Progress in the Determination of Resorcinol Using Electrochemical Method
Abstract
1. Introduction
2. Progress in RS
2.1. Metal Oxide-Based Materials
2.2. COF/MOF/ZIF-Based Materials
2.3. rGO-Based Materials
2.4. CNT-Based Materials
2.5. Metal Sulfide/Selenide/LDH/MXene-Based Materials
2.6. Other Materials for RS Detection
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jesus, A.; Ratanji, S.; Cidade, H.; Sousa, E.; Cruz, M.T.; Oliveira, R.; Almeida, I.F. Phenolics as active ingredients in skincare products: A myth or reality? Molecules 2025, 30, 1423. [Google Scholar] [CrossRef]
- Panzella, L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef]
- Liu, L.; Gao, J.; Sun, Y.; Sun, Y.; Liu, H.; Sun, H.; Mu, G. Human health risk assessment of phenolic contaminants in Lake Xingkai, China. Water 2025, 17, 2037. [Google Scholar] [CrossRef]
- Santa-Cruz-Mérida, G.V.; Otomo, J.I.; Araoz-Prado, D.R.; Rodrigues, E.A.; de Andrade, D.A.; Bustillos, O.V. Advanced analytical approaches for phenolic compounds in groundwater: A PRISMA systematic review. Water 2025, 17, 1173. [Google Scholar] [CrossRef]
- Subhani, Q.; Muhammad, N.; Huang, Z.; Asif, M.; Hussain, I.; Zahid, M.; Hairong, C.; Zhu, Y.; Guo, D. Simultaneous determination of acetamiprid and 6-chloronicotinic acid in environmental samples by using ion chromatography hyphenated to online photoinduced fluorescence detector. J. Sep. Sci. 2020, 43, 3921. [Google Scholar] [CrossRef]
- Hassan, K.M.; Hathoot, A.A.; Azeem, M.A. Simultaneous and selective electrochemical determination of hydroquinone, catechol and resorcinol at poly (1,5-diaminonaphthalene)/glassy carbon-modified electrode in different media. RSC Adv. 2018, 8, 6346. [Google Scholar] [CrossRef]
- Iftikhar, T.; Asif, M.; Aziz, A.; Ashraf, G.; Jun, S.; Li, G.; Liu, H. Topical advances in nanomaterials-based electrochemical sensors for resorcinol detection. Trends Environ. Anal. Chem. 2021, 31, e00138. [Google Scholar] [CrossRef]
- Romagnoli, C.; Baldisserotto, A.; Vicentini, C.B.; Mares, D.; Andreotti, E.; Vertuani, S.; Manfredini, S. Antidermatophytic action of resorcinol derivatives: Ultrastructural evidence of the activity of phenylethyl resorcinol against Microsporum gypseum. Molecules 2016, 21, 1306. [Google Scholar] [CrossRef] [PubMed]
- Pierozynski, B.; Piotrowska, G. Electrochemical degradation of phenol and resorcinol molecules through the dissolution of sacrificial anodes of macro-corrosion galvanic cells. Water 2018, 10, 770. [Google Scholar] [CrossRef]
- Shahinozzaman, M.; Ishii, T.; Halim, M.A.; Hossain, M.A.; Islam, M.T.; Tawata, S. Cytotoxic and anti-inflammatory resorcinol and alkylbenzoquinone derivatives from the leaves of Ardisia sieboldii. Z. Naturforsch. C 2019, 74, 303. [Google Scholar] [CrossRef]
- Lee, S.E.; Kwon, K.; Oh, S.W.; Park, S.J.; Yu, E.; Kim, H.; Yang, S.; Park, J.Y.; Chung, W.-J.; Cho, J.Y. Mechanisms of resorcinol antagonism of benzo [a] pyrene-induced damage to human keratinocytes. Biomol. Ther. 2021, 29, 227. [Google Scholar] [CrossRef]
- Subramanyam, R.; Mishra, I.M. Co-degradation of resorcinol and catechol in an UASB reactor. Bioresour. Technol. 2008, 99, 4147–4157. [Google Scholar] [CrossRef]
