Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = pulsed ion beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4593 KiB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 465
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

12 pages, 3736 KiB  
Article
A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement
by Dai Yamazaki, Ryuji Maruyama, Hiroyuki Aoki, Takayasu Hanashima, Kazuhiro Akutsu-Suyama, Noboru Miyata and Kazuhiko Soyama
Quantum Beam Sci. 2025, 9(2), 20; https://doi.org/10.3390/qubs9020020 - 10 Jun 2025
Viewed by 358
Abstract
This study developed a neutron-beam-focusing supermirror for grazing-incidence small-angle neutron scattering (GISANS) measurements. We adopted point-to-point beam focusing based on an ellipse whose two foci correspond to a virtual point source and a spot on the detector surface. The focusing supermirror was fabricated [...] Read more.
This study developed a neutron-beam-focusing supermirror for grazing-incidence small-angle neutron scattering (GISANS) measurements. We adopted point-to-point beam focusing based on an ellipse whose two foci correspond to a virtual point source and a spot on the detector surface. The focusing supermirror was fabricated by depositing NiC/Ti supermirror film with ion-beam sputtering on a precise elliptic surface of fused quartz figured using the elastic emission machining technique. Neutron measurements at the pulsed neutron reflectometer BL17 of the MLF, J-PARC, successfully demonstrated that the focusing supermirror enhances the beam intensity twentyfold compared with an optimally collimated beam, achieving a signal-to-background ratio of the focal spot as high as 500. The mirror can be readily installed and used at BL17 for time-of-flight GISANS measurements. Full article
(This article belongs to the Section Radiation Scattering Fundamentals and Theory)
Show Figures

Figure 1

13 pages, 4277 KiB  
Article
Advancing Nanoscale Copper Deposition Through Ultrafast-Laser-Activated Surface Chemistry
by Modestas Sadauskas, Romualdas Trusovas, Evaldas Kvietkauskas, Viktorija Vrubliauskaitė, Ina Stankevičienė, Aldona Jagminienė, Tomas Murauskas, Dainius Balkauskas, Alexandr Belosludtsev and Karolis Ratautas
Nanomaterials 2025, 15(11), 830; https://doi.org/10.3390/nano15110830 - 30 May 2025
Viewed by 496
Abstract
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless [...] Read more.
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless copper plating. The laser-modified glass surface hosts nanoscale chemical defects that promote the in situ reduction of Ag+ to metallic Ag0 upon exposure to AgNO3 solution. These silver seeds act as robust catalytic and adhesion sites for subsequent copper growth. Using this approach, we demonstrate circuit traces as narrow as 0.7 µm, featuring excellent uniformity and adhesion. Compared to conventional redistribution-layer (RDL) and under-bump-metallization (UBM) techniques, this process eliminates multiple lithographic and vacuum-based steps, significantly reducing process complexity and production time. The method is scalable and adaptable for applications in transparent electronics, fan-out packaging, and high-density interconnects. Full article
Show Figures

Figure 1

10 pages, 1167 KiB  
Article
Investigation of UV Picosecond Laser Damage Threshold of Anti-Reflection Coated Windows
by Priyadarshani Narayanasamy, Martin Mydlář, Hana Turčičová, Mihai George Mureșan, Ondřej Novák, Jan Vanda and Jan Brajer
J. Manuf. Mater. Process. 2025, 9(6), 180; https://doi.org/10.3390/jmmp9060180 - 29 May 2025
Viewed by 720
Abstract
Long-term stability and laser-induced damage resistance of optical components in the UV region are critical for enhancing their performance in UV high-power laser applications. This study evaluates the laser-induced damage threshold (LIDT) of commercially available UV optical windows with anti-reflective (AR) coating, produced [...] Read more.
Long-term stability and laser-induced damage resistance of optical components in the UV region are critical for enhancing their performance in UV high-power laser applications. This study evaluates the laser-induced damage threshold (LIDT) of commercially available UV optical windows with anti-reflective (AR) coating, produced through various coating techniques and designed for high-power lasers. A third-harmonic (343 nm) wavelength with good beam quality was generated in the picosecond regime to investigate the LIDT of optical components. The LIDT for each sample was measured under controlled conditions and compared based on their coating techniques. The sample coated with Al2O3/SiO2 through ion beam sputtering has the best LIDT value, of 0.6 J/cm2, among the tested samples, based on the hundred-thousand-pulses methodology. The damage threshold curve and the corresponding damage morphology are discussed in detail, and these findings provide insights into the durability and susceptibility of UV optics for advanced laser systems available in the market. Full article
Show Figures

