Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = pulse wave sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4841 KB  
Review
Recent Progress in Advanced Electrode Materials for the Detection of 4-Nitrophenol and Its Derivatives for Environmental Monitoring
by Shanmugam Vignesh, Chellakannu Rajkumar, Rohit Kumar Singh Gautam, Sanjeevamuthu Suganthi, Khursheed Ahmad and Tae Hwan Oh
Sensors 2026, 26(1), 306; https://doi.org/10.3390/s26010306 - 3 Jan 2026
Viewed by 447
Abstract
It is understood that 4-nitrophenol (4-NP) and its derivatives/isomers, such as m-NP and o-NP, are considered toxic nitroaromatic pollutants that pose health risks for human beings and have negative impacts on the environment. Therefore, monitoring of 4-NP is of particular importance to avoid [...] Read more.
It is understood that 4-nitrophenol (4-NP) and its derivatives/isomers, such as m-NP and o-NP, are considered toxic nitroaromatic pollutants that pose health risks for human beings and have negative impacts on the environment. Therefore, monitoring of 4-NP is of particular importance to avoid the negative impacts of these environmental pollutants on aquatic life and human health. Electrochemical sensors have emerged as the most promising next-generation technology for the detection of environmental pollutants. The electrochemical method has been extensively used for the detection of 4-NP, p-NP, etc., which has delivered an interesting electrochemical performance. This review provides an overview of the advances in electrode modifiers designed for the electrochemical detection of 4-NP and its isomers. This review includes the use of carbon-based materials, metal oxides, metal sulfides, metal-organic-frameworks (MOFs), conducting polymers, MXenes, covalent organic frameworks (COF), and composites for the development of 4-NP electrochemical sensors. Various electrochemical techniques, such as differential pulse voltammetry, square wave voltammetry, linear sweep voltammetry, cyclic voltammetry (CV), electrochemical impedance spectroscopy, and amperometry, are discussed for the detection of 4-NP and other isomers. Full article
(This article belongs to the Special Issue Electrochemical Sensing: Technologies, Applications and Challenges)
Show Figures

Figure 1

12 pages, 4704 KB  
Article
Simulation Study on Anti-Interference Performance Degradation of GIS UHF Sensors Based on Substation White Noise Reconstruction
by Lujia Wang, Yongze Yang, Zixi Zhu, Haitao Yang, Jie Wu, Xingwang Wu and Yiming Xie
Sensors 2026, 26(1), 303; https://doi.org/10.3390/s26010303 - 2 Jan 2026
Viewed by 428
Abstract
The ultra-high frequency (UHF)-based partial discharge (PD) detection technology for gas-insulated switchgear (GIS) has achieved large-scale applications due to its high sensitivity and real-time monitoring capabilities. However, long-term service-induced antenna corrosion in UHF sensors may lead to degraded reception characteristics. To ensure the [...] Read more.
The ultra-high frequency (UHF)-based partial discharge (PD) detection technology for gas-insulated switchgear (GIS) has achieved large-scale applications due to its high sensitivity and real-time monitoring capabilities. However, long-term service-induced antenna corrosion in UHF sensors may lead to degraded reception characteristics. To ensure the credibility of monitoring data, on-site sensor calibration under ambient noise conditions is required. This study first analyzes the time–frequency domain characteristics of white noise received by UHF sensors in GIS environments. Leveraging the transceiver reciprocity principle of sensors, a noise reconstruction method based on external sensors is proposed to simulate on-site white noise. Subsequently, CST simulation models are established for both standard and degraded sensors, quantifying the impact of factors like antenna corrosion on performance parameters such as echo impedance S11 and voltage standing wave ratio (VSWR). Finally, the two sensor models are coupled into GIS handholes for comparative simulation analysis. Results show that antenna corrosion causes resonant frequency shifts in sensors, reducing PD signal power by 55.27% and increasing noise power by 64.11%. The signal-to-noise ratio (SNR) decreases from −9.70 dB to −15.34 dB, with evident waveform distortion in the double-exponential PD pulses. These conclusions provide theoretical references for on-site UHF sensor calibration in noisy environments. Full article
Show Figures

