A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling
Abstract
1. Introduction
- (1)
- The research content must clearly focus on the application of flexible sensors in non-invasive BP measurement or continuous pulse wave monitoring, excluding literature focusing on arterial elasticity detection or vascular wall stiffness assessment.
- (2)
- The research must include complete content on the design and verification of flexible sensors (such as material design, structural optimization, and performance testing), excluding studies that do not clearly specify the core parameters of the sensors (such as flexibility, sensitivity, biocompatibility, etc.).
- (3)
- Studies implementing non-invasive continuous BP measurement are included, excluding those only involving intermittent BP measurement (such as oscillometric method) or invasive BP measurement (such as arterial catheterization method).
- (4)
- Studies without any experimental data verification or with a verification sample size of less than 10 cases are excluded to avoid conclusion bias caused by small-sample data and ensure the reliability and statistical validity of the included studies.

| Queries | Date (Year) | Screening Counts |
|---|---|---|
| ‘blood pressure’ AND (‘arterial tonometry’ OR ‘volume clamp’) | 1971–2025 | 19 |
| ‘blood pressure’ AND (‘ultrasound’ OR ‘Doppler’) | 2000–2025 | 8 |
| ‘flexible sensor‘ AND (‘pulse wave’ OR ‘blood pressure’) | 2010–2025 | 52 |
| ‘blood pressure’ AND (‘pulse transit time’ OR ‘pulse arrival time’) | 2000–2025 | 6 |
| ‘blood pressure’ AND (‘machine learning’ OR ‘deep learning’) | 2010–2025 | 60 |
2. Non-Invasive and Continuous BP Measurement
2.1. Arterial Tonometry
2.2. Arterial Volume Clamp
2.3. Ultrasound-Based Method
3. Flexible Sensing Technologies Toward Pulse Wave Acquisition
3.1. Optical-Based Sensors
3.2. Mechanical-Based Sensors
3.3. Electrical-Based Sensors
4. Modeling Strategies for Pulse Wave-Based BP Estimation
4.1. Feature Engineering-Driven Modeling
4.1.1. Pulse Wave Propagation-Based Modeling
4.1.2. Pulse Wave Analysis-Based Modeling
- (1)
- Feature extraction
- (2)
- Estimation model
4.2. Raw Waveform-Driven Modeling
4.2.1. Beat-to-Beat BP Estimation
4.2.2. End-to-End BP Estimation
5. Conclusions and Outlooks
- (1)
- Enhancing the stability and biocompatibility of the sensor–skin interface to reduce interfacial impedance, thereby improving signal quality.
- (2)
- Improving the motion artifact resistance of flexible sensors to enhance the reliability of physiological signal acquisition in dynamic environments.
- (3)
- Enriching BP estimation model training datasets to cover broader heterogeneous populations and more diverse ambulatory scenarios, thereby mitigating measurement errors caused by data bias.
- (4)
- Promoting the co-design and optimization of flexible sensors and intelligent algorithms. For example, develop low-power, highly integrated system-on-chip (SoC) solutions to enable real-time signal collection, processing, and BP estimation. Alternatively, design lightweight estimation models based on the dynamic characteristics of flexible sensors or optimize sensor layouts through model feedback.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BP | Blood Pressure |
| CVDs | Cardiovascular Diseases |
| ECG | Electrocardiogram |
| PPG | Photoplethysmogram |
| ML | Machine Learning |
| DL | Deep Learning |
| PW | Pulse Wave |
| PWA | Pulse Wave Analysis |
| ABP | Arterial Blood Pressure |
| SBP | Systolic Blood Pressure |
| DBP | Diastolic Blood Pressure |
| SNR | Signal-Noise-Ratio |
| HR | Heart Rate |
| HRV | Heart Rate Variability |
| PTT | Pulse Transit Time |
| PAT | Pulse Arrival Time |
| IPG | Impedance Plethysmography |
| BCG | Ballistocardiogram |
| PIR | PPG Intensity Ratio |
| LR | Linear Regression |
| SVM | Support Vector Machines |
| KNN | K-Nearest Neighbors |
| RF | Random Forest |
| ANN | Artificial Neural Networks |
| RNN | Recurrent Neural Network |
| CNN | Convolutional Neural Network |
| LSTM | Long Short-Term Memory |
| GRU | Gated Recurrent Unit |
| PINNs | Physics-Informed Neural Networks |
| GANs | Generative Adversarial Networks |
References
- Romero, T.; Nazal, C.N.; Lanas, F. Global Challenges in Cardiovascular Prevention in Populations with Low Socioeconomic Status; Springer Nature: Cham, Switzerland, 2025. [Google Scholar]
- WHO. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 15 August 2025).
- WHO. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 15 August 2025).
