Effects of Adding Punicalagin or Oleuropein to TRIS Diluent on Quality of Frozen–Thawed Semen from Rams
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments and Animals
2.2. Semen Collection
2.3. Experiment 1: Punicalagin Supplementation
2.4. Experiment 2: Oleuropein Supplementation
2.5. Cryopreservation
2.6. Assessment of Sperm Motility
2.7. Assessment of Spermatozoa Morphology, Plasma Membranes Functionality and Acrosome Integrity
2.8. Statistical Analysis
3. Results
3.1. First Experiment Results
3.1.1. Effects of Adding Punicalagin to Najdi Ram Semen Extender on Motility Kinetics and Characteristics in Cooled Sperms
3.1.2. Effects of Adding Punicalagin to Najdi Ram Semen Extender on Sperm Morphology, Acrosome Integrity, and Plasma Membrane Functionality in Cooled Sperms
3.1.3. Effects of Adding Punicalagin to Najdi Ram Semen Extender on Motility Kinetics and Characteristics of Sperm Post-Thawing
3.1.4. Effects of Adding Punicalagin to Najdi Ram Semen Extender on Sperm Vitality, Morphology, Acrosome Integrity and Plasma Membrane Functionality Post-Thawing
3.2. Second Experiment Results
3.2.1. Effects of Adding Oleuropein to Najdi Ram Semen Extender on Motility Kinetics and Characteristics in Cooled Sperms
3.2.2. Effects of Adding Oleuropein to Najdi Ram Semen Extender on Sperm Morphology, Acrosome Integrity, and Plasma Membrane Functionality in Cooled Sperms
3.2.3. Effects of Adding Oleuropein to Najdi Ram Semen Extender on Motility Kinetic and Characteristic Post-Thawing
3.2.4. Effects of Adding Oleuropein to Najdi Ram Semen Extender on Sperm Vitality, Morphology, and Acrosome Integrity and Plasma Membrane Functionality Post-Thawing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, D.; Balagnur, K. Recent advances in cryopreservation of semen and artificial insemination in sheep: A review. Indian J. Small Rumin. 2019, 25, 134–147. [Google Scholar] [CrossRef]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2022, 246, 106904. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Kawamura, K.; Unuma, T.; Takegoshi, Y. Cryopreservation of the sperm of the Japanese bitterling. J. Fish Biol. 2001, 58, 670–681. [Google Scholar] [CrossRef]
- Mazur, P.; Leibo, S.P.; Seidel, G.E., Jr. Cryopreservation of the germplasm of animals used in biological and medical research: Importance, impact, status, and future directions. Biol. Reprod. 2008, 78, 2–12. [Google Scholar] [CrossRef]
- Grötter, L.G.; Cattaneo, L.; Marini, P.E.; Kjelland, M.E.; Ferré, L.B. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod. Domest. Anim. 2019, 54, 655–665. [Google Scholar] [CrossRef]
- Öztürk, A.E.; Bucak, M.N.; Bodu, M.; Başpınar, N.; Çelik, İ.; Shu, Z.; Keskin, N.; Gao, D. Cryobiology and cryopreservation of sperm. In Cryopreservation-Current Advances and Evaluations; Quain, M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Pour, H.A.; Tahmasbi, A.; Naserain, A.A. The influence of vitamin E on semen characteristics of ghezel rams in during. Eur. J. Zool. Res. 2013, 2, 94–99. [Google Scholar]
