Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = pulsed electro-acoustic (PEA) method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11847 KB  
Article
Study on the Relationship between Electron Transfer and Electrical Properties of XLPE/Modification SR under Polarity Reversal
by Zhi-Yuan Wu, Yu-Zhi Jin, Zhe-Xu Shi, Zhi-Yuan Wang and Wei Wang
Polymers 2024, 16(16), 2356; https://doi.org/10.3390/polym16162356 - 20 Aug 2024
Cited by 4 | Viewed by 1199
Abstract
The insulation of high-voltage direct-current (HVDC) cables experiences a short period of voltage polarity reversal when the power flow is adjusted, leading to sever field distortion in this situation. Consequently, improving the insulation performance of the composite insulation structure in these cables has [...] Read more.
The insulation of high-voltage direct-current (HVDC) cables experiences a short period of voltage polarity reversal when the power flow is adjusted, leading to sever field distortion in this situation. Consequently, improving the insulation performance of the composite insulation structure in these cables has become an urgent challenge. In this paper, SiC-SR (silicone rubber) and TiO2-SR nanocomposites were chosen for fabricating HVDC cable accessories. These nanocomposites were prepared using the solution blending method, and an electro-acoustic pulse (PEA) space charge test platform was established to explore the electron transfer mechanism. The space charge characteristics and field strength distribution of a double-layer dielectric composed of cross-linked polyethylene (XLPE) and nano-composite SR at different concentrations were studied during voltage polarity reversal. Additionally, a self-built breakdown platform for flake samples was established to explore the effect of the nanoparticle doping concentration on the breakdown field strength of double-layer composite media under polarity reversal. Therefore, a correlation was established between the micro electron transfer process and the macro electrical properties of polymers (XLPE/SR). The results show that optimal concentrations of nano-SiC and TiO2 particles introduce deep traps in the SR matrix, significantly inhibiting charge accumulation and electric field distortion at the interface, thereby effectively improving the dielectric strength of the double-layer polymers (XLPE/SR). Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

13 pages, 4834 KB  
Article
Space Charge Characteristics at the Interface of Laminated Epoxy Resin
by Yifan Zhang, Bing Luo, Mingli Fu, Lei Jia, Chi Chen, Gang Zhou and Chuang Wang
Molecules 2023, 28(14), 5537; https://doi.org/10.3390/molecules28145537 - 20 Jul 2023
Cited by 5 | Viewed by 1881
Abstract
In the design and manufacturing of epoxy resin insulation components, complex structures can be achieved through multiple pours, thereby forming the structure of interface of laminated epoxy resin. This type of interface structure is often considered a weak link in performance which can [...] Read more.
In the design and manufacturing of epoxy resin insulation components, complex structures can be achieved through multiple pours, thereby forming the structure of interface of laminated epoxy resin. This type of interface structure is often considered a weak link in performance which can easily accumulate charges and cause electric field distortion. However, research on the interlayer interface of epoxy resin has received little attention. In this study, epoxy samples with and without interlayer interfaces were prepared, and the space charge accumulation characteristics and trap characteristics of the samples were analyzed via pulsed electro-acoustic (PEA) and thermally stimulated depolarization current (TSDC) methods. The experimental results indicate that the Maxwell–Wagner interface polarization model cannot fully explain the charge accumulation at the interface. Due to the influence of the secondary curing, the functional groups in the post-curing epoxy resin can move and react with the partially reacted functional groups in the prefabricated epoxy resin layer, resulting in a weak cross-linking network at the interface. With the increase in temperature, the molecular chain segments in the weak cross-linked region of the interface become more active and introduce deep traps at the interface, thereby exacerbating the accumulation of interface charges. In addition, due to the influence of interface polarization and weak cross-linking, the ability of the interface charges to cause field strength distortions decreases with the increase in applied field strength. This research study can provide a theoretical reference for the interfacial space charge transport characteristics of epoxy-cured cross-linked layers and provide ideas for regulating interfacial cross-linking to suppress interfacial charge accumulation. Full article
(This article belongs to the Special Issue Epoxy Resin Synthesis, Performance and Application Research)
Show Figures