Figure 1

23 pages, 11512 KB  
Article
Realizing Fuel Conservation and Safety for Emerging Mixed Traffic Flows: The Mechanism of Pulse and Glide Under Signal Coordination
by Ayinigeer Wumaierjiang, Jinjun Sun, Hongang Li, Wei Dai and Chongshuo Xu
Symmetry 2025, 17(12), 2170; https://doi.org/10.3390/sym17122170 - 17 Dec 2025
Viewed by 239
Abstract
Pulse and glide (PnG) has limited application in urban traffic flows, particularly in emerging mixed traffic flows comprising connected and automated vehicles (CAVs) and human-driven vehicles (HDVs), as well as at signalized intersections. In light of this, green wave coordination is applied to [...] Read more.
Pulse and glide (PnG) has limited application in urban traffic flows, particularly in emerging mixed traffic flows comprising connected and automated vehicles (CAVs) and human-driven vehicles (HDVs), as well as at signalized intersections. In light of this, green wave coordination is applied to the urban network of multiple signalized intersections. Under perception asymmetries, HDVs lack environmental perception capabilities, while CAVs are equipped with perception sensors of varying performance. CAVs could activate the PnG mode and set its average speed based on signal phase and safety status, enabling assessment of fuel savings and safety. The findings reveal that (i) excluding idling fuel consumption, when the traffic volume is low and market penetration rate (MPR) of CAVs exceeds 70%, CAVs could significantly reduce regional average fuel consumption by up to 8.8%. (ii) Compared to HDVs, CAVs could achieve a fuel saving rate (FSR) ranging from 7.1% to 50%. In low-traffic-volume conditions, CAVs with greater detection ranges could swiftly activate the PnG mode to achieve fuel savings, while in higher-traffic-volume conditions, more precise sensing aids effectiveness. (iii) the PnG mode could ensure safety for CAVs and HDVs, with CAVs equipped with highly precise sensing exhibiting particularly robust safety performance. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Intelligent Transportation System)
Show Figures

Figure 1

26 pages, 30428 KB  
Article
Lightweight and Compact Pulse Radar for UAV Platforms for Mid-Air Collision Avoidance
by Dawid Sysak, Arkadiusz Byndas, Tomasz Karas and Grzegorz Jaromi
Sensors 2025, 25(23), 7392; https://doi.org/10.3390/s25237392 - 4 Dec 2025
Viewed by 672
Abstract
Small and medium Unmanned Aerial Vehicles (UAVs) are commonly equipped with diverse sensors for situational awareness, including cameras, Frequency-Modulated Continuous-Wave (FMCW) radars, Light Detection and Ranging (LiDAR) systems, and ultrasonic sensors. However, optical systems are constrained by adverse weather and darkness, while the [...] Read more.
Small and medium Unmanned Aerial Vehicles (UAVs) are commonly equipped with diverse sensors for situational awareness, including cameras, Frequency-Modulated Continuous-Wave (FMCW) radars, Light Detection and Ranging (LiDAR) systems, and ultrasonic sensors. However, optical systems are constrained by adverse weather and darkness, while the limited detection range of compact FMCW radars-typically a few hundred meters-is often insufficient for higher-speed UAVs, particularly those operating Beyond Visual Line of Sight (BVLOS). This paper presents a Collision Avoidance System (CAS) based on a lightweight pulse radar, targeting medium UAV platforms (10–300 kg MTOM) where installing large, nose-mounted radars is impractical. The system is designed for obstacle detection at ranges of 1–3 km, directly addressing the standoff distance limitations of conventional sensors. Beyond its primary sensing function, the pulse architecture offers several operational advantages. Its lower time-averaged power also results in a reduced electromagnetic footprint, mitigating interference and supporting emission-control objectives. Furthermore, pulse radar offers greater robustness against interference in dense electromagnetic environments and lower power consumption, both of which directly enhance UAV operational endurance. Field tests demonstrated a one-to-one correspondence between visually identified objects and radar detections across 1–3 km, with PFA = 1.5%, confirming adequate standoff for tens of seconds of maneuvering time, with range resolution of 3.75 m and average system power below 80 W. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