- Gautier, F.; Tourneix, F.; Vandecasteele, H.A.; van Vliet, E.; Bury, D.; Alépée, N. Read-across can increase confidence in the next generation risk assessment for skin sensitisation: A case study with resorcinol. Regul. Toxicol. Pharmacol. 2020, 117, 104755. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Y.; Liang, W.Y.; Yang, X.P.; Jiang, W.D.; Liu, X.H.; Zhang, W. A facile and sensitive ratiometric fluorescence sensor for rapid visual monitoring of trace resorcinol. Sens. Actuators B Chem. 2021, 330, 129390. [Google Scholar] [CrossRef]
- Zargar, B.; Hatamie, A. Colorimetric determination of resorcinol based on localized surface plasmon resonance of silver nanoparticles. Analyst 2012, 137, 5334. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.I.; Abass, S.M. Azo coupling reaction for indirect spectrophotometric determination of furosemide using resorcinol as a reagent. Mater. Sci. Eng. 2021, 1058, 012077. [Google Scholar] [CrossRef]
- Lande, D.N.; Bhadane, S.A.; Gejji, S.P. Noncovalent interactions accompanying encapsulation of resorcinol within azacalix [4] pyridine macrocycle. J. Phys. Chem. A 2017, 121, 1814. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zha, J.; Zhang, P.; Qin, Y.; Chen, T.; Ye, F. Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol. Sens. Actuators B Chem. 2017, 247, 469. [Google Scholar] [CrossRef]
- Cho, S.H.; Suh, J.M.; Eom, T.H.; Kim, T.; Jang, H.W. Colorimetric sensors for toxic and hazardous gas detection: A review. Electron. Mater. Lett. 2021, 17, 1–17. [Google Scholar] [CrossRef]
- Kumar, M.; Swamy, B.K.; Hu, B.; Wang, M.; Yasin, G.; Liang, B.; Madhuchandra, H.; Zhao, W. Electrochemical activation of copper oxide decorated graphene oxide modified carbon paste electrode surface for the simultaneous determination of hazardous di-hydroxybenzene isomers. Microchem. J. 2021, 168, 106503. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, Q.; Yuan, F.; Liu, J.; Wang, D.; Zhang, Q. Novel electrochemical sensor based on MnO2 nanowire modified carbon paper electrode for sensitive determination of tetrabromobisphenol A. Chemosensors 2023, 11, 482. [Google Scholar] [CrossRef]
- Ren, H. Graphene and its derivatives for electrochemical sensing. Sensors 2025, 25, 1993. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Lee, J.-J.; Rahman, M.A. Electrochemical sensors based on carbon nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Pan, P.; Huang, H.; Liu, H. Cr-MOF-based electrochemical sensor for the detection of p-nitrophenol. Biosensors 2022, 12, 813. [Google Scholar] [CrossRef] [PubMed]
- Amorim, I.; Bento, F. Electrochemical sensors based on transition metal materials for phenolic compound detection. Sensors 2024, 24, 756. [Google Scholar] [CrossRef]
- Dourandish, Z.; Sheikhshoaie, I.; Maghsoudi, S. Molybdenum disulfide/nickel-metal organic framework hybrid nanosheets based disposable electrochemical sensor for determination of 4-aminophenol in presence of acetaminophen. Biosensors 2023, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Duzmen, S.; Baytak, A.K.; Aslanoglu, M. A novel voltammetric platform composed of poly (aminopyrazine), ZrO2 and CNTs for a rapid, sensitive and selective determination of ascorbic acid in pharmaceuticals and food samples. Mater. Chem. Phys. 2020, 252, 123170. [Google Scholar] [CrossRef]
- Han, M.; Sun, Y.; Li, M.; Sui, X.; Feng, J.; Wang, D. New insight for simultaneous determination of hydroquinone, catechol and resorcinol using electrochemical sensing platform modified with Mo2C/C nanocomposites. Microchim. Acta 2025, 192, 350. [Google Scholar] [CrossRef]