Figure 1

12 pages, 4038 KB  
Article
Understanding the Role of Soft X-ray in Charging Solid-Film and Cellular Electrets
by Yue Feng, Zehong Rao, Ki-Young Song, Xusong Tang, Zilong Zhou and Ying Xiong
Nanomaterials 2022, 12(23), 4143; https://doi.org/10.3390/nano12234143 - 23 Nov 2022
Cited by 3 | Viewed by 2492
Abstract
Solid-film electrets and cellular electrets are defined as promising insulating dielectric materials containing permanent electrostatic and polarizations. High-performance charging methods are critical for electret transducers. Unlike dielectric barrier discharge (DBD) charging, the soft X-ray charging method, with its strong penetration ability, has been [...] Read more.
Solid-film electrets and cellular electrets are defined as promising insulating dielectric materials containing permanent electrostatic and polarizations. High-performance charging methods are critical for electret transducers. Unlike dielectric barrier discharge (DBD) charging, the soft X-ray charging method, with its strong penetration ability, has been widely used in electrets after packaging and has even been embedded in high-aspect-ratio structures (HARSs). However, the related charging model and the charging effect of the soft X-ray irradiation remain unclear. In this study, the charge carrier migration theory and the one-dimensional electrostatic model were employed to build the soft X-ray charging models. The influence of soft X-ray irradiation under deferent poling voltages was investigated theoretically and experimentally. The conducted space charge measurement based on a pulsed electro-acoustic (PEA) system with a soft X-ray generator revealed that soft X-ray charging can offer higher surface charge densities and piezoelectricity to cellular electrets under the critical poling voltage lower than twice the breakdown voltage. Full article
Show Figures

Figure 1

18 pages, 7150 KB  
Article
Validation through Experiment and Simulation of Internal Charging–Discharging Characteristics of Polyimide under High-Energy Electron Radiation
by Jiang Wu, Bo Zhang, Yibo Zhi, Minheng He, Penghui Shang and Yufeng Qian
Energies 2022, 15(18), 6603; https://doi.org/10.3390/en15186603 - 9 Sep 2022
Cited by 3 | Viewed by 1987
Abstract
Due to the injection of energetic particles, such as electrons in space environment, the internal charging–discharging characteristics of spacecraft dielectrics need to be evaluated for the safety of spacecraft, and the evaluation results from experiments and simulations should be comparatively validated. An in-site [...] Read more.
Due to the injection of energetic particles, such as electrons in space environment, the internal charging–discharging characteristics of spacecraft dielectrics need to be evaluated for the safety of spacecraft, and the evaluation results from experiments and simulations should be comparatively validated. An in-site pulsed electroacoustic (PEA) measurement system under high-energy electron radiation was established for evaluating the charging characteristics of thick plate samples about 3 mm, while a joint simulation method based on Geant4 and COMSOL was also proposed. The deposited charge distributions were compared through experiment and joint simulation method under 0.7, 1.0 and 1.3 MeV for 30 min and 1.0 MeV for 10, 60 and 120 min, respectively. Meanwhile, the electrostatic discharging characteristics were also comparative evaluated by both methods under 0.3 MeV for 20 min under 5, 10 and 15 µA beam current, and the total discharging times and initial discharging time were compared and analyzed. Overall, a good consistency existed between experimental and simulation results of charging–discharging characteristics under electron radiation while the difference was also analyzed in the perspective of dielectric properties, such as charge leakage by conduction. Through the comparative study, both evaluation methods are validated, which offers effective reference for the safety evaluation of spacecraft dielectrics in future. Full article
Show Figures

