suggest that tannase treatment of pomegranate juice enhances the polyphenol content, thereby improving its health benefits without compromising the product quality. Full article
(This article belongs to the Topic Sustainable Food Production and High-Quality Food Supply)
Show Figures

Figure 1

16 pages, 2108 KiB  
Article
Influence of Freeze Drying and Spray Drying on the Physical and Chemical Properties of Powders from Cistus creticus L. Extract
by Alicja Kucharska-Guzik, Łukasz Guzik, Anna Charzyńska and Anna Michalska-Ciechanowska
Foods 2025, 14(5), 849; https://doi.org/10.3390/foods14050849 - 1 Mar 2025
Viewed by 1953
Abstract
This study aimed to evaluate the feasibility of producing and characterizing Cistus creticus L. powders obtained through spray drying and freeze drying using maltodextrin and inulin as carriers. Quantitative and qualitative analysis of polyphenols by high-performance liquid chromatography with diode-array detection (HPLC-DAD) and [...] Read more.
This study aimed to evaluate the feasibility of producing and characterizing Cistus creticus L. powders obtained through spray drying and freeze drying using maltodextrin and inulin as carriers. Quantitative and qualitative analysis of polyphenols by high-performance liquid chromatography with diode-array detection (HPLC-DAD) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) identified key bioactive compounds, including punicalagin isomers and their galloyl esters, as well as flavonoids (myricetin-3-galactoside, myricetin-3-rhamnoside, quercetin-3-galactoside, and tiliroside). Phenolics in powders produced by both drying techniques ranged from 73.2 mg to 78.5 mg per g of dry matter. Inulin proved to be as effective as maltodextrin in spray drying, offering a promising alternative for plant-based powder formulation. Antioxidant capacity measured by Trolox equivalent antioxidant capacity assay with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (TEAC ABTS) and ferric reducing antioxidant power (FRAP) assay indicated that spray-dried powders with inulin exhibited antioxidant properties comparable to those with maltodextrin. The results demonstrated that Cistus creticus L. powders obtained with inulin can serve as valuable sources of bioactive compounds with potential health benefits similar to those obtained with maltodextrin. Moreover, from a technological perspective, inulin proved to be an equally efficient carrier in terms of production-process parameters such as moisture content and water activity, making it a viable alternative to maltodextrin in plant-based powder formulations. Full article
Show Figures