- Sharafi, M.; Borghei-Rad, S.M.; Hezavehei, M.; Shahverdi, A.; Benson, J.D. Cryopreservation of Semen in Domestic Animals: A Review of Current Challenges, Applications, and Prospective Strategies. Animals 2022, 12, 3271. [Google Scholar] [CrossRef] [PubMed]
- White, I.G. Lipids and calcium uptake of sperm in relation to cold shock and preservation: A review. Reprod. Fertil. Dev. 1993, 5, 639–658. [Google Scholar] [CrossRef] [PubMed]
- Samadian, F.; Towhidi, A.; Rezayazdi, K.; Bahreini, M. Effects of dietary n-3 fatty acids on characteristics and lipid composition of ovine sperm. Animal 2010, 4, 2017–2022. [Google Scholar] [CrossRef]
- Agarwal, A.; Prabakaran, S.; Allamaneni, S. What an andrologist/urologist should know about free radicals and why. Urology 2006, 67, 2–8. [Google Scholar] [CrossRef]
- Amidi, F.; Pazhohan, A.; Shabani Nashtaei, M.; Khodarahmian, M.; Nekoonam, S. The role of antioxidants in sperm freezing: A review. Cell Tissue Bank 2016, 17, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Koppers, A.J.; De Iuliis, G.N.; Finnie, J.M.; McLaughlin, E.A.; Aitken, R.J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 2008, 93, 3199–3207. [Google Scholar] [CrossRef]
- O’Flaherty, C.; de Lamirande, E.; Gagnon, C. Positive role of reactive oxygen species in mammalian sperm capacitation: Triggering and modulation of phosphorylation events. Free Radic. Biol. Med. 2006, 41, 528–540. [Google Scholar] [CrossRef]
- de Castro, L.S.; de Assis, P.M.; Siqueira, A.F.; Hamilton, T.R.; Mendes, C.M.; Losano, J.D.; Nichi, M.; Visintin, J.A.; Assumpção, M.E. Sperm oxidative stress is detrimental to embryo development: A dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxidative Med. Cell. Longev. 2016, 2016, 8213071. [Google Scholar] [CrossRef]
- Alharbi, Y.M.; Ali, M.; Alharbi, M.S. Impact of the Antioxidant Hydroxytyrosol on the Quality of Post-Thawed Stallion Semen. Vet. Med. Int. 2024, 2024, 6558480. [Google Scholar] [CrossRef] [PubMed]
- de la Puerta, R.; Domínguez, M.E.M.; Ruíz-Gutíerrez, V.; Flavill, J.A.; Hoult, J.R.S. Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci. 2001, 69, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Bilal, R.M.; Liu, C.; Zhao, H.; Wang, Y.; Farag, M.R.; Alagawany, M.; Hassan, F.U.; Elnesr, S.S.; Elwan, H.; Qiu, H.; et al. Olive oil: Nutritional applications, beneficial health aspects and its prospective application in poultry production. Front. Pharmacol. 2021, 12, 723040. [Google Scholar] [CrossRef]
- Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef]
- Mora, M.P.B.; Kosior, M.A.; Longobardi, V.; Del Prete, C.; Fedele, F.L.; Staropoli, A.; Aiudi, G.G.; Cocchia, N.; Gasparrini, B. Incorporating olive (Olea europaea L.) fruit extracts in a tris-based extender improves buffalo semen cryotolerance by reducing oxidative stress. Anim. Reprod. Sci. 2025, 274, 107787. [Google Scholar] [CrossRef]