Figure 1

18 pages, 6500 KB  
Article
Composite Micro-Nanoarchitectonics of MMT-SiO2: Space Charge Characteristics under Tensile State
by Hongtao Jiang, Junguo Gao, Xiaohong Zhang and Ning Guo
Polymers 2021, 13(24), 4354; https://doi.org/10.3390/polym13244354 - 13 Dec 2021
Cited by 9 | Viewed by 2658
Abstract
Low density polyethylene (LDPE) is a good insulating material which is widely used in cable materials due to its excellent insulation and processability. However, in the DC high voltage environment, pure polyethylene materials still face many problems, the most serious of which is [...] Read more.
Low density polyethylene (LDPE) is a good insulating material which is widely used in cable materials due to its excellent insulation and processability. However, in the DC high voltage environment, pure polyethylene materials still face many problems, the most serious of which is space charge accumulation. The cable will inevitably be subjected to tensile stress during production, installation and operation. Therefore, it is of great significance to study the effect of stretching on the microstructure and space charge characteristics for polymers and their composites. In this paper, MMT/LDPE micro-composites, SiO2/LDPE nano-composites and MMT-SiO2/LDPE micro-nano-composites were prepared by melt blending. Mechanical stretching was carried out on pure LDPE materials and the above three kinds of composite materials. Each material was stretched according to four stretching ratios, which are 0%, 5%, 10% and 20%. The crystal morphology was observed by polarizing microscope (PLM), the crystallization perfection was tested by differential scanning calorimetry (DSC), and the space charge distribution inside each sample was measured by pulsed electro-acoustic (PEA) method. At the same time, the average charge density and apparent charge mobility for samples during depolarization were calculated and analyzed. The experimental results show that when the pure low density polyethylene sample is not stretched, its crystal structure is loose. Tensile stress can make the loose molecular chains align in LDPE and improve its crystalline structure, which is helpful to restrain the accumulation of space charge inside the sample. For MMT/LDPE, SiO2/LDPE and MMT-SiO2/LDPE composites, their internal crystal structure is compact. Stretching will destroy their original crystal structure at first, and then disorder molecular chains inside the three composite materials. With the increase of stretching ratio, the molecular chains begin to orient along the direction of force, the crystallization tends to be perfect gradually, and the space charge accumulation in samples also decreases. From the calculation results of apparent charge mobility for each sample, with the increase of stretching ratio, the trap depth and trap density inside samples firstly increased and then decreased. Full article
(This article belongs to the Topic Polymer Crystallization)
Show Figures

Figure 1

13 pages, 5430 KB  
Article
Frequency and Temperature-Dependent Space Charge Characteristics of a Solid Polymer under Unipolar Electrical Stresses of Different Waveforms
by Hanwen Ren, Qingmin Li, Yasuhiro Tanaka, Hiroaki Miyake, Haoyu Gao and Zhongdong Wang
Polymers 2021, 13(19), 3401; https://doi.org/10.3390/polym13193401 - 3 Oct 2021
Cited by 6 | Viewed by 2315
Abstract
In this paper, we studied the space charge phenomena of a solid polymer under thermal and electrical stresses with different frequencies and waveforms. By analyzing the parameter selection method of a protection capacitor and resistor, the newly built pulsed electro-acoustic (PEA) system can [...] Read more.
In this paper, we studied the space charge phenomena of a solid polymer under thermal and electrical stresses with different frequencies and waveforms. By analyzing the parameter selection method of a protection capacitor and resistor, the newly built pulsed electro-acoustic (PEA) system can be used for special electrical stresses under 500 Hz, based on which the charge phenomena are studied in detail under positive and negative DC and half-wave sine and rectangular wave voltages. Experimental results show that the charge accumulated in the polyimide polymer under DC conditions mainly comes from the grounded electrode side, and the amount of charge accumulated with electric field distortion becomes larger in a high-temperature environment. At room temperature, positive charges tend to accumulate in low-frequency conditions under positive rectangular wave voltages, while they easily appear under high-frequency situations of negative ones. In contrast, the maximum electric field distortion and charge accumulation under both half-wave sine voltages occur at 10 Hz. When the measurement temperature increases, the accumulated positive charge decreases, with a more negative charge appearing under rectangular wave voltages, while a more positive charge accumulates at different frequencies of half-wave sine voltages. Therefore, our study of the charge characteristics under different voltage and temperature conditions can provide a reference for applications in the corresponding environments. Full article
Show Figures