Figure 1

19 pages, 3588 KiB  
Article
A Proprietary Punica granatum pericarp Extract, Its Antioxidant Properties Using Multi-Radical Assays and Protection Against UVA-Induced Damages in a Reconstructed Human Skin Model
by Steve Thomas Pannakal, Steven Durand, Julie Gizard, Peggy Sextius, Emilie Planel, Emilie Warrick, Damien Lelievre, Celine Lelievre, Joan Eilstein, Floriane Beaumard, Arpita Prasad, Sanketh Shetty, Arun Duraisamy, Kumar Gaurav, Sherluck John, Adrien Benazzouz, Xavier Fastinger, Dhimoy Roy and Vishal Sharma
Antioxidants 2025, 14(3), 301; https://doi.org/10.3390/antiox14030301 - 28 Feb 2025
Viewed by 1759
Abstract
Background: Within the solar ultraviolet (UV) spectrum, ultraviolet A rays (UVA, 320–400 nm), although less energetic than ultraviolet B rays (UVB, 280–320 nm), constitute at least 95% of solar UV radiation that penetrates deep into the skin The UV rays are associated with [...] Read more.
Background: Within the solar ultraviolet (UV) spectrum, ultraviolet A rays (UVA, 320–400 nm), although less energetic than ultraviolet B rays (UVB, 280–320 nm), constitute at least 95% of solar UV radiation that penetrates deep into the skin The UV rays are associated with both epidermal and dermal damage resulting from the generation of reactive oxygen species (ROS). Among them, the longest UVA wavelengths (UVA1, 340–400 nm) can represent up to 75% of the total UV energy. Therefore, UVA radiation is linked to various acute and chronic conditions, including increased skin pigmentation and photoaging. Despite many advances in the skin photoprotection category, there is still a growing demand for natural daily photoprotection active ingredients that offer broad protection against skin damage caused by UVA exposure. In our quest to discover new, disruptive, next generation of photoprotective ingredients, we were drawn to pomegranate, based on its diverse polyphenolic profile. We investigated the pericarp of the fruit, so far considered as byproducts of the pomegranate supply chain, to design a novel patented extract “POMAOX” with a desired spectrum of phenolic components comprising of αβ-punicalagins, αβ-punicalins and ellagic acid. Methods: Antioxidant properties of POMAOX were measured using in-tubo standard tests capable of revealing a battery of radical oxygen species (ROS): peroxyl radical (ORAC), singlet oxygen (SOAC), superoxide anion (SORAC), peroxynitrite (NORAC), and hydroxyl radical (HORAC). In vitro, confirmation of antioxidant properties was first performed by evaluating protection against UVA-induced lipid peroxidation in human dermal fibroblasts (HDF), via the release of 8 iso-prostanes. The protection offered by POMAOX was further validated in a 3D in vitro reconstructed T-SkinTM model, by analyzing tissue viability/morphology and measuring the release of Matrix Metallopeptidase 1 (MMP-1) & pro-inflammatory mediators (IL-1α, IL-1ra, IL-6, IL-8, GM-CSF, and TNF-α) after UVA1 exposure. Results: POMAOX displayed strong antioxidant activity against peroxynitrite (NORAC) at 1.0–3.0 ppm, comparable to the reference vitaminC, as well as singlet oxygen (SOAC) at 220 ppm, and superoxide radicals with a SORAC value of 500 ppm. Additionally, POMAOX demonstrated strong photoprotection benefit at 0.001% concentration, offering up to 74% protection against UVA-induced lipid peroxidation on HDF, in a similar range as the positive reference, Vitamin E at 0.002% (50 µM), and with higher efficacy than ellagic acid alone at 5 µM. Moreover, our pomegranate-derived extract delivered photoprotection at 0.001%, mitigating dermal damages induced by UVA1, through inhibition of MMP-1 and significant inhibition of pro-inflammatory mediators release (including IL-1α, IL-1ra, IL-6, IL-8, GM-CSF, and TNFα) on an in vitro reconstructed full-thickness human skin model with a similar level of protection to that of Vitamin C tested at 0.035% (200 µM). Conclusions: Overall, the novel pomegranate-derived extract “POMAOX” significantly reduced the impact of UVA on human skin, due to its broad-spectrum antioxidant profile. These findings suggest that POMAOX could offer enhanced protection against the detrimental effects of UV exposure, addressing the growing consumer demand for strong photoprotection with skincare benefits. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

19 pages, 1728 KiB  
Article
Pomegranate Juices: Analytical and Bio-Toxicological Comparison of Pasteurization and High-Pressure Processing in the Development of Healthy Products
by Francesco Cairone, Stefania Cesa, Irene Arpante, Simonetta Cristina Di Simone, Alejandro Han Mendez, Claudio Ferrante, Luigi Menghini, Antonello Filippi, Caterina Fraschetti, Gokhan Zengin, Simone Carradori, Marialucia Gallorini, Luisa Mannina and Mattia Spano
Foods 2025, 14(2), 315; https://doi.org/10.3390/foods14020315 - 18 Jan 2025
Viewed by 1273
Abstract
Two different produced and packaged commercial typologies of pomegranate juice were analyzed for their physicochemical, nutritional, and biological properties. The effects of classical pasteurization (PJ) and high-pressure processing (HP), applied during the productive cycle, were evaluated through several advanced analytical methods, such as [...] Read more.
Two different produced and packaged commercial typologies of pomegranate juice were analyzed for their physicochemical, nutritional, and biological properties. The effects of classical pasteurization (PJ) and high-pressure processing (HP), applied during the productive cycle, were evaluated through several advanced analytical methods, such as CIEL*a*b* colorimetry, HPLC-DAD, DI-ESI-MS and MS/MS, and NMR analyses. Moreover, the exerted biological activity of the two pomegranate juices was monitored through Total Phenolic and Total Flavonoid Contents, antiradical, antioxidant and chelating activity. The potential inhibition of key enzymes of degenerative processes (cholinesterases, tyrosinase) and diabetes (amylase, glucosidase), the allelopathy toward Cichorium intybus, Dicondra repens, and Diplotaxis tenuifolia, and the in vivo toxicity on brine shrimp were also evaluated. The two different applied processing techniques analyzed impacted the bioactive compound’s preservation differently, modifying the phytocomplex profile. HP significantly degrades punicalins and punicalagins, better preserving anthocyanins, if compared to PJ’s impact. Sensory qualities, antioxidant activity, enzymatic inhibition, and ecotoxicological potential were differently impacted by the two applied processes. The obtained results can be beneficial for finding the optimal processing conditions that balance microbial safety with nutritional value preservation, contributing to the development of healthy pomegranate juice products. Full article
Show Figures