- Pattan-Siddappa, G.; Dhand, V.; Erkmen, C.; Alanazi, A.K.; Lee, S.-K.; Kim, S.-Y. Synthesis of a rod-like cobalt sulfide nanostructure embedded with glassy carbon electrode for sensitive detection of ecotoxic resorcinol. Inorg. Chem. Commun. 2025, 182, 115400. [Google Scholar]
- Prathap, M.U.A.; Satpati, B.; Srivastava, R. Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sens. Actuators B Chem. 2013, 186, 67–77. [Google Scholar] [CrossRef]
- Ameen, S.; Kim, E.-B.; Akhtar, M.S.; Shin, H.S. Electrochemical detection of resorcinol chemical using unique cabbage-like ZnO nanostructures. Mater. Lett. 2017, 209, 571–575. [Google Scholar] [CrossRef]
- Khodari, M.; Mersal, G.A.M.; Rabie, E.M.; Assaf, H.F. Electrochemical sensor based on carbon paste electrode modified by TiO2 nanoparticles for the voltammetric determination of resorcinol. Int. J. Electrochem. Sci. 2018, 13, 3460–3474. [Google Scholar] [CrossRef] [PubMed]
- Ramya, R.; Nathiya, D.; Thivya, P.; Wilson, J. Functionally anchored Ag–TiO2 nanoparticles on guar gum-based nanocomposite for simultaneous determination of hydroquinone, catechol, resorcinol and nitrite. Microchem. J. 2021, 170, 106734. [Google Scholar] [CrossRef]
- Jahani, S.; Sedighi, A.; Toolabi, A.; Foroughi, M.M. Development and characterization of La2O3 nanoparticles@ snowflake-like Cu2S nanostructure composite modified electrode and application for simultaneous detection of catechol, hydroquinone and resorcinol as an electrochemical sensor. Electrochim. Acta 2022, 416, 140261. [Google Scholar] [CrossRef]
- Sasikumar, R.; Kim, B.; Ishfaque, A. Active-site-rich binary metal oxides integrated organic–inorganic hybrid nanocomposite: Electrochemical simultaneous detection of multi-drugs of isoprenaline and resorcinol in real samples. Microchem. J. 2023, 187, 108375. [Google Scholar] [CrossRef]
- Dong, J.; Wen, L.; Liu, H.; Yang, H.; Zhao, J.; Luo, X.; Hou, C.; Huo, D. Simultaneous detection of dihydroxybenzene isomers in the environment by a free-standing flexible ZnCo2O4 nanoplate arrays/carbon fiber cloth electrode. Sci. Total Environ. 2023, 855, 158878. [Google Scholar] [CrossRef]
- Arpitha, S.B.; Kumara Swamy, B.E.; Shashikumara, J.K. An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol. Inorg. Chem. Commun. 2023, 152, 110656. [Google Scholar] [CrossRef]
- Thenrajan, T.; Madhu malar, M.; Kumaravel, S.; Rajaram, R.; Kundu, S.; Wilson, J. Bismuth tungstate nanocomposites for simultaneous detection of hydroquinone and resorcinol. Mater. Adv. 2024, 5, 1691–1701. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Gulino, A.; Neri, G. Scandia-doped zirconia for the electrochemical detection of hazardous dihydroxybenzene (DHB) isomers in water. Environ. Sci. Adv. 2024, 3, 1392–1399. [Google Scholar] [CrossRef]
- Tajik, S.; Zaimbashi, R.; Garkani Nejad, F.; Tourchi Moghadam, M.T.; Askari, M.B.; Beitollahi, H. MnWO4/reduced graphene oxide-based electrochemical sensing platform for simultaneous detection of catechol and resorcinol. Diamond Relat. Mater. 2024, 149, 111579. [Google Scholar] [CrossRef]
- Abdulrasool, N.R.; Koçoğlu, İ.O. Simultaneous determination of hydroquinone, catechol, and resorcinol with an electrochemical sensor based on poly-L-valine, multi-walled carbon nanotubes, and Co3O4 nanoparticles. Anal. Bioanal. Chem. 2025, 417, 4053–4067. [Google Scholar] [CrossRef] [PubMed]