- Vaccaro, F.; Corsaro, R.; Miraldi, E.; Collodel, G.; Biagi, M.; Signorini, C.; Baini, G.; Micheli, L.; Ponchia, R.; Cappellucci, G.; et al. Olea europaea leaf extract: Antioxidant properties and supplement in human sperm cryopreservation. J. Biol. Regul. Homeost. Agents 2023, 37, 5795–5809. [Google Scholar]
- Li, D.; Zhang, W.; Li, K.; Tian, X.; Yang, G.; Yu, T. Oleuropein effectively improves the quality of pig sperm at 17 °C. Ann. Agric. Crop Sci. 2021, 6, 1102. [Google Scholar]
- Javed, M.; Tunio, M.T.; Abdul Rauf, H.; Bhutta, M.F.; Naz, S.; Iqbal, S. Addition of pomegranate juice (Punica granatum) in tris-based extender improves post-thaw quality, motion dynamics and in vivo fertility of Nili Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia 2019, 51, e13322. [Google Scholar] [CrossRef] [PubMed]
- Aboelmaaty, A.M.; Kotp, M.S.; Fadl, A.M.; Abdelnaby, E.A.; El-Seadawy, I.E.; El-Sherbiny, H.R. Methanolic pomegranate dried peel extract improves cryopreserved semen quality and antioxidant capacity of rams. Asian Pac. J. Reprod. 2023, 12, 229–238. [Google Scholar] [CrossRef]
- Gabr, A.A.; Hammad, M.E.; El-Sherbieny, M.A.; Ouda, A.B.; Yousif, A.I. Effect of Addition of Pomegranate Juice (Punica granatum) in Tris-based Extenderon Physical, Kinetic Parameters of Spermatozoa in Cryopreserved Ossimi Ram Semen. J. Sustain. Agric. Environ. Sci. 2022, 1, 65–79. [Google Scholar]
- Shehab-El-Deen, M.; Ali, M.; Al-Sharari, M. Effects of extenders supplementation with gum arabic and antioxidants on ram spermatozoa quality after cryopreservation. Animals 2023, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Musa, M.; Alfadul, S.; Al-Sobayel, K. Effect of gum arabic on stallion sperm survival during cold storage and post freezing. Mac. Vet. Rev. 2018, 41, 21–31. [Google Scholar] [CrossRef]
- Yániz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C. CASA-Mot in mammals: An update. Reprod. Fertil. Dev. 2018, 30, 799–809. [Google Scholar] [CrossRef]
- Kanno, C.; Sun-Sik, K.; Sakamoto, K.Q.; Yanagawa, Y.; Katagiri, S.; Nagano, M. Relationship between frame rates and subpopulation structure of bovine sperm divided by their motility analyzed by a computer-assisted sperm analysis system. Anim. Sci. J. 2021, 93, e13796. [Google Scholar] [CrossRef]
- Fonseca, J.F.; Torres, C.A.A.; Maffili, V.V.; Borges, A.M.; Santos, A.D.F.; Rodrigues, M.T.; Oliveira, R.F.M. The hypoosmotic swelling test in fresh goat spermatozoa. Anim. Reprod. 2005, 2, 139–144. [Google Scholar]
- Hafez, E.S.E. (Ed.) Semen evaluation. In Reproduction in Farm Animals; Lea and Febiger: Philadelphia, PA, USA, 1993; pp. 405–423. [Google Scholar]
- Evans, G.; Maxwell, W.M.C. Handling and examination semen. In Salamon’s Artificial Insemination of Sheep and Goat; Maxwell, W.M.C., Ed.; Butterworth’s: Sydney, Australia, 1987; pp. 93–106. [Google Scholar]
- Murcia-Robayo, R.Y.; Jouanisson, E.; Beauchamp, G.; Diaw, M. Effects of staining method and clinician experience on the evaluation of stallion sperm morphology. Anim. Reprod. Sci. 2018, 188, 165–169. [Google Scholar] [CrossRef]