Figure 1

29 pages, 5462 KiB  
Article
Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract
by Ghanya Al-Naqeb, Gianluca Zorzi, Amanda Oldani, Alberto Azzalin, Linda Avesani, Flavia Guzzo, Alessia Pascale, Rachele De Giuseppe and Hellas Cena
Int. J. Mol. Sci. 2024, 25(24), 13707; https://doi.org/10.3390/ijms252413707 - 22 Dec 2024
Cited by 3 | Viewed by 1146
Abstract
Cistus monspeliensis L. (C. monspeliensis) is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of C. monspeliensis leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese [...] Read more.
Cistus monspeliensis L. (C. monspeliensis) is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of C. monspeliensis leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese Hamster Ovarian K1 (CHO-K1) cell line. The phytochemical composition of C. monspeliensis extract was evaluated using an untargeted metabolomic approach by employing UPLC-PDA-ESI/MS. The automated in vitro CBMN assay was carried out using image analysis systems with a widefield fluorescence microscope and the ImageStreamX imaging flow cytometer. The phytochemical profile of C. monspeliensis extract showed, as the most abundant metabolites, punicalagin, myricetin, gallocathechin, and a labdane-type diterpene. C. monspeliensis, at the tested concentrations of 50, 100, and 200 μg/mL, did not induce significant micronuclei frequency, thus indicating the absence of a genotoxic potential. When testing the C. monspeliensis extract for antigenotoxicity in the presence of MMC, we observed a hormetic concentration-dependent effect, where low concentrations resulted in a significant protective effect against MMC-induced micronuclei frequency, and higher concentrations resulted in no effect. In conclusion, our findings demonstrate that C. monspeliensis extract is not genotoxic and, at low concentration, exhibits an antigenotoxic effect. In relation to this final point, C. monspeliensis may act as a potential chemo-preventive against genotoxic agents. Full article
Show Figures