Figure 1

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 686
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

13 pages, 4280 KiB  
Article
Performance Characteristics of the Battery-Operated Silicon PIN Diode Detector with an Integrated Preamplifier and Data Acquisition Module for Fusion Particle Detection
by Allan Xi Chen, Benjamin F. Sigal, John Martinis, Alfred YiuFai Wong, Alexander Gunn, Matthew Salazar, Nawar Abdalla and Kai-Jian Xiao
J. Nucl. Eng. 2025, 6(2), 15; https://doi.org/10.3390/jne6020015 - 15 May 2025
Viewed by 684
Abstract
We present the performance and application of a commercial off-the-shelf Si PIN diode (Hamamatsu S14605) as a charged particle detector in a compact ion beam system (IBS) capable of generating D–D and p–B fusion charged particles. This detector is inexpensive, widely available, and [...] Read more.
We present the performance and application of a commercial off-the-shelf Si PIN diode (Hamamatsu S14605) as a charged particle detector in a compact ion beam system (IBS) capable of generating D–D and p–B fusion charged particles. This detector is inexpensive, widely available, and operates in photoconductive mode under a reverse bias voltage of 12 V, supplied by an A23 battery. A charge-sensitive preamplifier (CSP) is mounted on the backside of the detector’s four-layer PCB and powered by two ±3 V lithium batteries (A123). Both the detector and CSP are housed together on the vacuum side of the IBS, facing the fusion target. The system employs a CF-2.75-flanged DB-9 connector feedthrough to supply the signal, bias voltage, and rail voltages. To mitigate the high sensitivity of the detector to optical light, a thin aluminum foil assembly is used to block optical emissions from the ion beam and target. Charged particles generate step responses at the preamplifier output, with pulse rise times in the order of 0.2 to 0.3 µs. These signals are recorded using a custom-built data acquisition unit, which features an optical fiber data link to ensure the electrical isolation of the detector electronics. Subsequent digital signal processing is employed to optimally shape the pulses using a CR-RCn filter to produce Gaussian-shaped signals, enabling the accurate extraction of energy information. Performance results indicate that the detector’s baseline RMS ripple noise can be as low as 0.24 mV. Under actual laboratory conditions, the estimated signal-to-noise ratios (S/N) for charged particles from D–D fusion—protons, tritons, and helions—are approximately 225, 75, and 41, respectively. Full article
Show Figures