26 pages, 6942 KB  
Article
Application of the Akaike Information Criterion to Ultrasonic Measurement of Liquid Volume in a Cylindrical Tank
by Krzysztof J. Opieliński and Tomasz Świetlik
Sensors 2025, 25(23), 7191; https://doi.org/10.3390/s25237191 - 25 Nov 2025
Viewed by 617
Abstract
The ultrasonic sensor method is the most significant and widely accepted technique for measuring liquid levels in tanks. Ultrasonic waves are particularly advantageous in the case of explosive, flammable, or aggressive liquids because of the possibility of introducing ultrasonic pulses through the tank [...] Read more.
The ultrasonic sensor method is the most significant and widely accepted technique for measuring liquid levels in tanks. Ultrasonic waves are particularly advantageous in the case of explosive, flammable, or aggressive liquids because of the possibility of introducing ultrasonic pulses through the tank wall safely. Often, the measurement of these liquids should be performed automatically using electronic devices to ensure that the tank remains sealed. In the case of ultrasound, measurements are made using the echo method, with a transmitting-receiving (transceiver) ultrasonic transducer that sends vibration pulses into the tank. The measured delay between the transmitted pulse and the pulse reflected from the liquid surface is proportional to the liquid level in the tank. The volume of liquid can be calculated on the basis of the dimensions of the tank. In this method, it is very important to accurately determine the delay by detecting the beginning of the reflected pulse, which determines the accuracy of the measurement of the level of the liquid and its quantity in the tank. To improve this accuracy, this paper proposes the use of the Akaike Information Criterion (AIC) used in statistics for model selection. As part of the research, ultrasonic test measurements were performed for a tank filled with water and extraction gasoline. This allowed a favorable comparison of the AIC method with the most commonly used threshold method and for determining the accuracy of liquid volume measurements in the tank using both methods in relation to the parameters of several selected ultrasonic sensors. The accuracy obtained using the AIC method was found to be better than that of the fixed-fractional amplitude threshold method. Furthermore, the AIC method is more versatile because it is less sensitive to interference and is capable of detecting the onset of a pulse regardless of its shape and frequency, even in noise. It is suitable for real-time embedded systems for liquid level measurement as well. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
Show Figures

Figure 1

1687 KB  
Proceeding Paper
Architecture of a Piezoelectric Acoustic Detector for Applications in Tissue and Soft Material
by Raúl Alberto Reyes-Villagrana
Eng. Proc. 2025, 118(1), 63; https://doi.org/10.3390/ECSA-12-26606 - 7 Nov 2025
Viewed by 110
Abstract
There are various non-destructive techniques for determining the internal properties of materials in fluids, semi-solids, solids, and biological tissue. One of these techniques is low-intensity ultrasonic testing. In this proceeding paper, a study on the architecture of a piezoelectric acoustic detector (PAD) is [...] Read more.
There are various non-destructive techniques for determining the internal properties of materials in fluids, semi-solids, solids, and biological tissue. One of these techniques is low-intensity ultrasonic testing. In this proceeding paper, a study on the architecture of a piezoelectric acoustic detector (PAD) is presented, from which an analysis for the design, development, and construction of an acoustic wave detector in the ultrasonic spectrum has emerged. Its purpose is to be applied to soft matter and tissue. The 110 μm thick polyvinylidene fluoride (PVDF) piezoelectric element was used as the active element in the thickness mode configuration. Piezoelectric constitutive equations were applied to a one-dimensional model for the analysis. A cylindrical iron–nickel backing was used, and the parts were bonded with conductive silver epoxy glue. The results are presented. The equation for the output voltage of the piezoelectric acoustic detector is described. Functional testing of the PAD is demonstrated using the pulse-echo technique, in which an acoustic wave generator excites an ultrasonic immersion sensor in emission configuration and the DAP is connected to a digital oscilloscope to observe the received signal. Finally, pulsed photoacoustic spectroscopy was applied to a biological tissue emulator and yielded significant results in the detection of a ruby sphere embedded in the emulator. It is proposed to further investigation the DAP models in multilayer structural configurations to increase their sensitivity. Full article
Show Figures