- Valentinuzzi, M.E.; Beneke, K.; Gonzalez, G.E. Ludwig: The bioengineer. IEEE Pulse 2012, 3, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.H.; Dripps, R.D.; Risman, G.C. A method for recording the arterial pressure pulse and blood pressure in man. Am. Heart J. 1949, 37, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Keville, M.P.; Gelmann, D.; Hollis, G.; Beher, R.; Raffman, A.; Tanveer, S.; Jones, K.; Parker, B.M.; Haase, D.J.; Tran, Q.K. Arterial or cuff pressure: Clinical predictors among patients in shock in a critical care resuscitation unit. Am. J. Emerg. Med. 2021, 46, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Pressman, G.L.; Newgard, P.M. A Transducer for the Continuous External Measurement of Arterial Blood Pressure. IEEE Trans. Bio. Med. Electron. 1963, 10, 73–81. [Google Scholar] [CrossRef]
- Penaz, J. Photoelectric measurement of blood pressure, volume and flow in the finger. In Proceedings of the Digest of the 10th International Conference on Medical and Biological Engineering, Dresden, Germany, 6–10 August 1973; pp. 2–7. [Google Scholar]
- Arndt, J.O.; Klauske, J.; Mersch, F. The diameter of the intact carotid artery in man and its change with pulse pressure. Pflügers Arch. Gesamte Physiol. Menschen Tiere 1968, 301, 230–240. [Google Scholar] [CrossRef]
- Stegall, H.F.; Kardon, M.B.; Kemamerer, W.T. Indirect measurement of arterial blood pressure by Doppler ultrasonic sphygmomanometry. J. Appl. Physiol. 1968, 25, 793–798. [Google Scholar] [CrossRef]
- Arakawa, T. Recent Research and Developing Trends of Wearable Sensors for Detecting Blood Pressure. Sensors 2018, 18, 2772. [Google Scholar] [CrossRef]
- Kim, M.S.; Almuslem, A.S.; Babatain, W.; Bahabry, R.R.; Das, U.K.; El-Atab, N.; Ghoneim, M.; Hussain, A.M.; Kutbee, A.T.; Nassar, J.; et al. Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. Adv. Mater. 2024, 36, e2406424. [Google Scholar] [CrossRef]
- Parati, G.; Lombardi, C.; Pengo, M.; Bilo, G.; Ochoa, J.E. Current challenges for hypertension management: From better hypertension diagnosis to improved patients’ adherence and blood pressure control. Int. J. Cardiol. 2021, 331, 262–269. [Google Scholar] [CrossRef]
- Yi, C.; Li, W.; Shi, S.; He, K.; Ma, P.; Chen, M.; Yang, C. High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Sol. Energy 2020, 195, 340–354. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef] [PubMed]
- Vanfleteren, J.; Loeher, T.; Gonzalez, M.; Bossuyt, F.; Vervust, T.; de Wolf, I.; Jablonski, M. SCB and SMI: Two stretchable circuit technologies, based on standard printed circuit board processes. Circuit World 2012, 38, 232–242. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.-B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2013, 26, 1336–1342. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, N.; Liu, W.; Li, M.; Ma, Y.; Luo, C.; Wang, S.; Rao, J.; Hu, X.; Su, J. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87. [Google Scholar] [CrossRef]
- Habib, M.; Lantgios, I.; Hornbostel, K. A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D Appl. Phys. 2022, 55, 423002. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Wu, X.; Yin, M.; Yin, L.; Qu, S.; Zhang, F.; Li, K.; Huang, Y. Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano Micro Lett. 2025, 17, 64. [Google Scholar] [CrossRef]
- Ye, C.; Ume, C.I.; Sitaraman, S.K. Mechanical characterization of embedded serpentine conductors in wearable electronics. J. Electron. Packag. 2020, 142, 021007. [Google Scholar] [CrossRef]
- Chen, H.; Sun, G.; Yang, Z.; Wang, T.; Bai, G.; Wang, J.; Chen, R.; Han, S. Ultra-sensitive, lightweight, and flexible composite sponges for stress sensors based combining of “through-hole” polyimide sponge and “pleated stacked” reduced graphene oxide. Compos. Sci. Technol. 2022, 218, 109179. [Google Scholar] [CrossRef]
- Li, J.; Chu, H.; Chen, Z.; Yiu, C.K.; Qu, Q.a.; Li, Z.; Yu, X. Recent advances in materials, devices and algorithms toward wearable continuous blood pressure monitoring. ACS Nano 2024, 18, 17407–17438. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Tao, T.H. Recent progress in bio-integrated intelligent sensing system. Adv. Intell. Syst. 2022, 4, 2100280. [Google Scholar] [CrossRef]
- Dueck, R.; Goedje, O.; Clopton, P. Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry. J. Clin. Monit. Comput. 2012, 26, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.A.; Jagadeesh, A.; Singh, N.G.; Prasad, S. Evaluation of continuous non-invasive arterial pressure monitoring during induction of general anaesthesia in patients undergoing cardiac surgery. Indian J. Anaesth. 2015, 59, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Du, C.; Fang, J.; Xu, C.; Guo, C.; Huang, J.; Li, K.; Chen, L.; Zhang, Y.-T.; Chang, Y.; et al. Flexible adaptive sensing tonometry for medical-grade multi-parametric hemodynamic monitoring. Npj Flex. Electron. 2024, 8, 45. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Hu, H.; Zhang, L.; Huang, Z.; Lin, M.; Zhang, Z.; Yin, Z.; Huang, B.; Gong, H.; et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687–695. [Google Scholar] [CrossRef]
- Eckerle, J.S. Tonometry, arterial. In Encyclopedia of Medical Devices and Instrumentation; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Salvi, P.; Grillo, A.; Parati, G. Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry. Hypertens Res. 2015, 38, 646–648. [Google Scholar] [CrossRef]
