A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement
Abstract
1. Introduction
2. Design and Fabrication
3. Experimental Section
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Optimum Slit Colllimation
References
- Müller-Buschbaum, P. Grazing incidence small-angle neutron scattering: Challenges and possibilities. Polym. J. 2013, 45, 34–42. [Google Scholar] [CrossRef]
- Hu, M.; Li, X.; William, T.H.; Bras, W.; Rzayev, J.; Russell, T. Using Grazing-incidence Small-Angle Neutron Scattering to Study the Orientation of Block Copolymer Morphologies in Thin Films. Macromolecules 2023, 56, 2418–2428. [Google Scholar] [CrossRef]
- Maruyama, R.; Bigault, T.; Saerbeck, T.; Honecker, D.; Soyama, K.; Courtois, P. Coherent Magnetization Rotation of a Layered System Observed by Polarized Neutron Scattering under Grazing Incidence Geometry. Crystals 2019, 9, 383. [Google Scholar] [CrossRef]
- Liyanage, W.L.N.C.; Tang, N.; Quigley, L.; Borchers, J.A.; Grutter, A.J.; Maranville, B.B.; Sinha, S.K.; Reyren, N.; Montoya, S.A.; Fullerton, E.E.; et al. Three-dimensional structure of hybrid magnetic skyrmions determined by neutron scattering. Phys. Rev. B 2023, 107, 184412. [Google Scholar] [CrossRef]
- Müller-Buschbaum, P.; Metwalli, E.; Moulin, J.-F.; Kudryashov, V.; Haese-Seiller, M.; Kampmann, R. Time of flight grazing incidence small angle neutron scattering. Eur. Phys. J. Spec. Top. 2009, 167, 107–112. [Google Scholar] [CrossRef]
- Vorobiev, A.; Paracini, N.; Cárdenas, M.; Wolff, M. Π-GISANS: Probing lateral structures with a fan shaped beam. Sci. Rep. 2021, 11, 17786. [Google Scholar] [CrossRef] [PubMed]
- Mezei, F. Novel polarized neutron devices: Supermirror and spin component amplifier. Commun. Phys. 1976, 1, 81–85. [Google Scholar]
- Mezei, F.; Dagleish, P.A. Corrigendum and first experimental evidence on neutron supermirrors. Commun. Phys. 1977, 2, 41–43. [Google Scholar]
- Perrichon, A.; Fernandez-Alonso, F.; Wolff, M.; Karlsson, M.; Demmel, F. Neutron Ray-Tracing Simulations of a New Supermirror Guide for the Osiris Spectrometer. J. Surf. Investig. 2020, 14 (Suppl. S1), S169–S174. [Google Scholar] [CrossRef]
- Ice, G.E.; Hubbard, C.R.; Larson, B.C.; Pang, J.W.L.; Budai, J.D.; Spooner, S.; Vogel, S.C. Kirkpatrick-Baez microfocusing optics for thermal neutrons. Nucl. Instrum. Methods Phys. Res. A 2005, 539, 312–320. [Google Scholar] [CrossRef]
- Ice, G.E.; Hubbard, C.R.; Larson, B.C.; Pang, J.W.L.; Budai, J.D.; Spooner, S.; Vogel, S.C.; Rogge, R.D.; Fox, J.H.; Donaberger, R.L. High-performance Kirkpatrick-Baez supermirrors for neutron milli- and micro-beams. Mater. Sci. Eng. A 2006, 437, 120–125. [Google Scholar] [CrossRef]
- Ice, G.E.; Pang, J.W.L.; Tulk, C.; Molaison, J.; Choi, J.-Y.; Vaughn, C.; Lytle, L.; Takacs, P.Z.; Andersen, K.H.; Bigault, T.; et al. Design challenges and performance of nested neutron mirrors for microfocusing on SNAP. J. Appl. Crystallogr. 2009, 42, 1004–1008. [Google Scholar] [CrossRef]
- Ice, G.E.; Choi, J.-Y.; Takacs, P.Z.; Khounsary, A.; Puzyrev, Y.; Molaison, J.J.; Tulk, C.A.; Andersen, K.H.; Bigault, T. Nested neutron microfocusing optics on SNAP. Appl. Phys. A 2010, 99, 635–639. [Google Scholar] [CrossRef]
- Herb, C.; Zimmer, O.; Georgii, R.; Böni, P. Nested mirror optics for neutron extraction, transport, and focusing. Nucl. Instrum. Methods Phys. Res. A 2022, 1040, 167154. [Google Scholar] [CrossRef]