Graphical abstract

12 pages, 5021 KB  
Article
PEA Electromagnetic Distortion Reduction by Impedance Grounding and Pulsed Voltage Electrode Configurations
by Guillermo Mier Escurra, Armando Rodrigo Mor, Luis Carlos Castro and Peter Vaessen
Sensors 2021, 21(17), 5837; https://doi.org/10.3390/s21175837 - 30 Aug 2021
Cited by 1 | Viewed by 2456
Abstract
Space charges are one of the main challenges facing the constantly increasing use of extruded high voltage direct current (HVDC) cables. The Pulsed Electro-Acoustic (PEA) method is one of the most common procedures for space charge measurements of insulation. One issue with the [...] Read more.
Space charges are one of the main challenges facing the constantly increasing use of extruded high voltage direct current (HVDC) cables. The Pulsed Electro-Acoustic (PEA) method is one of the most common procedures for space charge measurements of insulation. One issue with the PEA method is distortion due to the crosstalk between the applied voltage pulse and the acoustic sensor. This work analyzed two factors involved in the reduction in this distortion: the influence of the exposed semiconductor distance between the injection electrodes and PEA test cell, and the influence of adding a reactance at the grounding circuit of the PEA test cell. The interaction of these two factors with the distortion was analyzed through a series of experimental testing. Moreover, the performance regarding distortion after applying a developed coaxial injection was compared with the standard non-coaxial injection configuration. It was observed that these two factors had a direct impact on distortion and can be utilized for the reduction in distortion arising from the crosstalk of the applied pulsed voltage. The results can be utilized for the consideration of practical aspects during the construction of a PEA test setup for the measurement of full-size HVDC cables. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 7313 KB  
Article
Aging Characteristics of Transformer Oil-Impregnated Insulation Paper Based on Trap Parameters
by Yanhui Wei, Wang Han, Guochang Li, Xiaojian Liang, Zhenlu Gu and Kai Hu
Polymers 2021, 13(9), 1364; https://doi.org/10.3390/polym13091364 - 22 Apr 2021
Cited by 16 | Viewed by 4003
Abstract
Oil-impregnated insulation paper is an important part of transformers; its performance seriously affects the life of power equipment. It is of significance to study the aging characteristics and mechanism of oil-impregnated insulation paper under thermal stress for transformer status detection and evaluation. In [...] Read more.
Oil-impregnated insulation paper is an important part of transformers; its performance seriously affects the life of power equipment. It is of significance to study the aging characteristics and mechanism of oil-impregnated insulation paper under thermal stress for transformer status detection and evaluation. In the work, the accelerated thermal aging was carried out at 120 °C, and DP1490, DP787, and DP311 samples were selected to represent the new, mid-aging, and late-aging status of the transformer, respectively. The space charge distribution within the specimens was measured by the pulsed electro-acoustic (PEA) method and the trap parameters were extracted based on the measurement curves. Further, the aging mechanism was studied by molecular simulation technology. A typical molecular chain defect model was constructed to study the motion of cellulose molecules under thermal stress. The experimental results show that the corresponding trap energy levels are 0.54 eV, 0.73 eV, and 0.92 eV for the new specimen, the mid-aging specimen, and the late aging specimen, respectively. The simulation results show that the trapped energy at the beginning of aging is mainly determined by the loss of H atoms. The changes in trap energy in the middle stage of aging are mainly caused by the absence of some C atoms, and the trap energy level at the end of aging is mainly caused by the breakage of chemical bonds. This study is of great significance to reveal the aging mechanism of oil-impregnated insulation paper and the modification of insulation paper. Full article
Show Figures