- Kim, J.; Chou, E.F.; Le, J.; Wong, S.; Chu, M.; Khine, M. Soft Wearable Pressure Sensors for Beat-to-Beat Blood Pressure Monitoring. Adv. Healthc. Mater. 2019, 8, e1900109. [Google Scholar] [CrossRef]
- Sayer, G.; Piper, G.; Vorovich, E.; Raikhelkar, J.; Kim, G.H.; Rodgers, D.; Shimbo, D.; Uriel, N. Continuous Monitoring of Blood Pressure Using a Wrist-Worn Cuffless Device. Am. J. Hypertens. 2022, 35, 407–413. [Google Scholar] [CrossRef]
- Digiglio, P.; Li, R.; Wang, W.; Pan, T. Microflotronic arterial tonometry for continuous wearable non-invasive hemodynamic monitoring. Ann. Biomed. Eng. 2014, 42, 2278–2288. [Google Scholar] [CrossRef]
- Wang, C.; Qi, B.; Lin, M.; Zhang, Z.; Makihata, M.; Liu, B.; Zhou, S.; Huang, Y.-H.; Hu, H.; Gu, Y.; et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 2021, 5, 749–758. [Google Scholar] [CrossRef]
- Kang, D.-H.; Cho, S.; Kim, H.Y.; Shim, S.; Kim, D.H.; Jeong, B.; Lee, Y.S.; Park, E.-A.; Lee, W.; Kim, H.; et al. Silicon nanocolumn-based disposable and flexible ultrasound patches. Nat. Commun. 2025, 16, 6609. [Google Scholar] [CrossRef] [PubMed]
- Langewouters, G.; Zwart, A.; Busse, R.; Wesseling, K. Pressure-diameter relationships of segments of human finger arteries. Clin. Phys. Physiol. Meas. 1986, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Laing, C. Human Spaceflight Countermeasures: Cerebral Hemodynamics During Short-Arm Human Centrifugation and the Role of Peripheral Fluid Shifts and Jugular Venous Congestion. Ph.D. Thesis, King’s College London, London, UK, 2017. [Google Scholar]
- Penaz, J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol. Res. 1992, 41, 5–10. [Google Scholar] [PubMed]
- Parati, G.; Casadei, R.; Groppelli, A.; di Rienzo, M.; Mancia, G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989, 13, 647–655. [Google Scholar] [CrossRef]
- Stokes, D.; Clutton-Brock, T.; Patil, C.; Thompson, J.; Hutton, P. Comparison of invasive and non-invasive measurement of continuous arterial pressure using the Finapres. Br. J. Anaesth. 1991, 67, 26–35. [Google Scholar] [CrossRef][Green Version]
- Fortin, J.; Marte, W.; Grüllenberger, R.; Hacker, A.; Habenbacher, W.; Heller, A.; Wagner, C.; Wach, P.; Skrabal, F. Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput. Biol. Med. 2006, 36, 941–957. [Google Scholar] [CrossRef]
- Saugel, B.; Dueck, R.; Wagner, J.Y. Measurement of blood pressure. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 309–322. [Google Scholar] [CrossRef]
- Fortin, J.; Wellisch, A.; Maier, K. CNAP–evolution of continuous non-invasive arterial blood pressure monitoring. Biomed. Eng. Biomed. Tech. 2013, 58, 000010151520134179. [Google Scholar] [CrossRef]
- Jagadeesh, A.; Singh, N.G.; Mahankali, S. A comparison of a continuous noninvasive arterial pressure (CNAP™) monitor with an invasive arterial blood pressure monitor in the cardiac surgical ICU. Ann. Card. Anaesth. 2012, 15, 180–184. [Google Scholar] [CrossRef]
- Wagner, J.Y.; Prantner, J.S.; Meidert, A.S.; Hapfelmeier, A.; Schmid, R.M.; Saugel, B. Noninvasive continuous versus intermittent arterial pressure monitoring: Evaluation of the vascular unloading technique (CNAP device) in the emergency department. Scand. J. Trauma Resusc. Emerg. Med. 2014, 22, 8. [Google Scholar] [CrossRef]
- Panula, T.; Sirkiä, J.-P.; Kaisti, M. Control method for continuous non-invasive arterial pressure monitoring using the non-pulsatile component of the PPG signal. In Proceedings of the 2021 Computing in Cardiology (CinC), Brno, Czech Republic, 12–15 September 2021; pp. 1–4. [Google Scholar]
- Panula, T.; Sirkiä, J.-P.; Kaisti, M. Continuous blood pressure monitoring using nonpulsatile photoplethysmographic components for low-frequency vascular unloading. IEEE Trans. Instrum. Meas. 2023, 72, 4004910. [Google Scholar] [CrossRef]
- Meinders, J.M.; Hoeks, A.P. Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound Med. Biol. 2004, 30, 147–154. [Google Scholar] [CrossRef]
- Tan, J.; Xu, L.; Sun, H.; Xu, B.; Li, Y.; Yao, Y. Quantitative analysis of the effect of contact pressure on the reflection characteristics of radial pressure wave. J. Biomed. Eng. 2022, 39, 1127–1132. [Google Scholar]
- Huang, C.; Song, P.; Trzasko, J.D.; Gong, P.; Lok, U.-W.; Tang, S.; Manduca, A.; Chen, S. Simultaneous noise suppression and incoherent artifact reduction in ultrafast ultrasound vascular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2075–2085. [Google Scholar] [CrossRef]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Saiko, G.; Sadrzadeh-Afsharazar, F.; Burton, T.; Prahl, S.; Douplik, A. Absorption, scattering, and refractive index of blood and its components: A review. Front. Photon. 2025, 6, 1636398. [Google Scholar] [CrossRef]
- Temko, A. Accurate heart rate monitoring during physical exercises using PPG. IEEE Trans. Biomed. Eng. 2017, 64, 2016–2024. [Google Scholar] [CrossRef]
- Burrello, A.; Pagliari, D.J.; Risso, M.; Benatti, S.; Macii, E.; Benini, L.; Poncino, M. Q-ppg: Energy-efficient ppg-based heart rate monitoring on wearable devices. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 1196–1209. [Google Scholar] [CrossRef]
- Chang, X.; Li, G.; Xing, G.; Zhu, K.; Tu, L. DeepHeart: A deep learning approach for accurate heart rate estimation from PPG signals. ACM Trans. Sens. Netw. (TOSN) 2021, 17, 1–18. [Google Scholar] [CrossRef]