- Hosobata, T.; Yamada, N.L.; Hino, M.; Yoshinaga, H.; Nemoto, F.; Hori, K.; Kawai, T.; Yamagata, Y.; Takeda, M.; Takeda, S. Elliptic neutron-focusing supermirror for illuminating small samples in neutron reflectometry. Opt. Express 2019, 27, 26807. [Google Scholar] [CrossRef]
- Hosobata, T.; Yamada, N.L.; Hino, M.; Yamagata, Y.; Kawai, T.; Yoshinaga, H.; Hori, K.; Takeda, M.; Takeda, S.; Morita, S. Development of precision elliptic neutron-focusing supermirror. Opt. Express 2017, 25, 20012. [Google Scholar] [CrossRef]
- Yamada, N.L.; Hosobata, T.; Nemoto, F.; Hori, K.; Hino, M.; Izumi, J.; Suzuki, K.; Hirayama, M.; Kanno, R.; Yamagata, Y. Application of precise neutron focusing mirrors for neutron reflectometry: Latest results and future prospects. J. Appl. Crystallogr. 2020, 53, 1462–1470. [Google Scholar] [CrossRef]
- Maruyama, R.; Yamazaki, D.; Ebisawa, T.; Soyama, K. Effect of interfacial roughness correlation on diffuse scattering intensity in a neutron supermirror. J. Appl. Phys. 2009, 105, 083527. [Google Scholar] [CrossRef]
- Maruyama, R.; Yamazaki, D.; Ebisawa, T.; Soyama, K. Development of high-reflectivity neutron supermirrors using an ion beam sputtering technique. Nucl. Instrum. Methods Phys. Res. A 2009, 600, 68–70. [Google Scholar] [CrossRef]
- Maruyama, R.; Yamazaki, D.; Ebisawa, T.; Hino, M.; Soyama, K. Development of neutron supermirrors with large critical angle. Thin Solid Films 2007, 515, 5704–5706. [Google Scholar] [CrossRef]
- Yamamura, K. Fabrication of Ultra Precision Optics by Numerically Controlled Local Wet Etching. Ann. CIRP 2007, 56/1, 541–544. [Google Scholar] [CrossRef]
- Yamamura, K.; Nagano, M.; Takai, H.; Zettsu, N.; Yamazaki, D.; Maruyama, R.; Soyama, K.; Shimada, S. Figuring of plano-elliptical neutron focusing mirror by local wet etching. Opt. Express 2009, 17, 6414–6420. [Google Scholar] [CrossRef]
- Yamazaki, D.; Maruyama, R.; Soyama, K.; Takai, H.; Nagano, M.; Yamamura, K. Neutron beam focusing using large-m supermirrors coated on precisely-figured aspheric surfaces. J. Phys. Conf. Ser. 2010, 251, 012076. [Google Scholar] [CrossRef]
- Nagano, M.; Yamaga, F.; Yamazaki, D.; Maruyama, R.; Hayashida, H.; Soyama, K.; Yamamura, K. One-dimensional neutron focusing with large beam divergence by 400mm-long elliptical supermirror. J. Phys. Conf. Ser. 2012, 340, 012034. [Google Scholar] [CrossRef]
- Takeda, M.; Yamazaki, D.; Soyama, K.; Maruyama, R.; Hayashida, H.; Asaoka, H.; Yamazaki, T.; Kubota, M.; Aizawa, K.; Arai, M.; et al. Current Status of a New Polarized Neutron Reflectometer at the Intense Pulsed Neutron Source of the Materials and Life Science Experimental Facility (MLF) of J-PARC. Chin. J. Phys. 2012, 50, 161–170. [Google Scholar]
- Aoki, H. Chain dynamics in spin-coated films of poly(methyl methacrylate) in a solvent annealing process. Polym. J. 2019, 51, 611–616. [Google Scholar] [CrossRef]
- Aoki, H.; Ogawa, H.; Takenaka, M. Neutron Reflectometry Tomography for Imaging and Depth Structure Analysis of Thin Films with In-Plane Inhomogeneity. Langmuir 2021, 37, 196–203. [Google Scholar] [CrossRef]
- Ohtsuka, Y.; Kanazawa, N.; Hirayama, M.; Matsui, A.; Nomoto, T.; Arita, R.; Nakajima, T.; Hanashima, T.; Ukleev, V.; Aoki, H.; et al. Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi. Sci. Adv. 2021, 7, eabj0498. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Miura, H.; Inagaki, K.; Mori, Y. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining. Rev. Sci. Instrum. 2002, 73, 4028–4033. [Google Scholar] [CrossRef]