- Collodel, G.; Castellini, C.; Lee, J.C.Y.; Signorini, C. Relevance of fatty acids to sperm maturation and quality. Oxidative Med. Cell. Longev. 2020, 2020, 7038124. [Google Scholar] [CrossRef] [PubMed]
- Ye, A.Q.; Edwards, P.J.B.; Gilliland, J.; Jameson, G.B.; Singh, H. Temperature-dependent complexation between sodium caseinate and gum Arabic. Food Hydrocoll. 2012, 26, 82–88. [Google Scholar] [CrossRef]
- Hubalek, Z. Protectants used in the cryopreservation of microorganisms. Cryobiology 2003, 46, 205–229. [Google Scholar] [CrossRef]
- Anand, M.; Yadav, S.; Shukla, P. Cryoprotectant in semen extender: From egg yolk to low-density lipoprotein (LDL). Review Article. Livest. Res. Int. 2014, 2, 48–53. [Google Scholar]
- Robayo, I.; Montenegro, V.; Valdés, C.; Cox, J.F. CASA assessment of kinematic parameters of ram spermatozoa and their relationship to migration effi ciency in ruminant cervical mucus. Reprod. Domest. Aninm. 2008, 43, 393–399. [Google Scholar] [CrossRef]
- Imbachí, F.B.; Zalazar, L.; Pastore, J.I.; Greco, M.B.; Iniesta-Cuerda, M.; Garde, J.J.; Soler, A.J.; Ballarin, V.; Cesari, A. Objective evaluation of ram and buck sperm motility by using a novel sperm tracker software. Reproduction 2018, 156, 11–21. [Google Scholar] [CrossRef]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17. [Google Scholar] [CrossRef]
- Bromfield, E.G.; Nixon, B. The function of chaperone proteins in the assemblage of protein complexes involved in gamete adhesion and fusion processes. Reproduction 2013, 145, R31–R42. [Google Scholar] [CrossRef]
- Holt, W.; North, R. Determination of lipid composition andthermal phase transition in an enriched plasma membrane fractionfrom ram spermatozoa. J. Reprod. Fertil. 1985, 73, 285–294. [Google Scholar] [CrossRef]
- Sangeeta, S.; Arangasamy, A.; Kulkarni, S.; Selvaraju, S. Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen. Anim. Reprod. Sci. 2015, 161, 82–88. [Google Scholar] [CrossRef]
- Aitken, R.J. Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 1995, 7, 659–668. [Google Scholar] [CrossRef]
- Mara, L.; Accardo, C.; Pilichi, S.; Dattena, M.; Chessa, F.; Chessa, B.; Branca, A.; Cappai, P. Benefits of TEMPOL on ram semen motility and in vitro fertility: A preliminary study. Theriogenology 2005, 63, 2243–2253. [Google Scholar] [CrossRef]
- Bucak, M.N.; Coyan, K.; Oztürk, C.; Güngör, S.; Omür, A.D. Methionine supplementation improves ram sperm parameters during liquid storage at 5 °C. Cryobiology 2012, 65, 335–337. [Google Scholar] [CrossRef]
- Marti, E.; Marti, J.I.; Muiño-Blanco, T.; Cebrián-Pérez, J.A. Effect of the cryopreservation process on the activity and immunolocalization of antioxidant enzymes in ram spermatozoa. J. Androl. 2008, 29, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.; Ershad, S.F.; Hosseini, S.M.; Hajian, M.; Ostad-Hosseini, S.; Abid, A.; Tavalaee, M.; Shahverdi, A.; Dizaji, A.V.; Esfahani, M.H.N. Can permeable super oxide dismutase mimetic agents improve the quality of frozen–thawed ram semen? Cryobiology 2013, 66, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, X.; Cao, Y.; An, X.; Chen, J.; Yang, L. Punicalagin Protects against Diabetic Liver Injury by Upregulating Mitophagy and Antioxidant Enzyme Activities. Nutrients 2022, 14, 2782. [Google Scholar] [CrossRef]