Graphical abstract

26 pages, 7920 KiB  
Article
Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy
by Mariya S. Ryabtseva, Marina V. Filimonova, Alexander S. Filimonov, Olga V. Soldatova, Anna A. Shitova, Vitaly A. Rybachuk, Irina K. Volkova, Kirill A. Nikolaev, Alexander O. Kosachenko, Sergei N. Koryakin, Dmitry S. Petrunya, Polina A. Kotelnikova, Alexander E. Shemyakov, Danil D. Kolmanovich, Anton L. Popov, Gleb V. Tikhonowski, Anton A. Popov, Anna A. Timakova, Andrey V. Kolobov, Sergey M. Deyev, Andrei V. Kabashin and Irina N. Zavestovskayaadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(4), 515; https://doi.org/10.3390/pharmaceutics17040515 - 15 Apr 2025
Viewed by 2718
Abstract
Proton beam therapy (PBT) is a rapidly advancing modality of hadron therapy. The primary advantage of proton therapy lies in a unique depth-dose distribution characterized by the Bragg peak, which enables a highly targeted irradiation of the area limited to the tumor, while [...] Read more.
Proton beam therapy (PBT) is a rapidly advancing modality of hadron therapy. The primary advantage of proton therapy lies in a unique depth-dose distribution characterized by the Bragg peak, which enables a highly targeted irradiation of the area limited to the tumor, while minimizing the impact on healthy tissues. However, a broader clinical adoption of the ion beam therapy is limited by both economic and radiobiological constraints. One of the possible ways to increase the relative biological effectiveness (RBE) of proton therapy involves the use of radiosensitizers. Background/Objectives: In this work, we investigated the efficacy of using colloidal solutions of lanthanum hexaboride (LaB6) nanoparticles (NPs) coated with polyacrylic acid (PAA) as sensitizers to increase the antitumor biological effectiveness of proton irradiation. This material has not yet been studied extensively so far, despite its promising physical and chemical properties and several reports on its biocompatibility. Methods: LaB6 NPs were synthesized by femtosecond pulsed laser ablation, functionalized with PAA and characterized. The safety of NPs was evaluated in vitro using a Live/Dead assay on cell cultures: EMT6/P, BT-474, and in vivo in Balb/c mice after intravenous (i.v.) administration. The efficacy of binary proton therapy was evaluated in vitro on cell cultures: EMT6/P, BT-474, and in vivo in the model of human ductal carcinoma of the mammary gland BT-474 in female Nu/j mice after intratumoral (i.t.) administration at a dose of 2.0 mg/mouse and local proton irradiation (fractional exposure of 31 Gy + 15 Gy). The biodistribution of LaB6-PAA NPs in the animal body was also evaluated. Results: Significant enhancement in cancer cell death following proton beam irradiation was demonstrated in vitro on EMT6/P, BT-474 cell lines. Although the antitumor efficacy observed in vivo was comparatively lower—likely due to the high sensitivity of the BT-474 xenografts—both proton monotherapy and binary treatment were well tolerated. Conclusions: LaB6-PAA NPs show promise as efficient sensitizers capable of enhancing the biological efficacy of proton therapy, offering a potential path forward for improving therapeutic outcomes. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

16 pages, 4328 KiB  
Article
Laser Annealing of Si Wafers Based on a Pulsed CO2 Laser
by Ziming Wang, Guochang Wang, Mingkun Liu, Sicheng Li, Zhenzhen Xie, Liemao Hu, Hui Li, Fangjin Ning, Wanli Zhao, Changjun Ke, Zhiyong Li and Rongqing Tan
Photonics 2025, 12(4), 359; https://doi.org/10.3390/photonics12040359 - 10 Apr 2025
Viewed by 961
Abstract
Laser annealing plays a significant role in the fabrication of scaled-down semiconductor devices by activating dopant ions and rearranging silicon atoms in ion-implanted silicon wafers, thereby improving material properties. Precise temperature control is crucial in wafer annealing, particularly for repeated processes where repeatability [...] Read more.
Laser annealing plays a significant role in the fabrication of scaled-down semiconductor devices by activating dopant ions and rearranging silicon atoms in ion-implanted silicon wafers, thereby improving material properties. Precise temperature control is crucial in wafer annealing, particularly for repeated processes where repeatability affects uniformity. In this study, we employ a three-dimensional time-dependent thermal simulation model to numerically analyze the multiple static laser annealing processes based on a CO2 laser with a center wavelength of 9.3 μm and a pulse repetition rate of 10 kHz. The heat transfer equation is solved using a multiphysics coupling approach to accurately simulate the effects of different numbers of CO2 laser pulses on wafer temperature rise and repeatability. Additionally, a pyrometer is used to collect and convert the surface temperature of the wafer. Radiation intensity is converted to temperature via Planck’s law for real-time monitoring. Post-processing is performed to fit the measured temperature and the actual temperature into a linear relationship, aiding in obtaining the actual temperature under small beam spots. According to the simulation conditions, a wafer annealing device using a CO2 laser as the light source was independently built for verification, and a stable and uniform annealing effect was realized. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

