Advance in Natural Products: Potential Antimicrobial Targets

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Plant-Derived Antibiotics".

Deadline for manuscript submissions: closed (15 November 2024) | Viewed by 5067

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Antimicrobial Testing, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil
Interests: antibacterial activity; medicinal plants; biofilm; anaerobe; natural products; medicinal chemistry; bioactive compounds; anti-virulence
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Research into natural products for the development of new antimicrobials is urgently needed on account of antimicrobial resistance of microorganisms to antibiotics, combined with the limited development of new agents for the treatment of human and animal infectious diseases. These facts have generated a global race to find solutions for the development of new and more efficient antimicrobials. New ways of obtaining secondary metabolites and the rational use of the structural and molecular knowledge of these compounds, combined with methodologies for evaluating antimicrobial activity, antivirulence, as well as confirming pharmacological applications, can contribute to advancing the frontier of knowledge in the search for solutions to use in the development of potential antimicrobials from natural products.

Therefore, this Special Issue will bring scientific insights and opportunities in the context of the application of natural products to new targets using novel strategies for antimicrobial control. The articles we run will present innovative solutions for the pharmaceutical industry and governments in the treatment of human and animal diseases. Potential topics include, but are not limited to: 

  • News antimicrobial targets;
  • Novel and diverse chemical metabolic;
  • Antivirulence and antiresistance approaches;
  • Biological assays: in vitro versus in vivo;
  • Mechanisms of action;
  • Advances and applications in antimicrobial discovery;
  • Antimicrobial for humans and animals.

Manuscripts on the biological activity of natural extracts without proper chemical characterization will not be considered.

Prof. Dr. Carlos H. G. Martins
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • antimicrobial activity
  • anti-virulence
  • bioactive molecules
  • mechanisms and applications
  • biological activity
  • drug development
  • medicinal plants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 6410 KiB  
Article
In Vitro Inhibitory Activity of Corilagin and Punicalagin Against Toxoplasma gondii and Their Mechanism(s) of Action
by Nicole T. Green-Ross, Homa Nath Sharma, Audrey Napier, Boakai K. Robertson, Robert L. Green and Daniel A. Abugri
Antibiotics 2025, 14(4), 336; https://doi.org/10.3390/antibiotics14040336 - 24 Mar 2025
Viewed by 299
Abstract
Background/Objectives: Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii. The parasite infection in humans continues to rise due to an increasing seroprevalence rate in domestic and wild warm-blooded animals that serve as a major reservoir of the parasite. There are fewer [...] Read more.
Background/Objectives: Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii. The parasite infection in humans continues to rise due to an increasing seroprevalence rate in domestic and wild warm-blooded animals that serve as a major reservoir of the parasite. There are fewer drugs available for the treatment of toxoplasmosis. However, these drugs are limited in efficacy against tachyzoites and bradyzoites. Also, there are clinical side effects and geographical barriers to their use, especially in immunocompromised patients, children, and pregnant women. Tannins, a class of natural products, are known to have antimicrobial properties. However, little is known about the effects of Corilagin (CG) and Punicalagin (PU), which are classified as tannins, on T. gondii growth and their possible mechanism of action in vitro. We hypothesize that CG and PU could inhibit T. gondii growth in vitro and cause mitochondria membrane disruption via oxidative stress. Methods: Here, we investigated the anti-T. gondii activity of the two named tannins using a fluorescent-based reporter assay. Results: The 50% effective concentrations (EC50s) values for CG and PU that inhibited T. gondii parasites growth in vitro were determined to be 3.09 and 19.33 µM, respectively. Pyrimethamine (PY) was used as a standard control which gave an EC50 value of 0.25 µM. Interestingly, CG and PU were observed to cause high reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production in tachyzoites. This resulted in a strong mitochondria membrane potential (MMP) disruption in T. gondii tachyzoites. Conclusions: Therefore, the possible mechanism(s) of action of CG and PU against T. gondii is associated with the disruption of the mitochondria redox biology. Thus, the high ROS and MitoSOX produced as a result of these compounds created high oxidative stress, leading to mitochondrial dysfunction. Full article
(This article belongs to the Special Issue Advance in Natural Products: Potential Antimicrobial Targets)
Show Figures