- Benchagra, L.; Berrougui, H.; Islam, M.O.; Ramchoun, M.; Boulbaroud, S.; Hajjaji, A.; Fulop, T.; Ferretti, G.; Khalil, A. Antioxidant Effect of Moroccan Pomegranate (Punica granatum L. Sefri Variety) Extracts Rich in Punicalagin against the Oxidative Stress Process. Foods 2021, 10, 2219. [Google Scholar] [CrossRef] [PubMed]
- Demir, T. Effects of green tea powder, pomegranate peel powder, epicatechin and punicalagin additives on antimicrobial, antioxidant potential and quality properties of raw meatballs. Molecules 2021, 26, 4052. [Google Scholar] [CrossRef]
- Mansour, S.W.; Sangi, S.; Harsha, S.; Khaleel, M.A.; Ibrahim, A.R.N. Sensibility of male rats fertility against olive oil, Nigella sativa oil and pomegranate extract. Asian Pac. J. Trop. Biomed. 2013, 3, 563–568. [Google Scholar] [CrossRef]
- Fedder, M.D.; Jakobsen, H.B.; Giversen, I.; Christensen, L.P.; Parner, E.T.; Fedder, J. An extract of pomegranate fruit and galangal rhizome increases the numbers of motile sperm: A prospective, randomised, controlled, double-blinded trial. PLoS ONE 2014, 9, e108532. [Google Scholar] [CrossRef]
- El-Sheshtawy, R.I.; Gamal, A.; El-Nattat, W.S. Effects of pomegranate juice in Tris-based extender on cattle semen quality after chilling and cryopreservation. Asian Pac. J. Reprod. 2016, 5, 335–339. [Google Scholar] [CrossRef]
- Liu, F.; Smith, A.D.; Wang, T.T.Y.; Pham, Q.; Yang, H.; Li, R.W. Multi-omics analysis detected multiple pathways by which pomegranate punicalagin exerts its biological effects in modulating host-microbiota interactions in murine colitis models. Food Funct. 2023, 14, 3824–3837. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.F.; Zhao, X.N.; Zhang, M.; Li, J.Y.; Zhao, C.C.; Wang, S.S.; Shi, H.; Zhou, P.; Wang, L. Punicalagin attenuates ventricular remodeling after acute myocardial infarction via regulating the NLRP3/caspase-1 pathway. Pharm. Biol. 2023, 61, 963–972. [Google Scholar] [CrossRef]
- Uysal, O.; Bucak, M.N. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 2007, 76, 383–390. [Google Scholar] [CrossRef]
- Memon, A.A.; Wahid, H.; Rosnina, Y.; Goh, Y.M.; Ebrahimi, M.; Nadia, F.M. Effect of antioxidants on post thaw microscopic, oxidative stress parameter and fertility of Boer goat spermatozoa in Tris egg yolk glycerol extender. Anim. Reprod. Sci. 2012, 136, 55–60. [Google Scholar] [CrossRef]
- Alamaary, M.S.; Haron, A.W.; Hiew, M.W.; Ali, M. Effects of cysteine and ascorbic acid in freezing extender on sperm characteristics and level of enzymes in post-thawed stallion semen. Vet. Med. Sci. 2020, 6, 666–672. [Google Scholar] [CrossRef]
- Ko, E.Y.; Sabanegh, E.S.; Agarwal, A. Male infertility testing: Reactive oxygen species and antioxidant capacity. Fertil. Steril. 2014, 102, 1518–1527. [Google Scholar] [CrossRef]