- Hayter, J.B.; Mook, H.A. Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Crystallogr. 1989, 22, 35–41. [Google Scholar] [CrossRef]
- Wood, J.L. Status of supermirror research at OSMC. Proc. SPIE 1992, 1738, 22–29. [Google Scholar]
- Harada, M.; Teshigawara, M.; Ohi, M.; Klinkby, E.; Zanini, L.; Batkov, K.; Oikawa, K.; Toh, Y.; Kimura, A.; Ikeda, Y. Experimental validation of the brightness distribution on the surfaces of coupled and decoupled moderators composed of 99.8% parahydrogen at the J-PARC pulsed spallation neutron source. Nucl. Instrum. Methods Phys. Res. A 2018, 903, 38–45. [Google Scholar] [CrossRef]
- Toh, K.; Nakamura, T.; Sakasai, K.; Soyama, K.; Hino, M.; Kitaguchi, M.; Yamagishi, H. Development of two-dimensional multiwire-type neutron detector system with individual line readout and optical signal transmission. Nucl. Instrum. Methods Phys. Res. A 2013, 726, 169–174. [Google Scholar] [CrossRef]
- Toh, K.; Nakamura, T.; Sakasai, K.; Soyama, K.; Yamagishi, H. Evaluation of two-dimensional multiwire neutron detector with individual line readout under pulsed neutron irradiation. J. Instrum. 2014, 9, C11019. [Google Scholar] [CrossRef]
- Niimura, N.; Karasawa, Y.; Tanaka, I.; Miyahara, J.; Takahashi, K.; Saito, H.; Koizumi, S.; Hidaka, M. An imaging plate neutron detector. Nucl. Instrum. Methods Phys. Res. A 1994, 349, 521–525. [Google Scholar] [CrossRef]
- Niimura, N.; Chatake, T.; Ostermann, A.; Kurihara, K.; Tanaka, I. High resolution neutron protein crystallography. Hydrogen and hydration in proteins. Z. Kristallogr. 2003, 218, 96–107. [Google Scholar] [CrossRef]
a | 5525 mm |
b | 79.63 mm |
eccentric angle | 72.59∼76.89° |
1st focus to mirror | 6980 mm |
mirror to 2nd focus | 4070 mm |
mirror length | 400 mm |
mirror width | 50 mm |
incident angle | ∼0.856° |
supermirror | NiC/Ti ( 4) |
Focused Beam Size | Collimated Beam Size | ||||||
---|---|---|---|---|---|---|---|
Device | Position † | Vertical | Horizontal | Vertical | Horizontal | ||
Slit 1 | 6950 mm | 2.04 mm | 2.00 mm | 1.47 mm | 2.00 mm | ||
Mirror | 14,380 mm | 6.14 mm | - | - | - | ||
Slit 2 | 15,200 mm | - | 2.00 mm | 0.37 mm | 2.00 mm | ||
Detector | 18,000 mm | 1.00 mm ‡ | 2.00 mm | 1.00 mm | 2.00 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamazaki, D.; Maruyama, R.; Aoki, H.; Hanashima, T.; Akutsu-Suyama, K.; Miyata, N.; Soyama, K. A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement. Quantum Beam Sci. 2025, 9, 20. https://doi.org/10.3390/qubs9020020
Yamazaki D, Maruyama R, Aoki H, Hanashima T, Akutsu-Suyama K, Miyata N, Soyama K. A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement. Quantum Beam Science. 2025; 9(2):20. https://doi.org/10.3390/qubs9020020
Chicago/Turabian StyleYamazaki, Dai, Ryuji Maruyama, Hiroyuki Aoki, Takayasu Hanashima, Kazuhiro Akutsu-Suyama, Noboru Miyata, and Kazuhiko Soyama. 2025. "A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement" Quantum Beam Science 9, no. 2: 20. https://doi.org/10.3390/qubs9020020
APA StyleYamazaki, D., Maruyama, R., Aoki, H., Hanashima, T., Akutsu-Suyama, K., Miyata, N., & Soyama, K. (2025). A Focusing Supermirror for Time-of-Flight Grazing-Incidence Small-Angle Neutron Scattering Measurement. Quantum Beam Science, 9(2), 20. https://doi.org/10.3390/qubs9020020