8 pages, 1932 KiB  
Article
High-Harmonic Generation in an Optical Fiber Functionalized with Zinc Oxide Thin Films
by Idris Tiliouine, Yann Leventoux, Jean-Christophe Orlianges, Aurelian Crunteanu, Marie Froidevaux, Hamed Merdji and Sébastien Février
Photonics 2025, 12(1), 82; https://doi.org/10.3390/photonics12010082 - 17 Jan 2025
Viewed by 1004
Abstract
High-order harmonic generation (HHG) in semiconductor thin films from ultrashort mid-infrared laser drivers holds the potential for the realization of integrated sources of extreme ultraviolet light. Here, we demonstrate solid-state HHG in zinc oxide thin films synthesized by the radiofrequency reactive magnetron sputtering [...] Read more.
High-order harmonic generation (HHG) in semiconductor thin films from ultrashort mid-infrared laser drivers holds the potential for the realization of integrated sources of extreme ultraviolet light. Here, we demonstrate solid-state HHG in zinc oxide thin films synthesized by the radiofrequency reactive magnetron sputtering process directly on the cleaved facets of optical fibers. Harmonics 3 to 13 of the radiation from a fiber-based laser system delivering 500 kW, 96 fs pulses at 3130 nm are produced in the thin film and guided along the fiber. A proper choice of the laser wavelength and fiber material allows for filtering out the mid-IR pump laser and achieving the HHG mode selection. The possibility to nanostructure the fiber exit by, e.g., focused ion beam milling paves the way to an increased control over the HHG spatial mode. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

25 pages, 12866 KiB  
Review
Advances in and Future Perspectives on High-Power Ceramic Lasers
by Vinay Rastogi and Shivanand Chaurasia
Photonics 2024, 11(10), 942; https://doi.org/10.3390/photonics11100942 - 7 Oct 2024
Cited by 1 | Viewed by 2119
Abstract
Advancements in laser glass compositions and manufacturing techniques has allowed the development of a new category of high-energy and high-power laser systems which are being used in various applications, such as for fundamental research, material processing and inertial confinement fusion (ICF) technologies research. [...] Read more.
Advancements in laser glass compositions and manufacturing techniques has allowed the development of a new category of high-energy and high-power laser systems which are being used in various applications, such as for fundamental research, material processing and inertial confinement fusion (ICF) technologies research. A ceramic laser is a remarkable revolution in solid state lasers. It exhibits crystalline properties, high yields, better thermal conductivity, a uniformly broadened emission cross-section, and a higher mechanical constant. Polycrystalline ceramic lasers combine the properties of glasses and crystals, which offer the unique advantages of high thermal stability, excellent optical transparency, and the ability to incorporate active laser ions homogeneously. They are less expensive and have a similar fabrication process to glass lasers. Recent developments in these classes of lasers have led to improvements in their efficiency, beam quality, and wavelength versatility, making them suitable for a broad range of applications, such as scientific research requiring ultra-fast laser pulses, medical procedures like laser surgery and high-precision cutting and welding in industrial manufacturing. The future of ceramic lasers looks promising, with ongoing research focused on enhancing their performance, developing new doping materials and expanding their functional wavelengths. The ongoing progress in high-power ceramic lasers is continuously expanding the limits of laser technology, therefore allowing the development of more powerful and efficient systems for a wide range of advanced and complex applications. In this paper, we review the advances, limitations and future perspectives of ceramic lasers. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in Solid-State Lasers)
Show Figures