- Alirezaei, M.; Kheradmand, A.; Heydari, R.; Tanideh, N.; Neamati, S.; Rashidipour, M. Oleuropein protects against ethanol-induced oxidative stress and modulates sperm quality in the rat testis. Mediterr. J. Nutr. Metab. 2011, 5, 205–211. [Google Scholar] [CrossRef]
- Sarbishegi, M.; Gorgich, E.A.C.; Khajavi, O. Olive leaves extract improved sperm quality and antioxidant status in the testis of rat exposed to rotenone. Nephrourol. Mon. 2017, 9, e47127. [Google Scholar] [CrossRef]
- Khalil, A.A.; Rahman, M.M.; Rauf, A.; Islam, M.R.; Manna, S.J.; Khan, A.A.; Ullah, S.; Akhtar, M.N.; Aljohani, A.S.M.; Al Abdulmonem, W.A.; et al. Oleuropein: Chemistry, extraction techniques and nutraceutical perspectives—An update. Crit. Rev. Food Sci. Nutr. 2024, 64, 9933–9954. [Google Scholar] [CrossRef]
- Krishnappa, B.; Srivastava, S.K.; Kumar, D.; Ghosh, S.K.; Kalyan, D.E.; Paul, R.K.; Bahire, S.V.; Naqvi, S.M.K. Effect of hydroxytyrosol on sperm post-thaw motion and velocity of cryopreserved ram semen. Indian J. Small Rumin. 2018, 24, 75–79. [Google Scholar] [CrossRef]
- McPartlin, L.A.; Suarez, S.S.; Czaya, C.A.; Hinrichs, K.; Bedford-Guaus, S.J. Hyperactivation of Stallion Sperm Is Required for Successful In Vitro Fertilization of Equine Oocytes1. Biol. Reprod. 2009, 81, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Vidament, M.; Magistrini, M.; Le Foll, Y.; Levillain, N.; Yvon, J.M.; Duchamp, G.; Blesbois, E. Temperatures from 4 to 15 °C are suitable for preserving the fertilizing capacity of stallion semen stored for 22 h or more in INRA96 extender. Theriogenology 2012, 78, 297–307. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Sohail, T.; Jiang, C.; Sun, Y.; Wang, J.; Sun, X.; Li, Y. Punicalagin Protects Ram Sperm from Oxidative Stress by Enhancing Antioxidant Capacity and Mitochondrial Potential during Liquid Storage at 4 °C. Animals 2024, 14, 318. [Google Scholar] [CrossRef] [PubMed]
Items/ in Cooled Sperms | Control | Punicalagin (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Punicalagin | P1: 0.1 | P2: 0.5 | P3: 1 | ||
TMS (%) | 88.78 ± 2.57 b | 97.00 ± 0.05 a | 87.30 ± 3.11 b | 86.30 ± 0.57 b | <0.05 |
PMS (%) | 49.72 ± 1.52 b | 67.05 ± 1.24 a | 41.30 ± 0.05 b | 40.05 ± 0.77 b | <0.001 |
VCL (µm/s) | 78.90 ± 0.60 b | 82.23 ± 0.25 a | 75.06 ± 0.10 b | 74.22 ± 0.14 b | <0.001 |
VSL (µm/s) | 30.14 ± 1.27 b | 40.50 ± 0.15 a | 40.30 ± 0.13 a | 38.12 ± 0.15 a | <0.001 |
VAP (µm/s) | 47.27 ± 1.30 b | 57.11 ± 0.35 a | 51.58 ± 0.05 a | 49.33 ± 0.15 a | <0.001 |
LIN (%) | 38.98 ± 1.25 b | 49.13 ± 0.07 a | 53.88 ± 0.24 a | 52.02 ± 0.11 a | <0.001 |
WOB (%) | 60.43 ± 1.11 b | 69.11 ± 0.17 a | 68.97 ± 0.16 a | 66.98 ± 0.09 a | <0.001 |
STR (%) | 64.25 ± 0.89 b | 71.10 ± 0.17 a | 78.12 ± 0.17 a | 77.57 ± 0.06 a | <0.001 |
Items/ in Cooled Sperms | Control | Punicalagin (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Punicalagin | P1: 0.1 | P2: 0.5 | P3: 1 | ||