- Ma, G.; Zhu, W.; Zhong, J.; Tong, T.; Zhang, J.; Wang, L. Wearable ear blood oxygen saturation and pulse measurement system based on PPG. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Hangzhou, China, 8–12 October 2018; pp. 111–116. [Google Scholar]
- Haque, C.A.; Hossain, S.; Kwon, T.-H.; Kim, K.-D. Comparison of different methods to estimate blood oxygen saturation using PPG. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 792–794. [Google Scholar]
- Slapničar, G.; Luštrek, M.; Marinko, M. Continuous blood pressure estimation from PPG signal. Informatica 2018, 42, 33–42. [Google Scholar]
- Panwar, M.; Gautam, A.; Biswas, D.; Acharyya, A. PP-Net: A deep learning framework for PPG-based blood pressure and heart rate estimation. IEEE Sens. J. 2020, 20, 10000–10011. [Google Scholar] [CrossRef]
- Haddad, S.; Boukhayma, A.; Caizzone, A. Continuous PPG-based blood pressure monitoring using multi-linear regression. IEEE J. Biomed. Health Inform. 2021, 26, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Qian, Z.; Yabuki, R.; Du, B.; Kino, H.; Fukushima, T.; Kiyovama, K.; Tanaka, T. Continuous peripheral blood pressure measurement with ECG and PPG signals at fingertips. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Mansourinezhad, P.; Ahmadi, M.M.; Mohammadzade, H. Blood pressure estimation using a PPG signal recorded from the fingertip of a hand moving in the sagittal plane. IEEE Sens. J. 2023, 23, 17751–17760. [Google Scholar] [CrossRef]
- Attarpour, A.; Mahnam, A.; Aminitabar, A.; Samani, H. Cuff-less continuous measurement of blood pressure using wrist and fingertip photo-plethysmograms: Evaluation and feature analysis. Biomed. Signal Process. Control 2019, 49, 212–220. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, H.; Li, F.; Wang, Y. Crisp-BP: Continuous wrist PPG-based blood pressure measurement. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New Orleans, LA, USA, 25–29 October 2021; pp. 378–391. [Google Scholar]
- Park, J.-U.; Kang, D.-W.; Erdenebayar, U.; Kim, Y.-J.; Cha, K.-C.; Lee, K.-J. Estimation of arterial blood pressure based on artificial intelligence using single earlobe photoplethysmography during cardiopulmonary resuscitation. J. Med. Syst. 2020, 44, 18. [Google Scholar] [CrossRef]
- Xue, Q.; Nissanka, D.; Yan, J.T.; Wang, R.; Patel, S.; Iyer, V. PPG Earring: Wireless Smart Earring for Heart Health Monitoring. In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 26 April–1 May 2025; pp. 1–16. [Google Scholar]
- Li, Y.; Wei, M.; Chen, Q.; Zhu, X.; Li, H.; Wang, H.; Luo, J. Hybrid D1DCnet using forehead iPPG for continuous and noncontact blood pressure measurement. IEEE Sens. J. 2022, 23, 2727–2736. [Google Scholar] [CrossRef]
- Du, Y.H.; Sun, C.; Zhang, M.; Mai, S. Design of a two-channel forehead PPG sensor. In Proceedings of the 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS), Toronto, ON, Canada, 19–21 October 2023; pp. 1–5. [Google Scholar]
- Xu, H.; Liu, J.; Zhang, J.; Zhou, G.; Luo, N.; Zhao, N. Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring. Adv. Mater. 2017, 29, 1700975. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, Y.; Pu, J.; Wustoni, S.; Uribe, J.; Lopez-Larrea, N.; Marks, A.; McCulloch, I.; Mecerreyes, D.; Baran, D.; et al. Monitoring blood pressure through a single hybrid hemodynamic signal with a flexible optoelectronic patch. Device 2025, 3, 100778. [Google Scholar] [CrossRef]
- Liu, J.; Yan, B.P.; Zhang, Y.T.; Ding, X.R.; Su, P.; Zhao, N. Multi-Wavelength Photoplethysmography Enabling Continuous Blood Pressure Measurement with Compact Wearable Electronics. IEEE Trans. Biomed. Eng. 2019, 66, 1514–1525. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Liang, Z.; Wang, Z.; Cao, Y.; Xu, Y.; Zhou, H.; Lu, B.; Chen, Y.; Han, Z.; et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. Natl. Sci. Rev. 2020, 7, 849–862. [Google Scholar] [CrossRef]
- Luo, S.; Zhou, X.; Tang, X.; Li, J.; Wei, D.; Tai, G.; Chen, Z.; Liao, T.; Fu, J.; Wei, D.; et al. Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 2021, 80, 105580. [Google Scholar] [CrossRef]
- Li, J.; Jia, H.; Zhou, J.; Huang, X.; Xu, L.; Jia, S.; Gao, Z.; Yao, K.; Li, D.; Zhang, B. Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nat. Commun. 2023, 14, 5009. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, G.; Zhang, X.; Lv, F.; Yang, Z.; Nan, X.; Zhang, Z.; Xue, C.; Cheng, H.; Gao, L. Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics. Adv. Mater. 2025, 37, e2410312. [Google Scholar] [CrossRef] [PubMed]
- Elango, P.F.M.; Dhanabalan, S.S.; Robel, M.R.; Elango, S.P.; Walia, S.; Sriram, S.; Bhaskaran, M. Dry electrode geometry optimization for wearable ECG devices. Appl. Phys. Rev. 2023, 10, 041408. [Google Scholar] [CrossRef]
- Sel, K.; Osman, D.; Huerta, N.; Edgar, A.; Pettigrew, R.I.; Jafari, R. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. NPJ Digit. Med. 2023, 6, 59. [Google Scholar] [CrossRef]
- Kireev, D.; Sel, K.; Ibrahim, B.; Kumar, N.; Akbari, A.; Jafari, R.; Akinwande, D. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 2022, 17, 864–870. [Google Scholar] [CrossRef]
- Choong, C.L.; Shim, M.B.; Lee, B.S.; Jeon, S.; Ko, D.S.; Kang, T.H.; Bae, J.; Lee, S.H.; Byun, K.E.; Im, J. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458. [Google Scholar] [CrossRef]