Figure 1

14 pages, 3882 KiB  
Article
The Antibacterial Potential of Brazilian Red Propolis against the Formation and Eradication of Biofilm of Helicobacter pylori
by Mariana B. Santiago, Matheus H. Tanimoto, Maria Anita L. V. Ambrosio, Rodrigo Cassio S. Veneziani, Jairo K. Bastos, Robinson Sabino-Silva and Carlos Henrique G. Martins
Antibiotics 2024, 13(8), 719; https://doi.org/10.3390/antibiotics13080719 - 1 Aug 2024
Cited by 1 | Viewed by 1790
Abstract
Helicobacter pylori is associated with gastrointestinal diseases, and its treatment is challenging due to antibiotic-resistant strains, necessitating alternative therapies. Brazilian red propolis (BRP), known for its diverse bioactive compounds with pharmaceutical properties, was investigated for its anti-H. pylori activity, focusing on biofilm [...] Read more.
Helicobacter pylori is associated with gastrointestinal diseases, and its treatment is challenging due to antibiotic-resistant strains, necessitating alternative therapies. Brazilian red propolis (BRP), known for its diverse bioactive compounds with pharmaceutical properties, was investigated for its anti-H. pylori activity, focusing on biofilm formation inhibition and eradication. BRP was tested against H. pylori (ATCC 43526) using several assays: time–kill, nucleotide leakage, biofilm formation inhibition (determining the minimum inhibitory concentration of biofilm of 50%—MICB50, and cell viability), and biofilm eradication (determining the minimum eradication concentration of biofilm of 99.9%—MBEC). Standardization of H. pylori biofilm formation was also conducted. In the time–kill assay, BRP at 50 µg/mL eliminated all H. pylori cells after 24 h. The nucleotide leakage assay showed no significant differences between control groups and BRP-treated groups at 25 µg/mL and 50 µg/mL. H. pylori formed biofilms in vitro at 109 CFU/mL after 72 h. The MICB50 of BRP was 15.6 µg/mL, and at 500, 1000, and 2000 µg/mL, BRP eradicated all bacterial cells. The MBEC was 2000 µg/mL. These findings suggest that BRP has promising anti-H. pylori activity, effectively inhibiting and eradicating biofilms. Further studies are necessary to elucidate BRP’s mechanisms of action against H. pylori. Full article
(This article belongs to the Special Issue Advance in Natural Products: Potential Antimicrobial Targets)
Show Figures

Figure 1

14 pages, 1338 KiB  
Article
Enhanced Efficacy of Ciprofloxacin and Tobramycin against Staphylococcus aureus When Combined with Corydalis Tuber and Berberine through Efflux Pump Inhibition
by Yena Seo, Minjun Kim and Tae-Jong Kim
Antibiotics 2024, 13(5), 469; https://doi.org/10.3390/antibiotics13050469 - 20 May 2024
Viewed by 2328
Abstract
One way that bacteria develop antibiotic resistance is by reducing intracellular antibiotic concentrations through efflux pumps. Therefore, enhancing the efficacy of antibiotics using efflux pump inhibitors provides a way to overcome this type of resistance. Notably, an increasing number of pathogenic Staphylococcus aureus [...] Read more.
One way that bacteria develop antibiotic resistance is by reducing intracellular antibiotic concentrations through efflux pumps. Therefore, enhancing the efficacy of antibiotics using efflux pump inhibitors provides a way to overcome this type of resistance. Notably, an increasing number of pathogenic Staphylococcus aureus strains have efflux pump genes. In this study, the extract from Corydalis ternata Nakai tuber (Corydalis Tuber) at 512 mg/L was demonstrated to have an antibiotic synergistic effect with ciprofloxacin at 2 mg/L and tobramycin at 1024 mg/L against methicillin-resistant S. aureus (MRSA). Berberine, an isoquinoline alkaloid identified in Corydalis Tuber, was identified as contributing to this effect. Ethidium bromide efflux pump activity assays showed that Corydalis Tuber extract and berberine inhibited efflux, suggesting that they are efflux pump inhibitors. Molecular docking simulations suggested that berberine binds to S. aureus efflux pump proteins MepA, NorA, NorB, and SdrM. Additionally, berberine and Corydalis Tuber extract inhibit biofilm formation, which can confer antibiotic resistance. This study’s findings suggest that Corydalis Tuber, a traditional herbal medicine, and berberine, a medicinal supplement, act as S. aureus efflux pump inhibitors, synergistically increasing the efficacy of ciprofloxacin and tobramycin and showing promise as a treatment for antibiotic-resistant S. aureus infections, including MRSA. Full article
(This article belongs to the Special Issue Advance in Natural Products: Potential Antimicrobial Targets)
Show Figures

Graphical abstract

Back to TopTop