Normal (%) | 81.26 ± 4.45 | 75.21 ± 0.28 | 83.16 ± 2.81 | 81.09 ± 0.69 | 0.391 |
Major defect (%) | 8.37 ± 1.84 | 6.77 ± 0.29 | 5.64 ± 1.02 | 5.79 ± 0.33 | 0.419 |
Minor defect (%) | 10.28 ± 2.66 | 18.01 ± 0.58 | 11.18 ± 1.80 | 13.11 ± 0.35 | 0.077 |
Acrosome integrity (%) | 87.50 ± 3.68 | 91.27 ± 0.34 | 93.07 ± 1.34 | 92.77 ± 0.21 | 0.357 |
HOST (%) | 78.23 ± 1.03 b | 67.04 ± 2.02 b | 66.53 ± 1.48 b | 82.72 ± 1.12 a | <0.001 |
Items/ Post-Thawing | Control | Punicalagin (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Punicalagin | P1: 0.1 | P2: 0.5 | P3: 1 | ||
TMS (%) | 27.65 ± 2.65 b | 64.25 ± 0.14 a | 48.00 ± 0.05 a | 39.30 ± 0.92 a | <0.001 |
PMS (%) | 13.43 ± 0.03 b | 37.30 ± 0.28 a | 13.35 ± 0.08 b | 8.10 ± 0.23 b | <0.001 |
VCL (µm/s) | 78.79 ± 0.24 | 81.27 ± 0.04 | 69.06 ± 6.02 | 76.09 ± 0.14 | 0.091 |
VSL (µm/s) | 44.18 ± 0.10 b | 53.15 ± 0.12 a | 46.75 ± 2.15 b | 39.77 ± 0.68 b | <0.001 |
VAP (µm/s) | 55.34 ± 0.07 b | 62.81 ± 0.06 a | 52.33 ± 2.05 b | 51.17 ± 0.48 b | <0.001 |
LIN (%) | 54.82 ± 0.13 b | 64.60 ± 0.23 a | 58.36 ± 3.27 b | 52.39 ± 0.69 b | <0.005 |
WOB (%) | 69.73 ± 0.09 a | 76.65 ± 0.14 a | 51.41 ± 1.42 b | 67.69 ± 0.48 a | <0.05 |
STR (%) | 78.46 ± 0.11 b | 84.22 ± 0.14 a | 73.93 ± 0.98 b | 77.41 ± 0.48 b | <0.001 |
Items/ Post-Thawing | Control | Punicalagin (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Punicalagin | P1: 0.1 | P2: 0.5 | P3: 1 | ||
Sperm vitality (%) | 30.45 ± 1.65 b | 42.42 ± 3.55 a | 13.47 ± 2.46 b | 19.23 ± 1.10 b | <0.001 |
Normal (%) | 90.37 ± 0.47 | 84.54 ± 0.23 | 85.34 ± 0.90 | 84.55 ± 2.47 | 0.115 |
Major defect (%) | 4.33 ± 0.39 | 2.94 ± 0.48 | 2.88 ± 0.19 | 3.31 ± 0.61 | 0.257 |
Minor defect (%) | 5.46 ± 0.09 b | 12.51 ± 0.25 a | 11.77 ± 0.71 a | 12.12 ± 1.98 a | <0.05 |
Acrosome integrity (%) | 94.70 ± 0.95 | 96.46 ± 0.59 | 96.56 ± 0.27 | 95.96 ± 0.83 | 0.331 |
HOST (%) | 60.69 ± 2.40 b | 65.50 ± 2.24 a | 64.25 ± 1.92 a | 68.44 ± 1.80 a | <0.001 |
Items/ in Cooled Sperms | Control | Oleuropein (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Oleuropein | O1: 1 | O2: 2.5 | O3: 5 | ||
TMS (%) | 91.45 ± 2.97 | 94.00 ± 1.90 | 81.05 ± 5.74 | 86.40 ± 0.63 | 0.104 |
PMS (%) | 51.25 ± 1.76 | 69.70 ± 1.67 | 50.25 ± 1.65 | 46.85 ± 1.81 | 0.070 |
VCL (µm/s) | 79.50 ± 0.69 b | 87.63 ± 2.56 a | 83.14 ± 2.04 ab | 80.97 ± 0.09 b | <0.05 |
VSL (µm/s) | 31.41 ± 1.46 | 27.92 ± 1.34 | 29.74 ± 1.46 | 28.20 ± 0.85 | 0.284 |
VAP (µm/s) | 48.57 ± 1.50 a | 48.13 ± 0.07 a | 46.60 ± 0.49 ab | 44.52 ± 0.21 b | <0.05 |
LIN (%) | 40.23 ± 1.44 | 32.74 ± 2.30 | 36.79 ± 2.71 | 35.90 ± 1.04 | 0.145 |
WOB (%) | 61.55 ± 1.28 a | 55.62 ± 1.53 b | 56.85 ± 0.89 b | 55.74 ± 0.29 b | <0.05 |
STR (%) | 65.14 ± 1.02 | 58.58 ± 2.55 | 64.42 ± 3.74 | 64.12 ± 1.54 | 0.283 |
Items/ in Cooled Sperms | Control | Oleuropein (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Oleuropein | O1: 1 | O2: 2.5 | O3: 5 | ||
Normal (%) | 82.31 ± 3.60 | 86.19 ± 0.68 | 91.61 ± 0.11 | 89.04 ± 0.23 | 0.134 |