Figure 1

26 pages, 8426 KiB  
Article
Development and Testing of a Helicon Plasma Thruster Based on a Magnetically Enhanced Inductively Coupled Plasma Reactor Operating in a Multi-Mode Regime
by Anna-Maria Theodora Andreescu, Daniel Eugeniu Crunteanu, Maximilian Vlad Teodorescu, Simona Nicoleta Danescu, Alexandru Cancescu, Adrian Stoicescu and Alexandru Paraschiv
Appl. Sci. 2024, 14(18), 8308; https://doi.org/10.3390/app14188308 - 14 Sep 2024
Viewed by 2378
Abstract
A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic [...] Read more.
A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic nozzle. The MEICP reactor features an innovative design with a multi-dipole magnetic confinement system, generated by neodymium iron boron (NdFeB) permanent magnets, combined with an azimuthally asymmetric half-wavelength right (HWRH) antenna and a variable-section ionization chamber. The plasma reactor is followed by a solenoid-free magnetic nozzle (MN), which facilitates the formation of an ambipolar potential drop, enabling the conversion of electron thermal energy into ion beam energy. This study explores the impact of an inhomogeneous magnetic field on the heating mechanism of the HPT and highlights its multi-mode operation within a pulsed power range of 200 to 500 W of RF. The discharge state, characterized by high-energy electron-excited ions and low-energy excited neutral particles in the plasma plume, was analyzed using optical emission spectroscopy (OES). The experimental testing campaign, conducted under pulsed power excitation, reveals that, as RF input power increases, the MEICP reactor transitions from inductive (H-mode) to wave coupling (W-mode) discharge modes. Spectrograms, electron temperature, and plasma density measurements were obtained for the Helicon Plasma Thruster within its operational envelope. Based on OES data, the ideal specific impulse was estimated to exceed 1000 s, highlighting the significant potential of this technology for future LEO/VLEO space missions. Full article
Show Figures

Figure 1

18 pages, 4621 KiB  
Article
Development of a Miniaturized 2-Joule Pulsed Plasma Source Based on Plasma Focus Technology: Applications in Extreme Condition Materials and Nanosatellite Orientation
by Leopoldo Soto, Cristian Pavez, José Pedreros, Jalaj Jain, José Moreno, Patricio San Martín, Fermín Castillo, Daniel Zanelli and Luis Altamirano
Micromachines 2024, 15(9), 1123; https://doi.org/10.3390/mi15091123 - 1 Sep 2024
Viewed by 2311
Abstract
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, [...] Read more.
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements. In this paper, we present the design and construction of a compact, portable pulsed plasma source based on plasma focus technology, operating at the ~2–4 Joule energy range for versatile applications (PF-2J: 120 nF capacitance, 6–9 kV charging voltage, 40 nH inductance, 2.16–4.86 J stored energy, and 10–15 kA maximum current at short circuit). The components of the device, including capacitors, spark gaps, discharge chambers, and power supplies, are transportable within hand luggage. The electrical characteristics of the discharge were thoroughly characterized using voltage and current derivative monitoring techniques. A peak current of 15 kiloamperes was achieved within 110 nanoseconds in a short-circuit configuration at a 9 kV charging voltage. Plasma dynamics were captured through optical refractive diagnostics employing a pulsed Nd-YAG laser with a 170-picosecond pulse duration. Clear evidence of the z-pinch effect was observed during discharges in a deuterium atmosphere at 4 millibars and 6 kilovolts. The measured pinch length and radius were approximately 0.8 mm and less than 100 μm, respectively. Additionally, we explore the potential applications of this compact pulsed plasma source. These include its use as a plasma shock irradiation device for analyzing materials intended for the first wall of nuclear fusion reactors, its capability in material film deposition, and its utility as an educational tool in experimental plasma physics. We also show its potential as a pulsed plasma thruster for nanosatellites, showcasing the advantages of miniaturized plasma focus technology. Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