- Topçu, E. Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: A novel electrochemical sensor for determination of resorcinol. Mater. Res. Bull. 2020, 121, 110629. [Google Scholar] [CrossRef]
- Jose, S.; Ghosh, M.; Varghese, A. Tweaking the electrocatalytic ability of Cu-MOF by the inclusion of PTA: A selective electrochemical sensor for resorcinol. Mater. Adv. 2024, 5, 3812–3823. [Google Scholar] [CrossRef]
- Wang, X.; Peng, R.; Zhang, Z.; Fan, L.; Ma, Z.; Zhang, B.; Du, X.; Lu, X. Simultaneous and ultrasensitive detection of three dihydroxybenzene isomers based on 3D chain structure-modified MOF electrochemical sensors. Talanta 2026, 297, 128681. [Google Scholar] [CrossRef]
- Arul, P.; Narayanamoorthi, E.; Abraham John, S. Covalent organic framework film as an effective electrocatalyst for the simultaneous determination of dihydroxybenzene isomers in water samples. Sens. Actuators B Chem. 2020, 313, 128033. [Google Scholar] [CrossRef]
- Sun, L.; Guo, H.; Pan, Z.; Liu, B.; Zhang, T.; Yang, M.; Wu, N.; Zhang, J.; Yang, F.; Yang, W. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol. Colloids Surf. A 2022, 635, 128114. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Yang, Y.; Wang, C.; Wang, Y.; Zhao, P.; Xie, Y.; Fei, J. A novel electrochemical sensor based on mesoporous carbon hollow spheres/ZIF-67-derived Co-embedded N-doped carbon nanotubes composite for simultaneous determination of dihydroxybenzene isomers in environmental water samples. Microchem. J. 2023, 191, 108754. [Google Scholar] [CrossRef]
- Zhang, H.; Bo, X.; Guo, L. Electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, catechol, and resorcinol. Sens. Actuators B Chem. 2015, 220, 919–926. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Zhang, S.; Yang, L.; Liu, M.; Zhang, Y.; Yao, S. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au–Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim. Acta 2017, 231, 677–685. [Google Scholar] [CrossRef]
- Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. Synthesis of one-dimensional poly (3,4-ethylenedioxythiophene)–graphene composites for the simultaneous detection of hydroquinone, catechol, resorcinol, and nitrite. Synth. Met. 2017, 226, 148–156. [Google Scholar] [CrossRef]
- Huang, L.; Cao, Y.; Diao, D. Electrochemical activation of graphene sheets embedded carbon films for high sensitivity simultaneous determination of hydroquinone, catechol and resorcinol. Sens. Actuators B Chem. 2020, 305, 127495. [Google Scholar] [CrossRef]
- Manjunatha, J.G. Poly (adenine) modified graphene-based voltammetric sensor for the electrochemical determination of catechol, hydroquinone and resorcinol. Open Chem. Eng. J. 2020, 14, 52–62. [Google Scholar] [CrossRef]
- Garkani Nejad, F.; Beitollahi, H.; Sheikhshoaie, I. Graphene oxide–PAMAM nanocomposite and ionic liquid modified carbon paste electrode: An efficient electrochemical sensor for simultaneous determination of catechol and resorcinol. Diagnostics 2023, 13, 632. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, B.; Xia, Q.; Wu, L.; Zhou, H. A highly sensitive and selective resorcinol sensor based on palladium/reduced graphene oxide modified electrode. Inorg. Chem. Commun. 2025, 179, 114869. [Google Scholar] [CrossRef]
- Wei, C.; Huang, Q.; Hu, S.; Zhang, H.; Zhang, W.; Wang, Z.; Zhu, M.; Dai, P.; Huang, L. Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim. Acta 2014, 149, 237–244. [Google Scholar] [CrossRef]