- Li, T.; Pan, P.; Yang, Z.; Wei, J.; Yang, X.; Liu, J.; Zhou, J.; Zhang, X.; Liu, G. 3D printing of a flexible inclined-tip cone array-based pressure sensor. Adv. Mater. Technol. 2022, 7, 2101135. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, B.; Ye, J.; Wu, H. Cone-Shaped Electrodes for Capacitive Tactile Sensors with High Sensitivity and Broad Linearity Range. Adv. Mater. Technol. 2023, 8, 2300901. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Huang, Z.; Yang, J. A new class of electronic devices based on flexible porous substrates. Adv. Sci. 2022, 9, 2105084. [Google Scholar] [CrossRef]
- Tang, Y.-D.; Wang, P.; Li, G.-X.; Wang, G.-Y.; Yu, W.; Meng, C.-Z.; Guo, S.-J. Flexible and ultra-sensitive planar supercapacitive pressure sensor based on porous ionic foam. Adv. Eng. Mater. 2023, 25, 2200814. [Google Scholar] [CrossRef]
- Wang, T.; Yao, S.; Shao, L.-H.; Zhu, Y. Stretchable Ag/AgCl Nanowire Dry Electrodes for High-Quality Multimodal Bioelectronic Sensing. Sensors 2024, 24, 6670. [Google Scholar] [CrossRef]
- Kim, H.; Rho, S.; Han, S.; Lim, D.; Jeong, W. Fabrication of textile-based dry electrode and analysis of its surface EMG signal for applying smart wear. Polymers 2022, 14, 3641. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-C.; Moon, J.-H.; Baek, D.-H.; Lee, J.-H.; Choi, Y.-Y.; Hong, J.-S.; Lee, S.-H. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 2012, 59, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Chen, G.; Zhou, F.; Ma, B.; Zhao, C.; Liu, H. A dual-mode wearable sensor with electrophysiological and pressure sensing for cuffless blood pressure monitoring. J. Mater. Chem. C 2024, 12, 15915–15923. [Google Scholar] [CrossRef]
- Ibrahim, B.; Jafari, R. Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1723–1735. [Google Scholar] [CrossRef]
- Wang, T.-W.; Chen, W.-X.; Chu, H.-W.; Lin, S.-F. Single-channel bioimpedance measurement for wearable continuous blood pressure monitoring. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Philips, G.R.; Gleich, B.; Paredes-Juarez, G.A.; Antonelli, A.; Magnani, M.; Bulte, J.W.M. Magnetic Manipulation of Blood Conductivity with Superparamagnetic Iron Oxide-Loaded Erythrocytes. ACS Appl. Mater. Interfaces 2019, 11, 11194–11201. [Google Scholar] [CrossRef]
- Chen, W.; Kobayashi, T.; Ichikawa, S.; Takeuchi, Y.; Togawa, T. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 2000, 38, 569–574. [Google Scholar] [CrossRef]
- Poon, C.C.; Zhang, Y.T. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 September 2005; pp. 5877–5880. [Google Scholar] [CrossRef]
- Ding, X.R.; Zhang, Y.T.; Liu, J.; Dai, W.X.; Tsang, H.K. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio. IEEE Trans. Biomed. Eng. 2016, 63, 964–972. [Google Scholar] [CrossRef]
- Huynh, T.H.; Jafari, R.; Chung, W.Y. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography. IEEE Trans. Biomed. Eng. 2019, 66, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.; Poon, C.C.; Zhang, Y.T. An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: A half year study on normotensive subjects. Cardiovasc. Eng. 2009, 9, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Young, C.C.; Mark, J.B.; White, W.; DeBree, A.; Vende, J.S.; Fleming, A. Clinical Evaluation of Continuous Noninvasive Blood Pressure Monitoring: Accuracy and Tracking Capabilities. J. Clin. Monit. Comput. 1995, 11, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Fung, P.; Dumont, G.; Ries, C.; Mott, C.; Ansermino, M. Continuous Noninvasive Blood Pressure Measurement by Pulse Transit Time. In Proceedings of the the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 738–741. [Google Scholar]
- Muehlsteff, J.; Aubert, X.L.; Schuett, M. Cuffless Estimation of Systolic Blood Pressure for Short Effort Bicycle Tests: The Prominent Role of the Pre-Ejection Per-ejection period. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 5088–5092. [Google Scholar]
- Miao, F.; Fu, N.; Zhang, Y.T.; Ding, X.R.; Hong, X.; He, Q.; Li, Y. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques. IEEE J. Biomed. Health. Inform. 2017, 21, 1730–1740. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Z. A SVM Method for Continuous Blood Pressure Estimation from a PPG Signal. In Proceedings of the 9th International Conference on Machine Learning and Computing, Singapore, 24–26 February 2017; pp. 128–132. [Google Scholar]
- Visvanathan, A.; Banerjee, R.; Dutta Choudhury, A.; Sinha, A.; Kundu, S. Smart phone based blood pressure indicator. In Proceedings of the 4th ACM MobiHoc Workshop on Pervasive Wireless Healthcare, Philadelphia, PA, USA, 11 August 2014; pp. 19–24. [Google Scholar]
- Yi, C.; Jian, C.; Wenqiang, J. Continuous blood pressure measurement based on photoplethysmography. In Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments, Changsha, China, 1–3 November 2019; pp. 1656–1663. [Google Scholar]
- Mejia-Mejia, E.; May, J.M.; Elgendi, M.; Kyriacou, P.A. Classification of blood pressure in critically ill patients using photoplethysmography and machine learning. Comput. Methods Programs Biomed. 2021, 208, 106222. [Google Scholar] [CrossRef]
- He, R.; Huang, Z.-P.; Ji, L.-Y.; Wu, J.-K.; Li, H.; Zhang, Z.-Q. Beat-to-beat ambulatory blood pressure estimation based on random forest. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; pp. 194–198. [Google Scholar]