Figure 1

17 pages, 3774 KB  
Article
Space Charge Accumulation Characteristics in HVDC Cable under Temperature Gradient
by Yifan Zhou, Wei Wang and Tailong Guo
Energies 2020, 13(21), 5571; https://doi.org/10.3390/en13215571 - 24 Oct 2020
Cited by 11 | Viewed by 4036
Abstract
One of the main issues that affect the development of high-voltage direct-current (HVDC) cable insulation is the accumulation of space charge. The load operation of an HVDC cable leads to the formation of a radially distributed temperature gradient (TG) across the insulation. In [...] Read more.
One of the main issues that affect the development of high-voltage direct-current (HVDC) cable insulation is the accumulation of space charge. The load operation of an HVDC cable leads to the formation of a radially distributed temperature gradient (TG) across the insulation. In this study, the space charge accumulation in a cross-linked polyethylene (XLPE) cable is measured under a DC electric field and TG using the pulsed electro-acoustic (PEA) method, and the effect of the TG on the space charge behavior is investigated. In addition, the bipolar charge transport (BCT) model and the conductivity model based on an improved cylindrical geometry are used to simulate the charge behavior in the HVDC XLPE cable under TG, and the experimental and simulated results are compared. The results show that the higher temperature of the cable conductor promotes the accumulation of homocharge near the side of high temperature. Additionally, with the increase of the TG, not only does more heterocharge accumulates adjacent to the side of low temperature, but more space charge also extends into the bulk of the cable insulation. More attention should be paid to the conductor shield layer and the insulation shield layer in HVDC cables. Moreover, the BCT model can more accurately describe the experimental results than the conductivity model. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 4352 KB  
Article
Influence of the Pulsed Voltage Connection on the Electromagnetic Distortion in Full-Size HVDC Cable PEA Measurements
by Guillermo Mier Escurra, Armando Rodrigo Mor and Peter Vaessen
Sensors 2020, 20(11), 3087; https://doi.org/10.3390/s20113087 - 29 May 2020
Cited by 5 | Viewed by 2858
Abstract
Nowadays, with the widespread use of High Voltage Direct Current (HVDC) cables in power systems, the measurements of space charges in full-size cables are becoming more relevant. One of the most common methods used for space charge measurements is the Pulsed Electro-Acoustic (PEA) [...] Read more.
Nowadays, with the widespread use of High Voltage Direct Current (HVDC) cables in power systems, the measurements of space charges in full-size cables are becoming more relevant. One of the most common methods used for space charge measurements is the Pulsed Electro-Acoustic (PEA) method. This paper analyzes two factors that influence the electromagnetic interference on the piezoelectric signal. These factors are the connection of the injected pulsed voltage at the PEA test cell and the grounding of the PEA test cell. The influence was analyzed by means of experimental tests to compare different configurations and the electromagnetic distortion created in each one of them. It was observed that the physical location of the pulsed voltage at the electrode has a very important impact on the magnitude of the electromagnetic distortion. Moreover, it is shown that the physical connection of the grounding and the existence of a parasitic capacitance at the PEA test cell are also an important source of distortion. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 5496 KB  
Article
Effect of Ionic Conductors on the Suppression of PTC and Carrier Emission of Semiconductive Composites
by Yingchao Cui, Hongxia Yin, Zhaoliang Xing, Xiangjin Guo, Shiyi Zhao, Yanhui Wei, Guochang Li, Meng Xin, Chuncheng Hao and Qingquan Lei
Appl. Sci. 2020, 10(8), 2915; https://doi.org/10.3390/app10082915 - 23 Apr 2020
Cited by 9 | Viewed by 2662
Abstract
The positive temperature coefficient (PTC) effect of the semiconductive layers of high-voltage direct current (HVDC) cables is a key factor limiting its usage when the temperature exceeds 70 °C. The conductivity of the ionic conductor increases with the increase in temperature. Based on [...] Read more.
The positive temperature coefficient (PTC) effect of the semiconductive layers of high-voltage direct current (HVDC) cables is a key factor limiting its usage when the temperature exceeds 70 °C. The conductivity of the ionic conductor increases with the increase in temperature. Based on the characteristics of the ionic conductor, the PTC effect of the composite can be weakened by doping the ionic conductor into the semiconductive materials. Thus, in this paper, the PCT effects of electrical resistivity in perovskite La0.6Sr0.4CoO3 (LSC) particle-dispersed semiconductive composites are discussed based on experimental results from scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a semiconductive resistance test device. Semiconductive composites with different LSC contents of 0.5 wt%, 1 wt%, 3 wt%, and 5 wt% were prepared by hot pressing crosslinking. The results show that the PTC effect is weakened due to the addition of LSC. At the same time, the injection of space charge in the insulating sample is characterized by the pulsed electroacoustic method (PEA) and the thermally stimulated current method (TSC), and the results show that when the content of LSC is 1 wt%, the injection of space charge in the insulating layer can be significantly reduced. Full article
(This article belongs to the Special Issue Integration of High Voltage AC/DC Grids into Modern Power Systems)
Show Figures