- Hudari, F.F.; de Almeida, L.C.; da Silva, B.F.; Zanoni, M.V.B. Voltammetric sensor for simultaneous determination of p-phenylenediamine and resorcinol in permanent hair dyeing and tap water by composite carbon nanotubes/chitosan modified electrode. Microchem. J. 2014, 116, 261–268. [Google Scholar] [CrossRef]
- Ghoreishi, S.M.; Behpour, M.; Hajisadeghian, E.; Golestaneh, M. Voltammetric determination of resorcinol on the surface of a glassy carbon electrode modified with multi-walled carbon nanotube. Arab. J. Chem. 2016, 9, S1563–S1568. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, M.; Yuan, X.; Xiong, X.; Jin, Z. ZIF-derived necklace-like N-doped porous carbon@MWCNTs loaded with Cu NPs for enhanced electrochemical sensing of dihydroxybenzene isomers. Talanta 2026, 297, 128743. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-J.; Wang, L.; Liu, Y.-J.; Gan, T.; Liu, Y.-M.; Wang, L.-L.; Fan, Y. Synthesis and electrochemical performances of layered tungsten sulfide–graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim. Acta 2013, 107, 379–387. [Google Scholar] [CrossRef]
- Yin, D.; Liu, J.; Bo, X.; Guo, L. Cobalt–iron selenides embedded in porous carbon nanofibers for simultaneous electrochemical detection of trace hydroquinone, catechol and resorcinol. Anal. Chim. Acta 2020, 1093, 35–42. [Google Scholar] [CrossRef]
- Mashhadizadeh, M.H.; Heydarzad, M. Development of novel electrochemical sensor based on Co–Fe layered double hydroxide for simultaneous determination of hydroquinone, catechol, and resorcinol. Microchem. J. 2024, 206, 111437. [Google Scholar] [CrossRef]
- Zhang, L.; Han, Y.; Sun, M.; Li, F.; Li, S.; Gui, T. Facile design of FeCu metal–organic frameworks anchored on layer Ti3C2Tx MXene for high-performance electrochemical sensing of resorcinol. Talanta 2024, 275, 126100. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, X.; Xia, Q.; Li, R.; Fang, Y.; Yang, S.; Liu, J. Green and controllable strategy to fabricate well-dispersed graphene–gold nanocomposite film as sensing materials for the detection of hydroquinone and resorcinol with electrodeposition. Electrochim. Acta 2012, 85, 42–48. [Google Scholar]
- Xu, G.; Tang, B.; Jing, S.; Tao, J. Simultaneous determination of hydroquinone, catechol and resorcinol at poly (3-thiophenemalonic acid) modified glassy carbon electrode. Int. J. Electrochem. Sci. 2015, 10, 10659–10667. [Google Scholar] [CrossRef]
- Alagarsamy, P.; Navaneetha Krishnan, G.; Chen, S.-M.; Kokulnathan, T.; Chen, T.-W.; Raja, N.; Liu, X.; Hong, I.-S.; Selvam, V. A disposable single-use electrochemical sensor for detection of resorcinol based on electrochemically activated screen printed carbon electrode in hair dyes. Int. J. Electrochem. Sci. 2017, 12, 6842–6852. [Google Scholar] [CrossRef]
- Zhang, M.; Ye, J.; Fang, P.; Zhang, Z.; Wang, C.; Wu, G. Facile electrochemical preparation of NaOH nanorods on glassy carbon electrode for ultrasensitive and simultaneous sensing of hydroquinone, catechol and resorcinol. Electrochim. Acta 2019, 317, 618–627. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Zhu, L.-L.; Huang, Z.-H.; Qiu, Y.-B.; Xu, H.-X.; Wen, J.-J.; Xiong, W.-W.; Li, L.-H.; Gu, C.-C. Simultaneous detection of hydroquinone, catechol and resorcinol by an electrochemical sensor based on ammoniated-phosphate buffer solution activated glassy carbon electrode. Chin. J. Anal. Chem. 2019, 47, e19113–e19120. [Google Scholar] [CrossRef]