Major defect (%) | 7.74 ± 1.56 a | 5.29 ± 0.26 b | 3.39 ± 0.07 b | 1.81 ± 0.24 b | <0.05 |
Minor defect (%) | 9.94 ± 2.09 | 8.51 ± 0.41 | 4.99 ± 0.19 | 9.14 ± 0.48 | 0.213 |
Acrosome integrity (%) | 89.00 ± 3.22 | 93.83 ± 0.36 | 96.29 ± 0.07 | 97.85 ± 0.52 | 0.089 |
HOST (%) | 72.01 ± 1.02 | 76.94 ± 1.09 | 74.79 ± 4.21 | 69.50 ± 2.67 | 0.356 |
Items/ Post-Thawing | Control | Oleuropein (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Oleuropein | O1: 1 | O2: 2.5 | O3: 5 | ||
TMS (%) | 25.07 ± 2.10 b | 42.75 ± 3.22 a | 49.20 ± 3.00 a | 70.24 ± 5.19 a | <0.001 |
PMS (%) | 13.46 ± 0.32 b | 30.26 ± 4.72 a | 23.25 ± 0.89 ab | 47.13 ± 4.57 a | <0.001 |
VCL (µm/s) | 78.79 ± 0.08 b | 81.00 ± 0.80 a | 81.33 ± 0.03 a | 79.61 ± 0.77 ab | <0.05 |
VSL (µm/s) | 44.28 ± 0.14 b | 50.98 ± 2.44 a | 51.11 ± 0.11 a | 49.70 ± 1.85 a | <0.05 |
VAP (µm/s) | 55.41 ± 0.10 b | 61.18 ± 1.70 a | 61.44 ± 0.39 a | 58.72 ± 1.96 a | <0.05 |
LIN (%) | 54.96 ± 0.12 b | 61.50 ± 2.54 a | 61.25 ± 0.49 a | 62.39 ± 2.19 a | <0.05 |
WOB (%) | 69.83 ± 0.07 | 74.62 ± 1.42 | 74.58 ± 0.28 | 73.70 ± 1.89 | 0.640 |
STR (%) | 78.54 ± 0.08 | 82.11 ± 1.92 | 81.87 ± 1.08 | 84.59 ± 1.53 | 0.580 |
Items/ Post-Thawing | Control | Oleuropein (mg/100 mL) | p-Value | ||
---|---|---|---|---|---|
0.0 mg/100 mL Oleuropein | O1: 1 | O2: 25 | O3: 5 | ||
Sperm vitality (%) | 28.65 ± 2.14 b | 47.20 ± 2.53 a | 45.47 ± 1.24 a | 34.68 ± 1.27 b | <0.001 |
Normal (%) | 89.88 ± 0.56 a | 88.13 ± 0.29 a | 85.29 ± 0.31 b | 84.39 ± 0.15 b | <0.001 |
Major defect (%) | 4.74 ± 0.46 b | 5.13 ± 0.12 b | 5.81 ± 0.31 b | 8.51 ± 0.33 a | <0.001 |
Minor defect (%) | 5.37 ± 0.10 b | 6.73 ± 0.16 a | 8.89 ± 0.63 a | 7.09 ± 0.48 a | <0.002 |
Acrosome integrity (%) | 94.71 ± 0.54 a | 94.16 ± 0.16 a | 93.15 ± 0.33 b | 89.92 ± 0.36 b | <0.001 |
HOST (%) | 55.87 ± 2.48 b | 69.85 ± 1.11 a | 68.66 ± 1.36 a | 65.07 ± 1.32 a | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehab-El-Deen, M.; Ali, M.; Alolayan, I.; Aljuaythin, A.; Alrauji, Y.; Aldobaib, S.; Elnesr, S.S. Effects of Adding Punicalagin or Oleuropein to TRIS Diluent on Quality of Frozen–Thawed Semen from Rams. Animals 2025, 15, 1242. https://doi.org/10.3390/ani15091242
Shehab-El-Deen M, Ali M, Alolayan I, Aljuaythin A, Alrauji Y, Aldobaib S, Elnesr SS. Effects of Adding Punicalagin or Oleuropein to TRIS Diluent on Quality of Frozen–Thawed Semen from Rams. Animals. 2025; 15(9):1242. https://doi.org/10.3390/ani15091242
Chicago/Turabian StyleShehab-El-Deen, Mohamed, Mohamed Ali, Ibrahim Alolayan, Abdullah Aljuaythin, Yasser Alrauji, Soliman Aldobaib, and Shaaban S. Elnesr. 2025. "Effects of Adding Punicalagin or Oleuropein to TRIS Diluent on Quality of Frozen–Thawed Semen from Rams" Animals 15, no. 9: 1242. https://doi.org/10.3390/ani15091242
APA StyleShehab-El-Deen, M., Ali, M., Alolayan, I., Aljuaythin, A., Alrauji, Y., Aldobaib, S., & Elnesr, S. S. (2025). Effects of Adding Punicalagin or Oleuropein to TRIS Diluent on Quality of Frozen–Thawed Semen from Rams. Animals, 15(9), 1242. https://doi.org/10.3390/ani15091242