- Hu, Q.; Deng, X.; Wang, A.; Yang, C. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal. Physiol. Meas. 2021, 41, 125009. [Google Scholar] [CrossRef]
- Sima, J.; Keivan, M.; HeraviMohammadAmin, Y. A New Approach for Blood Pressure Monitoring based on ECG and PPG Signals by using Arti?cial Neural Networks. Int. J. Comput. Appl. 2014, 103, 36–40. [Google Scholar] [CrossRef]
- Casadei, B.C.; Gumiero, A.; Tantillo, G.; Della Torre, L.; Olmo, G. Systolic Blood Pressure Estimation from PPG Signal Using ANN. Electronics 2022, 11, 2909. [Google Scholar] [CrossRef]
- Yang, S.; Sohn, J.; Lee, S.; Lee, J.; Kim, H.C. Estimation and Validation of Arterial Blood Pressure Using Photoplethysmogram Morphology Features in Conjunction with Pulse Arrival Time in Large Open Databases. IEEE J. Biomed. Health Inform. 2021, 25, 1018–1030. [Google Scholar] [CrossRef]
- Tanveer, M.S.; Hasan, M.K. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network. Biomed. Signal Process. Control 2019, 51, 382–392. [Google Scholar] [CrossRef]
- Malayeri, A.B.; Khodabakhshi, M.B. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals. Sci. Rep. 2022, 12, 6633. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, S.; Kawanaka, H.; Ishikawa, H.; Inoue, K.; Oguri, K. Cuffless Blood Pressure Estimation from only the Waveform of Photoplethysmography using CNN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5042–5045. [Google Scholar]
- El-Hajj, C.; Kyriacou, P.A. Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism. Biomed. Signal Process. Control 2021, 65, 102301. [Google Scholar] [CrossRef]
- Hamedani, N.E.; Sadredini, S.Z.; Khodabakhshi, M.B. A CNN Model for cuffless Blood Pressure Estimation from Nonlinear Characteristics of PPG Signals. In Proceedings of the 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME), Berlin, Germany, 23–27 July 2021; pp. 228–235. [Google Scholar]
- Lai, K.; Wang, X.; Cao, C. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections. Sensors 2024, 24, 2721. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Tarvirdizadeh, B.; Alipour, K.; Ghamari, M. Cuff-less blood pressure monitoring via PPG signals using a hybrid CNN-BiLSTM deep learning model with attention mechanism. Sci. Rep. 2025, 15, 22229. [Google Scholar] [CrossRef]
- Lee, N.; Kim, S.-H.; Lee, M.; Woo, J. Advancing Continuous Blood Pressure Estimation with Transformer on Photoplethysmography in Operation Room. IEEE Access 2024, 12, 90486–90500. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, P.; Song, F.; Sun, Y.; Fan, G.; Zhang, T.; Feng, Y.; Zhang, G. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography. IEEE J. Biomed. Health Inform. 2023, 27, 2219–2230. [Google Scholar] [CrossRef]
- Sel, K.; Mohammadi, A.; Pettigrew, R.I.; Jafari, R. Physics-informed neural networks for modeling physiological time series for cuffless blood pressure estimation. NPJ Digit. Med. 2023, 6, 110. [Google Scholar] [CrossRef]
- Ma, C.; Xu, Y.; Zhang, P.; Song, F.; Sun, Y.; Feng, Y.; He, Y.; Zhang, G. PPG-Based Continuous BP Waveform Estimation Using Polarized Attention-Guided Conditional Adversarial Learning Model. IEEE J. Biomed. Health Inform. 2025, 29, 3918–3929. [Google Scholar] [CrossRef]
- Mehrabadi, M.A.; Aqajari, S.A.H.; Zargari, A.H.A.; Dutt, N.; Rahmani, A.M. Novel Blood Pressure Waveform Reconstruction from Photoplethysmography using Cycle Generative Adversarial Networks. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 1906–1909. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Ding, X.R.; Poon, C.C.; Lo, B.P.; Zhang, H.; Zhou, X.L.; Yang, G.Z.; Zhao, N.; Zhang, Y.T. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 2014, 61, 1538–1554. [Google Scholar] [CrossRef]
- Ding, X.-R.; Zhang, Y.-T. Photoplethysmogram Intensity Ratio: A Potential Indicator for Improving the Accuracy of PTT-Based Cuffless Blood Pressure Estimation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 398–401. [Google Scholar]
- Ma, H.T.; Zhang, Y.T. Spectral Analysis of Pulse Transit Time Variability and Its Coherence with Other Cardiovascular Variabilities. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6442–6445. [Google Scholar]
- Winokur, E.S. Single-site, noninvasive, blood pressure measurements at the ear using ballistocardiogram (BCG), and photoplethysmogram (PPG), and a low-power, reflectance-mode PPG SoC. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2014. [Google Scholar]
- Park, S.; Lee, S.; Park, E.; Lee, J.; Kim, I.Y. Quantitative analysis of pulse arrival time and PPG morphological features based cuffless blood pressure estimation: A comparative study between diabetic and non-diabetic groups. Biomed. Eng. Lett. 2023, 13, 625–636. [Google Scholar] [CrossRef]
- Přibil, J.; Přibilová, A.; Frollo, I. Heart Pulse Transmission Parameters of Multi-Channel PPG Signals for Cuffless Estimation of Arterial Blood Pressure: Preliminary Study. Electronics 2024, 13, 3297. [Google Scholar] [CrossRef]
- Raju, S.; Dipto, S.A.; Hossain, M.I.; Chowdhury, M.A.S.; Haque, F.; Nashrah, A.T.; Nishan, A.; Khan, M.M.H.; Hashem, M.M.A. DNN-BP: A novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model. Med. Biol. Eng. Comput. 2024, 62, 3687–3708. [Google Scholar] [CrossRef]