Figure 1

32 pages, 4544 KB  
Review
A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling
by Zhan Shen, Jian Li, Hao Hu, Chentao Du, Xiaorong Ding, Tingrui Pan and Xinge Yu
AI Sens. 2025, 1(2), 8; https://doi.org/10.3390/aisens1020008 - 7 Nov 2025
Cited by 2 | Viewed by 3813
Abstract
Accurate and continuous, non-invasive blood pressure (BP) monitoring plays a vital role in the long-term management of cardiovascular diseases. Advances in wearable and flexible sensing technologies have facilitated the transition of non-invasive BP monitoring from clinical settings to ambulatory home environments. However, the [...] Read more.
Accurate and continuous, non-invasive blood pressure (BP) monitoring plays a vital role in the long-term management of cardiovascular diseases. Advances in wearable and flexible sensing technologies have facilitated the transition of non-invasive BP monitoring from clinical settings to ambulatory home environments. However, the measurement consistency and algorithm adaptability of existing devices have not yet reached the level required for routine clinical practice. To address these limitations, comprehensive innovations have been made in material development, sensor design, and algorithm optimization. This review examines the evolution of non-invasive continuous BP measurement, highlighting cutting-edge advances in flexible electronic devices and BP estimation algorithms. First, we introduce measurement principles, sensing devices and limitations of traditional non-invasive BP measurement, including arterial tonometry, arterial volume clamp, and ultrasound-based methods. Subsequently, we review the pulse wave analysis-based BP estimation methods from two perspectives: flexible sensors based on optical, mechanical, and electrical principles, and estimation models that use physiological features or raw waveforms as input. Finally, we conclude the existing challenges and future development directions of flexible electronic technology and intelligent estimation algorithms for non-invasive continuous BP measurement. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

27 pages, 5439 KB  
Article
320 × 240 SPAD Direct Time-of-Flight Image Sensor and Camera Based on In-Pixel Correlation and Switched-Capacitor Averaging
by Maarten Kuijk, Ayman Morsy, Thomas Lapauw, Thomas Van den Dries, Wannes Nevens, Mohamed A. Bounouar, Hans Ingelberts and Daniel Van Nieuwenhove
Sensors 2025, 25(21), 6772; https://doi.org/10.3390/s25216772 - 5 Nov 2025
Viewed by 1423
Abstract
Correlation-Assisted Direct Time-of-Flight (CA-dToF) is demonstrated for the first time on a large 320 × 240-pixel SPAD array sensor that includes on-chip high-speed timing support circuitry. SPAD events are processed in-pixel, avoiding data communication over the array and/or storage bottlenecks. This is accomplished [...] Read more.
Correlation-Assisted Direct Time-of-Flight (CA-dToF) is demonstrated for the first time on a large 320 × 240-pixel SPAD array sensor that includes on-chip high-speed timing support circuitry. SPAD events are processed in-pixel, avoiding data communication over the array and/or storage bottlenecks. This is accomplished by sampling two orthogonal triangle waves that are synchronized with short light pulses illuminating the scene. Using small switched-capacitor circuits, exponential moving averaging (EMA) is applied to the sampled voltages, delivering two analog voltages (VQ2, VI2). These contain the phase delay, or the time of flight between the light pulse and photon’s time of arrival (ToA). Uncorrelated ambient photons and dark counts are averaged out, leaving only their associated shot noise impacting the phase precision. The QVGA camera allows for capturing depth-sense images with sub-cm precision over a 6 m range of detection, even with a small PDE of 0.7% at an 850 nm wavelength. Full article
Show Figures