15 pages, 6691 KiB  
Article
Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam
by Shuyang Ran, Kefan Wen, Lingbo Xie, Xingyu Zhou, Ye Tian, Shuo Qiao, Feng Shi and Xing Peng
Micromachines 2024, 15(7), 914; https://doi.org/10.3390/mi15070914 - 15 Jul 2024
Viewed by 1402
Abstract
The high-efficiency preparation of large-area microstructures of optical materials and precision graphic etching technology is one of the most important application directions in the atomic and near-atomic-scale manufacturing industry. Traditional focused ion beam (FIB) and reactive ion etching (RIE) methods have limitations in [...] Read more.
The high-efficiency preparation of large-area microstructures of optical materials and precision graphic etching technology is one of the most important application directions in the atomic and near-atomic-scale manufacturing industry. Traditional focused ion beam (FIB) and reactive ion etching (RIE) methods have limitations in precision and efficiency, hindering their application in automated mass production. The pulsed ion beam (PIB) method addresses these issues by enhancing ion beam deflection to achieve high-resolution material removal on a macro scale, which can reach the equivalent removal resolution of 6.4 × 10−4 nm. Experiments were conducted on a quartz sample (10 × 10 × 1 mm) with a specific pattern mask using the custom PIB processing device. The surface morphology, etching depth, and roughness were measured post-process. The results demonstrated that precise control over cumulative sputtering time yielded well-defined patterns with expected average etching depths and surface roughness. This confirms the PIB technique’s potential for precise atomic depth image transfer and its suitability for industrial automation, offering a significant advancement in microfabrication technology. Full article
(This article belongs to the Special Issue Precision Optical Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 3359 KiB  
Article
Design and Implementation of an Energy Selector for Laser-Accelerated Protons
by Alicia Reija, David Esteban, Aarón Alejo, Jon Imanol Apiñaniz, Adrián Bembibre, José Benlliure, Michael Ehret, Javier García López, M. Carmen Jiménez-Ramos, Jessica Juan-Morales, Cruz Méndez, David Pascual, M. Dolores Rodríguez Frías, Mauricio Rodríguez Ramos and Michael Seimetz
Instruments 2024, 8(3), 36; https://doi.org/10.3390/instruments8030036 - 29 Jun 2024
Cited by 1 | Viewed by 1608
Abstract
Highly intense bunches of protons and ions with energies of several MeV/u can be generated with ultra-short laser pulses focused on solid targets. In the most common interaction regime, target normal sheath acceleration, the spectra of these particles are spread over a [...] Read more.
Highly intense bunches of protons and ions with energies of several MeV/u can be generated with ultra-short laser pulses focused on solid targets. In the most common interaction regime, target normal sheath acceleration, the spectra of these particles are spread over a wide range following a Maxwellian distribution. We report on the design and testing of a magnetic chicane for the selection of protons within a limited energy window. This consisted of two successive, anti-parallel dipole fields generated by cost-effective permanent C-magnets with customized configuration and longitudinal positions. The chicane was implemented into the target vessel of a petawatt laser facility with constraints on the direction of the incoming laser beam and guidance of the outgoing particles through a vacuum port. The separation of protons and carbon ions within distinct energy intervals was demonstrated and compared to a ray tracing code. Measurements with radiochromic film stacks indicated the selection of protons within [2.4, 6.9] MeV, [5.0, 8.4] MeV, or ≥6.9 MeV depending on the lateral dispersion. A narrow peak at 4.8 MeV was observed with a time-of-flight detector. Full article
Show Figures

Figure 1

12 pages, 1998 KiB  
Communication
New Mini Neutron Tubes with Multiple Applications
by Ka-Ngo Leung
J. Nucl. Eng. 2024, 5(3), 197-208; https://doi.org/10.3390/jne5030014 - 26 Jun 2024
Cited by 3 | Viewed by 2664
Abstract
Recent experimental investigations have demonstrated that a substantial amount of H/D ions can be formed by thermal desorption processes. Based on these new findings, new mini axial and coaxial-type neutron tubes have been developed for the production of high or [...] Read more.
Recent experimental investigations have demonstrated that a substantial amount of H/D ions can be formed by thermal desorption processes. Based on these new findings, new mini axial and coaxial-type neutron tubes have been developed for the production of high or low-energy neutrons via the d-d, d-10B, d-7Li or p-7Li nuclear reactions. By operating these mini neutron tubes with a high frequency AC high-voltage supply, short pulses of high intensity neutron beams can be generated. Multiple applications, such as carbon and well logging, neutron imaging, cancer therapy, medical isotope production, fission reactor start-up, fusion reactor material evaluation, homeland security and space exploration can be performed with the subcompact neutron generator system. It is shown that the performance of these new mini neutron tubes can exceed those of the conventional plasma-based neutron sources. Full article
Show Figures

Figure 1

Back to TopTop