- Xiang, T.; Jin, Y.; Liu, Z.; Clifton, L.; Clifton, D.A.; Zhang, Y.; Zhang, Q.; Ji, N.; Zhang, Y. Dynamic Beat-to-Beat Measurements of Blood Pressure Using Multimodal Physiological Signals and a Hybrid CNN-LSTM Model. IEEE J. Biomed. Health. Inform. 2025, 29, 5438–5451. [Google Scholar] [CrossRef]
- Wu, C.-M.; Chuang, C.Y.; Chen, Y.-J.; Chen, S.-C. A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph. Adv. Mech. Eng. 2016, 8, 1687814016653689. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Hemmati, M.; Charmi, M.; Moghadam, M.; Firouzmand, M.; Ghorbani, Y. Cuff-less blood pressure estimation using only the ecg signal in frequency domain. In Proceedings of the 2018 8th international conference on computer and knowledge engineering (ICCKE), Mashhad, Iran, 25–26 October 2018; pp. 147–152. [Google Scholar]
- Simjanoska, M.; Gjoreski, M.; Gams, M.; Madevska Bogdanova, A. Non-Invasive Blood Pressure Estimation from ECG Using Machine Learning Techniques. Sensors 2018, 18, 1160. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, S.; Bhuiyan, S.; Kawanaka, H.; Oguri, K. Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2857–2860. [Google Scholar]
- Nishan, A.; Raju, S.T.U.; Hossain, M.I.; Dipto, S.A.; Uddin, S.T.; Sijan, A.; Chowdhury, M.A.S.; Ahmad, A.; Khan, M.M.H. A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms. Heliyon 2024, 10, e27779. [Google Scholar] [CrossRef] [PubMed]
- El-Hajj, C.; Kyriacou, P.A. Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models. Biomed. Signal Process. Control 2021, 70, 102984. [Google Scholar] [CrossRef]
- Elgendi, M.; Jost, E.; Alian, A.; Fletcher, R.R.; Bomberg, H.; Eichenberger, U.; Menon, C. Photoplethysmography Features Correlated with Blood Pressure Changes. Diagnostics 2024, 14, 2309. [Google Scholar] [CrossRef]
- Yao, P.; Xue, N.; Yin, S.; You, C.; Guo, Y.; Shi, Y.; Liu, T.; Yao, L.; Zhou, J.; Sun, J. Multi-dimensional feature combination method for continuous blood pressure measurement based on wrist PPG sensor. IEEE J. Biomed. Health Inform. 2022, 26, 3708–3719. [Google Scholar] [CrossRef]
- Cattivelli, F.S.; Garudadri, H. Noninvasive Cuffless Estimation of Blood Pressure from Pulse Arrival Time and Heart Rate with Adaptive Calibration. In Proceedings of the 2009 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 114–119. [Google Scholar]
- Alghamdi, A.S.; Polat, K.; Alghoson, A.; Alshdadi, A.A.; Abd El-Latif, A.A. A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods. Appl. Acoust. 2020, 164, 107279. [Google Scholar] [CrossRef]
- Dwaish, H.; Firas, M.S. Beyond Cuffs and Needles: Exploring Photoplethysmography-Based Machine Learning for Blood Pressure Estimation. J. Educ. Pure Sci. 2025, 15, 2. [Google Scholar] [CrossRef]
- Williams, R.J.; Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Comput. 1989, 1, 270–280. [Google Scholar] [CrossRef]
- Fan, X.; Wang, H.; Zhao, Y.; Li, Y.; Tsui, K.L. An Adaptive Weight Learning-Based Multitask Deep Network for Continuous Blood Pressure Estimation Using Electrocardiogram Signals. Sensors 2021, 21, 1595. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Shao, J.; Zhou, P.; Liu, B.; Zhu, J.; Fang, D. Continuous blood pressure monitoring based on transformer encoders and stacked attention gated recurrent units. Biomed. Signal Process. Control 2025, 99, 106860. [Google Scholar] [CrossRef]
- Kamanditya, B.; Fuadah, Y.N.; Mahardika, T.N.; Lim, K.M. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Sci. Rep. 2024, 14, 16450. [Google Scholar] [CrossRef]
- Shaikh, M.R.; Forouzanfar, M. Dual-Stream CNN-LSTM Architecture for Cuffless Blood Pressure Estimation from PPG and ECG Signals: A PulseDB Study. IEEE Sens. J. 2025, 25, 4006–4014. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, A.; Zhu, G.; Chen, X. A paralleled CNN and Transformer network for PPG-based cuff-less blood pressure estimation. Biomed. Signal Process. Control 2025, 99, 106741. [Google Scholar] [CrossRef]
- Liu, Z.D.; Li, Y.; Zhang, Y.T.; Zeng, J.; Chen, Z.X.; Liu, J.K.; Miao, F. HGCTNet: Handcrafted Feature-Guided CNN and Transformer Network for Wearable Cuffless Blood Pressure Measurement. IEEE J. Biomed. Health Inform. 2024, 28, 3882–3894. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Huang, P.; Wei, Q.; Wang, B.; Li, B.; Wu, Z.; Xing, Y. Continuous blood pressure monitoring based on improved multi-scale U-net assisted with piezoelectric polymer nanocomposite sensors. Biomed. Signal Process. Control 2025, 105, 107598. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, Y.T.; Kim, H.; Kim, D.J. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography. IEEE J. Biomed. Health Inform. 2022, 26, 3697–3707. [Google Scholar] [CrossRef]
- Duanmu, Z.; Gong, H.; Lv, S.; Yan, W.; Cheng, Q.; Sang, J.; Yang, X.; Zhang, L. Multi-Stage BiSTU Network Combining BiLSTM and Transformer for ABP Waveform Prediction from PPG Signals. Ann. Biomed. Eng. 2025, 53, 2562–2579. [Google Scholar] [CrossRef]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 2021, 8, 2001938. [Google Scholar] [CrossRef]
- Polachan, K.; Chatterjee, B.; Weigand, S.; Sen, S. Human body–electrode interfaces for wide-frequency sensing and communication: A review. Nanomaterials 2021, 11, 2152. [Google Scholar] [CrossRef]