Figure 1

17 pages, 2161 KB  
Review
Progress in the Determination of Resorcinol Using Electrochemical Method
by Chellakannu Rajkumar, Khursheed Ahmad, Shanmugam Vignesh and Tae Hwan Oh
Biosensors 2025, 15(11), 723; https://doi.org/10.3390/bios15110723 - 1 Nov 2025
Viewed by 635
Abstract
Phenolic compounds such as resorcinol (RS) have negative impacts on aquatic life, the environment, and human health. Thus, it is necessary to develop sensing devices for the monitoring of RS. The electrochemical method is one of the most significant approaches for the determination [...] Read more.
Phenolic compounds such as resorcinol (RS) have negative impacts on aquatic life, the environment, and human health. Thus, it is necessary to develop sensing devices for the monitoring of RS. The electrochemical method is one of the most significant approaches for the determination of toxic substances. In electrochemical methods, electrode modifiers play a vital role and affect the sensing performance of the electrochemical sensors. Thus, the selection of efficient electrode material is of great importance. In recent years, various electrode modifiers such as graphene, metal–organic frameworks (MOFs), MXenes, metal oxides, polymers, and composite materials have been extensively used for the fabrication of RS sensors. In this review, we have summarized the reported electrode modifiers for the fabrication of RS electrochemical sensors. Various electrochemical sensing techniques, including differential pulse voltammetry (DPV), square wave voltammetry (SWV), amperometry (Amp), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) have been discussed. This review provides an overview of a large number of electrode modifiers for the determination of RS. The limitations, challenges, and future perspectives for RS sensors are discussed. We believe that the present review article is beneficial for the scientific community and electrochemists working on the construction of RS sensors. Full article
(This article belongs to the Special Issue Functional Materials for Biosensing Applications)
Show Figures

Figure 1

19 pages, 2659 KB  
Article
A Full Pulse Acoustic Monitoring Method for Detecting the Interface During Concrete Pouring in Cast-in-Place Pile
by Ming Chen, Jinchao Wang, Jiwen Zeng and Hao He
Appl. Sci. 2025, 15(20), 11205; https://doi.org/10.3390/app152011205 - 19 Oct 2025
Viewed by 585
Abstract
As a key form of deep foundation in civil engineering, the concrete pouring quality of cast-in-place piles directly determines the integrity and long-term bearing performance of the pile body. Accurate monitoring of the pouring interface is critical to preventing defects such as mud [...] Read more.
As a key form of deep foundation in civil engineering, the concrete pouring quality of cast-in-place piles directly determines the integrity and long-term bearing performance of the pile body. Accurate monitoring of the pouring interface is critical to preventing defects such as mud inclusion and pile breakage. To address the limitations of existing monitoring methods for concrete pouring interfaces, this paper proposes a full-pulse acoustic monitoring method for the concrete pouring interface of cast-in-place piles. Firstly, by constructing a hardware system platform consisting of “multi-level in-borehole sound sources + interface acoustic wave sensors + orifice full-pulse receivers + ground processors”, differential capture of signals propagating at different depths is achieved through multi-frequency excitation. Subsequently, a waveform data processing method is proposed to realize denoising, enhancement, and frequency discrimination of different signals, and a target feature recognition model that integrates cross-correlation functions and signal similarity analysis is established. Finally, by leveraging the differential characteristics of measurement signals at different depths, a near-field measurement mode and a far-field measurement mode are developed, thereby establishing a calculation model for the elevation position of the pouring interface under different scenarios. Meanwhile, the feasibility of the proposed method is verified through practical engineering cases. The results indicate that the proposed full pulse acoustic monitoring method can achieve non-destructive, real-time, and high-precision monitoring of the pouring interface, providing an effective technical approach for quality control in pile foundation construction and exhibiting broad application prospects. Full article
Show Figures