Figure 1

24 pages, 6517 KiB  
Review
Antiangiogenic Potential of Pomegranate Extracts
by Riccardo Tornese, Anna Montefusco, Rocco Placì, Teodoro Semeraro, Miriana Durante, Monica De Caroli, Gianpiero Calabrese, Anna Eleonora Caprifico and Marcello Salvatore Lenucci
Plants 2024, 13(23), 3350; https://doi.org/10.3390/plants13233350 - 29 Nov 2024
Cited by 3 | Viewed by 3172
Abstract
Pomegranate (Punica granatum L.) has long been recognised for its rich antioxidant profile and potential health benefits. Recent research has expanded its therapeutic potential to include antiangiogenic properties, which are crucial for inhibiting the growth of tumours and other pathological conditions involving [...] Read more.
Pomegranate (Punica granatum L.) has long been recognised for its rich antioxidant profile and potential health benefits. Recent research has expanded its therapeutic potential to include antiangiogenic properties, which are crucial for inhibiting the growth of tumours and other pathological conditions involving aberrant blood vessel formation. This review consolidates current findings on the antiangiogenic effects of pomegranate extracts. We explore the impact of pomegranate polyphenols, including ellagic acid, punicalagin, anthocyanins, punicic acid and bioactive polysaccharides on key angiogenesis-related pathways and endothelial cell function. Emphasis is placed on the effects of these extracts as phytocomplexes rather than isolated compounds. Additionally, we discuss the use of pomegranate by-products, such as peels and seeds, in the preparation of extracts within a green chemistry and circular economy framework, highlighting their value in enhancing extract efficacy and sustainability. By primarily reviewing in vitro and in vivo preclinical studies, we assess how these extracts modulate angiogenesis across various disease models and explore their potential as adjunctive therapies for cancer and other angiogenesis-driven disorders. This review also identifies existing knowledge gaps and proposes future research directions to fully elucidate the clinical utility of pomegranate extracts in therapeutic applications. Full article
(This article belongs to the Collection Feature Review Papers in Phytochemistry)
Show Figures

Figure 1

15 pages, 1644 KiB  
Article
Combining the Powerful Antioxidant and Antimicrobial Activities of Pomegranate Waste Extracts with Whey Protein Coating-Forming Ability for Food Preservation Strategies
by Sara Viggiano, Rita Argenziano, Adriana Lordi, Amalia Conte, Matteo Alessandro Del Nobile, Lucia Panzella and Alessandra Napolitano
Antioxidants 2024, 13(11), 1394; https://doi.org/10.3390/antiox13111394 - 15 Nov 2024
Cited by 2 | Viewed by 1448
Abstract
Different solvents water, ethanol and ethanol/water (6:4 v/v), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract [...] Read more.
Different solvents water, ethanol and ethanol/water (6:4 v/v), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract (ethanol/water (6:4 v/v) was shown to contain mostly ellagic acid and punicalagin as phenolic compounds (5% overall) and hydrolysable tannins (16% as ellagic acid equivalents) and was able to inhibit the growth of the acidophilic Alicyclobacillus acidoterrestris at a concentration as low as 1%. The preservation of the organoleptic profile of A. acidoterrestris-inoculated apple juice with extract at 1% over 20 days was also observed thanks to the complete inhibition of bacterial growth, while the extract at 0.1% warranted a significant (40%) inhibition of the enzymatic browning of apple smoothies over the first 30 min. When incorporated in whey proteins’ isolate (WPI) at 5% w/w, the hydroalcoholic extract conferred well appreciable antioxidant properties to the resulting coating-forming hydrogel, comparable to those expected for the pure extract considering the amount present. The WPI coatings loaded with the hydroalcoholic extract at 5% were able to delay the browning of cut fruit by ca. 33% against a 22% inhibition observed with the sole WPI. In addition, the functionalized coating showed an inhibition of lipid peroxidation of Gouda cheese 2-fold higher with respect to that observed with WPI alone. These results open good perspectives toward sustainable food preservation strategies, highlighting the potential of PPS extract for the implementation of WPI-based active packaging. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Graphical abstract

31 pages, 3191 KiB  
Article
In Vitro Assessment of the Neuroprotective Effects of Pomegranate (Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress
by Mehdi Alami, Kaoutar Boumezough, Echarki Zerif, Nada Zoubdane, Abdelouahed Khalil, Ton Bunt, Benoit Laurent, Jacek M. Witkowski, Charles Ramassamy, Samira Boulbaroud, Tamas Fulop and Hicham Berrougui
Nutrients 2024, 16(21), 3667; https://doi.org/10.3390/nu16213667 - 28 Oct 2024
Cited by 6 | Viewed by 2747
Abstract
Background: Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer’s disease (AD). Purpose: To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and [...] Read more.
Background: Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer’s disease (AD). Purpose: To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). Methods: We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ1-42)-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42-induced Tau-181 phosphorylation (pTau-181). Results: Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42-induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. Conclusion: Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42-induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

Back to TopTop