Figure 1

14 pages, 5315 KB  
Article
Synthesis of a Novel Semi-Conductive Composites Doping with La0.8Sr0.2MnO3 for Excellent Electric Performance for HVDC Cable
by Hongxia Yin, Yingcao Cui, Yanhui Wei, Chuncheng Hao and Qingquan Lei
Polymers 2020, 12(4), 809; https://doi.org/10.3390/polym12040809 - 4 Apr 2020
Cited by 9 | Viewed by 2855
Abstract
The semi-conductive layer located between the wire core and the insulation layer in high voltage direct current (HVDC) cable plays a vital role in uniform electric field and affecting space charges behaviors. In this work, the research idea of adding ionic conductive particles [...] Read more.
The semi-conductive layer located between the wire core and the insulation layer in high voltage direct current (HVDC) cable plays a vital role in uniform electric field and affecting space charges behaviors. In this work, the research idea of adding ionic conductive particles to semi-conductive materials to improve the conductive network and reduce the energy of the moving charge inside it and to suppress charge injection was proposed. Semi-conductive composites doped with different La0.8Sr0.2MnO3 (LSM) contents were prepared. Resistivity at different temperatures was measured to investigate the positive temperature coefficient (PTC) effect. Pulse electro-acoustic (PEA) method and thermal-stimulation depolarization currents (TSDC) tests of the insulation layers were carried out. From the results, space charge distribution and TSDC currents in the insulation samples were analyzed to evaluate the inhibitory effect on space charge injection. When LSM content is 6 wt. %, the experimental results show that the PTC effect of the specimen and charge injection are both being suppressed significantly. The maximum resistivity of it is decreased by 53.3% and the insulation sample has the smallest charge amount, 1.85 × 10−7 C under 10 kV/mm—decreased by 40%, 3.6 × 10−7 C under 20 kV/mm—decreased by 45%, and 6.42 × 10−7 C under 30 kV/mm—decreased by 26%. When the LSM content reaches 10 wt. %, the suppression effect on the PTC effect and the charge injection are both weakened, owing to the agglomeration of the conductive particles inside the composites which leads to the interface electric field distortion and results in charge injection enhancement. Full article
Show Figures

Figure 1

17 pages, 5155 KB  
Article
Physicochemical Characteristics and Dynamic Charge Mapping in Thermally Aged Two-Layered Polymer Considering Surface States: Experiment and Simulation
by Xiongwei Jiang, Wenxia Sima, George Chen, Qingjun Peng and Potao Sun
Polymers 2020, 12(3), 634; https://doi.org/10.3390/polym12030634 - 10 Mar 2020
Cited by 3 | Viewed by 3449
Abstract
Under operational conditions of high electric fields and elevated temperatures, the accumulation of space charges at multilayer insulation interfaces is often considered as an important factor affecting insulation performance. This study experimentally explored the influence of different thermal aging degrees (110 °C for [...] Read more.
Under operational conditions of high electric fields and elevated temperatures, the accumulation of space charges at multilayer insulation interfaces is often considered as an important factor affecting insulation performance. This study experimentally explored the influence of different thermal aging degrees (110 °C for 0, 720, 1600, 2100, and 2900 h) on physicochemical characteristics. The space charge dynamics in two-layered thermally aged PET-PET films were measured using the pulsed electro-acoustic (PEA) method and simulated on the basis of a one-dimensional modified bipolar charge transport model. The parameterization for key parameters involved in the model was analyzed through parameter sensitivity. Results indicated that the molecular structure, crystallinity, and dielectric spectra of the PET films are affected by thermal aging. The thermalization process also has noticeable effect on the surface state characteristics, which are characterized by deeper trap depth and larger trap density. Several experimental phenomena measured by the PEA method were observed on the basis of numerical simulation. Full article
(This article belongs to the Special Issue Simulations of Polymers II)
Show Figures