Figure 1

24 pages, 5371 KB  
Article
Non-Contact In Situ Estimation of Soil Porosity, Tortuosity, and Pore Radius Using Acoustic Reflections
by Stuart Bradley
Agriculture 2025, 15(20), 2146; https://doi.org/10.3390/agriculture15202146 - 15 Oct 2025
Viewed by 707
Abstract
Productive and healthy soils are essential in agriculture and other economic uses of land which depend on plant growth, and are under increasing pressure globally. The physical properties of soil, its porosity and pore structure, also have a significant impact on a wide [...] Read more.
Productive and healthy soils are essential in agriculture and other economic uses of land which depend on plant growth, and are under increasing pressure globally. The physical properties of soil, its porosity and pore structure, also have a significant impact on a wide range of environmental factors, such as surface water runoff and greenhouse gas exchange. Methods exist for evaluating soil porosity that are applied in a laboratory environment or by inserting sensors into soil in the field. However, such methods do not readily sample adequately in space or time and are labour-intensive. The purpose of the current study is to investigate the potential for estimation of soil porosity and pore size using the strength of reflection of audio pulses from natural soil surfaces. Estimation of porous material properties using acoustic reflections is well established. But because of the complex, viscous interactions between sound waves and pore structures, these methods are generally restricted to transmissions at low audio frequencies or at ultrasonic frequencies. In contrast, this study presents a novel design for an integrated broad band sensing system, which is compact, inexpensive, and which is capable of rapid, non-contact, and in situ sampling of a soil structure from a small, moving, farm vehicle. The new system is shown to have the capability of obtaining soil parameter estimates at sampling distances of less than 1 m and with accuracies of around 1%. In describing this novel design, special care is taken to consider the challenges presented by real agriculture soils. These challenges include the pasture, through which the sound must penetrate without significant losses, and soil roughness, which can potentially scatter sound away from the specular reflection path. The key to this new integrated acoustic design is an extension of an existing theory for acoustic interactions with porous materials and rigorous testing of assumptions via simulations. A configuration is suggested and tested, comprising seven audio frequencies and three angles of incidence. It is concluded that a practical, new operational tool of similar design should be readily manufactured. This tool would be inexpensive, compact, low-power, and non-intrusive to either the soil or the surrounding environment. Audio processing can be conducted within the scope of, say, mobile phones. The practical application is to be able to easily map regions of an agricultural space in some detail and to use that to guide land treatment and mitigation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

33 pages, 781 KB  
Review
Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review
by Gisele Afonso Bento Mello, Stephen Rathinaraj Benjamin, Fábio de Lima and Rosa F. Dutra
Biosensors 2025, 15(10), 676; https://doi.org/10.3390/bios15100676 - 8 Oct 2025
Cited by 2 | Viewed by 3360
Abstract
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, [...] Read more.
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, and signal amplification approaches for quantifying nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotic classes, including sulfonamides, tetracyclines, macrolides, and quinolones. Particular attention is given to nanostructured carbon-based materials, metal nanoparticles, and polymer composites that enhance electron transfer, improve selectivity, and lower limits of detection (LODs). The analytical performance of different electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry is critically compared across various drug targets. Trends indicate that hybrid nanomaterial-modified electrodes consistently achieve sub-micromolar detection limits in biological and environmental samples, offering potential for point-of-care diagnostics and environmental monitoring. Current challenges include improving sensor stability, mitigating fouling effects, and ensuring reproducibility in complex matrices. Future research should focus on integrated, miniaturized sensing platforms capable of multiplex detection, paving the way for rapid, portable, and sustainable analytical solutions in pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