- Banos, O.; Toth, M.A.; Damas, M.; Pomares, H.; Rojas, I. Dealing with the effects of sensor displacement in wearable activity recognition. Sensors 2014, 14, 9995–10023. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ye, Y.; Sun, M.; Mei, Y.; Ji, B.; Wang, M.; Song, E. Recent progress of soft and bioactive materials in flexible bioelectronics. Cyborg Bionic Syst. 2025, 6, 0192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ratajczak, A.M.; Chen, H.; Terrell, J.A.; Chen, C. A Step Forward for Smart Clothes–Fabric-Based Microfluidic Sensors for Wearable Health Monitoring. ACS Sens. 2022, 7, 3857–3866. [Google Scholar] [CrossRef] [PubMed]
- Kunze, K.; Lukowicz, P. Dealing with sensor displacement in motion-based onbody activity recognition systems. In Proceedings of the Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Korea, 21–24 September 2008; pp. 20–29. [Google Scholar]





| Methods | Types | Calibration Needs | Comfort | Exemplary Accuracy (ME ± SD mmHg) | Advantages | Disadvantages |
|---|---|---|---|---|---|---|
| Traditional method | Tonometry | Frequent calibration | Low | SBP: 2.3 ± 7.81 [26] DBP: 1.7 ± 6.28 [26] | High measurement accuracy and reliability | Relies on calibration, poor portability |
| Volume Clamp | Initial calibration | Low | SBP: 5.98 ± 10.36 [27] DBP: −3.72 ± 6.10 [27] | |||
| Ultrasound | Initial calibration | Low | SBP: 0.1 ± 2.2 [10] DBP: −0.3 ± 2.1 [10] | |||
| Flexible sensing | Tonometry | Frequent calibration | High | SBP: 4.98 ± 6.10 [28] DBP: 2.93 ± 6.20 [28] | High wearing comfort, no calibration required | Low structural stability and long-term performance |
| Ultrasound | Calibration -free | High | SBP: <5 ± 2 [29] DBP: <5 ± 2 [29] |
| Type | Sensitivity | Power Consumption | Advantages | Disadvantages |
|---|---|---|---|---|
| Optical | Medium | High | Simple structure and easy integration, multiple physiological parameter monitoring (HR, SpO2) | Trade-off between power consumption and sensitivity, limited penetration depth, susceptible to skin color interference |
| Piezoresistive | High | Medium | Large signal amplitude, easy to acquire; microstructure optimization improves sensitivity | Susceptible to temperature drift and humidity, require external bias voltage |
| Piezoelectric | Medium/High | Low | Fast dynamic response, no external bias voltage required | Susceptible to mechanical vibration interference, low biocompatibility of piezoelectric materials |
| Piezocapacitive | Medium/High | Low | Sensitive to weak pulse signals, low-power characteristic | Susceptible to electromagnetic interference, performance degradation due to aging of dielectric materials |
| Triboelectric | Medium | Low | Low system complexity, sensitive to low-frequency pulse motion | Sensitive to contact pressure and skin moisture, performance degradation due to aging of dielectric materials |
| Impedance-based | Medium | Medium | Deep tissue penetration depth, easy to fabricate high-integration electronic tattoo electrodes | Susceptible to interference from electrode-skin contact impedance, high circuit design requirements |
| Modalities | Input | Model | Ref. |
|---|---|---|---|
| ECG + PPG | PTT | [92] | |
| ECG + PPG | PTT | [93] | |
| ECG + PPG | PTT, PIR | [94] | |
| PPG + IPG | [95] |
| Type | Model | Modalities | Features | Ref. |
|---|---|---|---|---|
| ML | LR | ECG + PPG | [96] | |
| ECG + PPG | [97] | |||
| ECG + PPG | [98] | |||
| ECG + PPG | [99] | |||
| ECG + PPG | PTT, HR | [96] | ||
| ECG + PPG | PTT, PIR | [100] | ||
| SVM | PPG | 9 or 15 PPG waveform features | [101] | |
| PPG | 12 PPG time-domain features, 7 frequency-domain features | [102] | ||
| KNN | PPG | 9 PPG morphological features | [103] | |
| PPG | PRV time-domain, frequency-domain and nonlinear indices | [104] | ||
| RF | ECG + PPG | 18 time-domain and waveform features of ECG and PPG | [105] | |
| Boosting | PPG | HR, hemodynamic information, PPG frequency and statistical information | [106] | |
| DL | ANN | ECG + PPG | PTT | [107] |
| PPG | One-cycle PPG waveform signal | [108] | ||
| RNN | ECG + PPG | 28-dimensional high-frequency ECG and PPG features | [109] | |
| ECG | ECG waveform | [110] | ||
| ECG + PPG | Concatenated ECG and PPG waveforms | [111] | ||
| CNN | PPG | PPG, VPG, APG waveforms, demographic information | [112] | |
| PPG | PPG waveform, nonlinear features (recurrence, determinism) | [113] | ||
| PPG | PPG waveform, 2D grayscale image | [114] | ||
| U-Net | PPG | PPG waveform | [115] | |
| Transformer | ECG + PPG | ECG PPG waveform, PAT | [116] | |
| PPG | PPG waveform | [117,118] | ||
| PINNs | Bioimpedance | Bioimpedance waveform, impedance amplitude, HR, etc. | [119] | |
| GANs | PPG | PPG waveform, random noise | [120,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Li, J.; Hu, H.; Du, C.; Ding, X.; Pan, T.; Yu, X. A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling. AI Sens. 2025, 1, 8. https://doi.org/10.3390/aisens1020008
Shen Z, Li J, Hu H, Du C, Ding X, Pan T, Yu X. A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling. AI Sensors. 2025; 1(2):8. https://doi.org/10.3390/aisens1020008
Chicago/Turabian StyleShen, Zhan, Jian Li, Hao Hu, Chentao Du, Xiaorong Ding, Tingrui Pan, and Xinge Yu. 2025. "A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling" AI Sensors 1, no. 2: 8. https://doi.org/10.3390/aisens1020008
APA StyleShen, Z., Li, J., Hu, H., Du, C., Ding, X., Pan, T., & Yu, X. (2025). A Review of Non-Invasive Continuous Blood Pressure Measurement: From Flexible Sensing to Intelligent Modeling. AI Sensors, 1(2), 8. https://doi.org/10.3390/aisens1020008