Graphical abstract

13 pages, 3072 KB  
Article
The Industrial Applicability of PEA Space Charge Measurements, for Performance Optimization of HVDC Power Cables
by Antonino Imburgia, Pietro Romano, George Chen, Giuseppe Rizzo, Eleonora Riva Sanseverino, Fabio Viola and Guido Ala
Energies 2019, 12(21), 4186; https://doi.org/10.3390/en12214186 - 2 Nov 2019
Cited by 26 | Viewed by 4654
Abstract
Cable manufacturing industries are constantly trying to improve the electrical performance of power cables. During the years, it was found that one of the most relevant degradation factors influencing the cable lifetime is the presence of space charge in the insulation layer. To [...] Read more.
Cable manufacturing industries are constantly trying to improve the electrical performance of power cables. During the years, it was found that one of the most relevant degradation factors influencing the cable lifetime is the presence of space charge in the insulation layer. To detect the accumulated charge, the pulsed electro-acoustic (PEA) method is the most used technique. Despite the wide use of the PEA cell, several issues are still present. In particular, the PEA output signal is strongly disturbed by the acoustic waves reflections within the PEA cell. This causes the distortion of the output signal and therefore the misinterpretation of the charge profiles. This, in turn, may result in an incorrect cable characterization from the space charge phenomenon point of view. In 2017, due to the proved degradation effect of the space charge accumulation phenomenon, the IEEE Std 1732 was developed. This standard describes the steps to be followed for the space charge measurement in cables specimens during pre-qualification or type tests. Therefore, cable manufacturing industries started to take a particular interest in these measures. In the light of this, the aim of the present work is to highlight that the enacted standard is not easily applicable since various problems are still present in the PEA method for cables. In particular, in this work, the effect of multiple reflected signals due to the different interfaces involved, but also the effect of the signal attenuation due to cable dielectric thickness, as well as the effect of the PEA cell ground electrode thickness in the output charge profile, are reported. These issues have been demonstrated by means of an experimental test carried out on a full-size cable in the Prysmian Group High Voltage laboratory. To better understand the PEA cell output signal formation, a PEA cell model was developed in a previous work and it has been experimentally validated here. In particular, simulations have been useful to highlight the effect of the reflection phenomena due to the PEA cell ground electrode thickness on the basis of the specimen under test features. Moreover, by analyzing the simulation results, it was possible to separate the main signal from the reflected waves and, in turn, to calculate the suitable ground electrode thickness for the cable specimen under test. Full article
(This article belongs to the Special Issue Design and Testing of Power Cable System)
Show Figures

Figure 1

23 pages, 6855 KB  
Review
Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables
by Giuseppe Rizzo, Pietro Romano, Antonino Imburgia and Guido Ala
Energies 2019, 12(18), 3512; https://doi.org/10.3390/en12183512 - 12 Sep 2019
Cited by 43 | Viewed by 8828
Abstract
This review takes into account articles and standards published in recent years concerning the application of the Pulsed Electro Acoustic (PEA) method for space charge measurement on High Voltage Direct Current (HVDC) cables and mini-cables. Since the 80s, the PEA method has been [...] Read more.
This review takes into account articles and standards published in recent years concerning the application of the Pulsed Electro Acoustic (PEA) method for space charge measurement on High Voltage Direct Current (HVDC) cables and mini-cables. Since the 80s, the PEA method has been implemented for space charge measurements on flat specimens in order to investigate space charge phenomena and to evaluate the ageing of dielectrics. In recent years, this technique has been adapted to cylindrical geometry. Several studies and experiments have been carried out on the use of the PEA method for full size cables and HVDC cable models. The experiments have been conducted using different arrangements of the measurement setup and focusing attention on different aspects of space charge phenomena. In this work, the importance of space charge measurement is highlighted and the state-of-the-art PEA method application to full size cables and mini-cables is described. The main aim of this paper is to offer a complete and current review of this technique. In addition, limits on the use of PEA method are examined and main possible directions of research are proposed in order to improve the applicability, reliability, and replicability of this method. Full article
Show Figures

Figure 1

Back to TopTop