18 pages, 2422 KB  
Article
Self-Sensing with Hollow Cylindrical Transducers for Histotripsy-Enhanced Aspiration Mechanical Thrombectomy Applications
by Li Gong, Alex R. Wright, Kullervo Hynynen and David E. Goertz
Sensors 2025, 25(17), 5417; https://doi.org/10.3390/s25175417 - 2 Sep 2025
Cited by 1 | Viewed by 1158
Abstract
Intravascular aspiration thrombectomy catheters are widely used to treat stroke, pulmonary embolism, and deep venous thrombosis. However, their performance is frequently compromised by clot material becoming lodged within the catheter tip. To address this, we develop a novel ultrasound-enhanced aspiration catheter approach that [...] Read more.
Intravascular aspiration thrombectomy catheters are widely used to treat stroke, pulmonary embolism, and deep venous thrombosis. However, their performance is frequently compromised by clot material becoming lodged within the catheter tip. To address this, we develop a novel ultrasound-enhanced aspiration catheter approach that generates cavitation within the tip to mechanically degrade clots, with a view to facilitate extraction. The design employs hollow cylindrical transducers that produce inwardly propagating cylindrical waves to generate sufficiently high pressures to perform histotripsy. This study investigates the feasibility of self-sensing cavitation detection by analyzing voltage signals across the transducer during treatment. Experiments were conducted for two transmit pulse lengths at varying driving voltages with water or clot in the lumen. Cavitation clouds within the lumen were assessed using 40 MHz ultrasound imaging. Changes in the signal envelope during the pulse body and ringdown phases occurred above the cavitation threshold, the latter being associated with more rapid wave damping in the presence of bubble clouds within the lumen. In the frequency domain, voltage-dependent cavitation signals—subharmonics, ultra-harmonics, and broadband—emerged alongside transmit pulses. This work demonstrates a highly sensitive, sensor-free method for detecting cavitation within the lumen, enabling feedback control to further improve histotripsy-assisted aspiration. Full article
(This article belongs to the Special Issue Multi-sensor Fusion in Medical Imaging, Diagnosis and Therapy)
Show Figures

Figure 1

12 pages, 2311 KB  
Communication
Dual-Responsive Starch Hydrogels via Physicochemical Crosslinking for Wearable Pressure and Ultra-Sensitive Humidity Sensing
by Zi Li, Jinhui Zhu, Zixuan Wang, Hao Hu and Tian Zhang
Sensors 2025, 25(16), 5006; https://doi.org/10.3390/s25165006 - 13 Aug 2025
Cited by 1 | Viewed by 943
Abstract
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile [...] Read more.
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile “one-pot” strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I0, ~2.3) with rapid response (0.1 s). In its dried state (D-SPG), the film leverages the starch’s hygroscopicity for humidity sensing, detecting minute moisture changes (ΔRH = 6.6%) within 120 ms and outputting 0.4~0.5 (ΔI/I0) signal amplitudes. The distinct state-dependent responsiveness enables tailored applications: SPG monitors physiological motions (e.g., pulse waves and joint movements) via conformal skin attachment, while D-SPG integrated into masks quantifies respiratory intensity with 3× signal enhancement during exercise. This work pioneers a sustainable candidate for biodegradable flexible electronics, overcoming trade-off limitations between mechanical integrity, signal stability, and dual responsiveness in starch hydrogels through synergistic network design. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

24 pages, 4040 KB  
Review
Progress in Electrode Materials for the Detection of Nitrofurazone and Nitrofurantoin
by Mohammad Aslam, Saood Ali, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(8), 482; https://doi.org/10.3390/bios15080482 - 24 Jul 2025
Cited by 1 | Viewed by 1005
Abstract
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and [...] Read more.
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and human health. Thus, various advanced materials such as graphene, carbon nanotubes, metal oxides, MXenes, layered double hydroxides (LDHs), polymers, metal–organic frameworks (MOFs), metal-based composites, etc. are widely used for the development of nitrofurazone and nitrofurantoin sensors. This review article summarizes the progress in the fabrication of electrode materials for nitrofurazone and nitrofurantoin sensing applications. The performance of the various electrode materials for nitrofurazone and nitrofurantoin monitoring are discussed. Various electrochemical sensing techniques such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), amperometry (AMP), cyclic voltammetry (CV), and chronoamperometry (CA) are discussed for the determination of NFZ and NFT. It is observed that DPV, SWV, and AMP/CA are more sensitive techniques compared to LSV and CV. The challenges, future perspectives, and limitations of NFZ and NFT sensors are also discussed. It is believed that present article may be useful for electrochemists as well materials scientists who are working to design electrode materials for electrochemical sensing applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

Back to TopTop