- Chetankumar, K.; Kumara Swamy, B.E.; Sharma, S.C. Fabrication of voltammetric efficient sensor for catechol, hydroquinone and resorcinol at MgO modified pre-treated carbon paste electrode. Mater. Chem. Phys. 2020, 252, 123231. [Google Scholar] [CrossRef]
- Fabri, J.; Silva, L.R.G.; Stefano, J.S.; Pereira, J.F.S.; Cocco, D.R.; Muñoz, R.A.A.; Rocha, D.P. In situ electrochemical determination of resorcinol using a fully 3D printed apparatus. Microchem. J. 2023, 191, 108810. [Google Scholar] [CrossRef]
- Fan, Z.-C.; Li, Z.; Wei, X.-Y.; Kong, Q.-Q.; Zhao, J.; Li, L.; Li, J.-H.; Liu, Z.-Q.; Zong, Z.-M. Porous carbon fabricated by a residue from Longquan lignite ethanolysis as an electrochemical sensor for simultaneous detection of hydroquinone and catechol in the presence of resorcinol. Microchem. J. 2023, 189, 108543. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Li, X.-S.; Zou, X.; Sun, Q.; Gao, E.-Q. A facile one-pot synthetic approach towards CB@PCN-222(Fe) composites for simultaneous electrochemical detection of dihydroxybenzene isomers. J. Electrochem. Soc. 2023, 170, 127501. [Google Scholar] [CrossRef]
- Hu, G.X.; Rao, Q.; Li, G.; Zheng, Y.; Liu, Y.; Guo, C.; Li, F.; Hu, F.X.; Yang, H.B.; Chen, F. A single-atom cobalt integrated flexible sensor for simultaneous detection of dihydroxybenzene isomers. Nanoscale 2023, 15, 9484–9495. [Google Scholar] [CrossRef]
- Devu, C.; Kaveri, S.J.; Dhiya, P.; Aiswarya, M.S.; Seetha Lakshmi, K.C.; Rejithamol, R. In situ polymerization of meta-nitro benzoic acid on graphite electrode as a mediator for the electrochemical oxidation of resorcinol. J. Appl. Electrochem. 2024, 54, 13–24. [Google Scholar] [CrossRef]
- Moulya, K.P.; Manjunatha, J.G.; Almutairi, T.M.; Nagaraja, M.; Somashekara, B. A new sensing platform based on poly (valine)-modified carbon paste electrode for the determination of hydroquinone and resorcinol. Monatsh. Chem. 2024, 155, 673–682. [Google Scholar] [CrossRef]
- Wang, R.; Ma, X.; Hamed, E.M.; Cao, B.; Wang, L.; Li, S.F.Y.; Zhu, Y. Deciphering of laccase-like activity ruthenium single-atom nanozyme for identification/quantification and remediation of phenolic pollutants. Sens. Actuators B Chem. 2025, 426, 137112. [Google Scholar] [CrossRef]
- Dost, B.; Sağlam, Ş.; Can, Z.; Üzer, A.; Apak, R. A dual target voltammetric approach: Simultaneous electrochemical sensing of ammunition stabilizer resorcinol and of dihydroxybenzene isomers by semi-derivative voltammetry. Electrochim. Acta 2025, 539, 147055. [Google Scholar] [CrossRef]
- Younas, N.; Mustafa, G.; Majeed, M.; Pervaiz, K.; Saif, M. Computational design and preparation of resorcinol imprinted hydrogel coated on IDE for electrochemical sensing of RS. Anal. Chim. Acta 2025, 1375, 344503. [Google Scholar] [CrossRef] [PubMed]






| Modifiers | Sensing Method | LOD (µM) | Sensitivity | Linear Range (µM) | Real Sample Studies | Refs |
|---|---|---|---|---|---|---|
| PANI/MnO2 | DPV | 0.09 | 0.5 μAμM−1 | 0.2–100 | Tap water | [31] |
| C-ZnO NSs | I-V | 5.89 | 1.98 μAμM−1cm−2 | 0.03–3.0 | - | [32] |
| Ag-TiO2/FGG | SWV | 0.07758 | - | 0.6–300 | Well water | [34] |
| La2O3 NP@SF-L Cu2S NS | DPV | 0.059 | - | 0.66–266.6 | Tap and mineral water | [35] |
| rGO-pDA-ZnMnO3/GCE | DPV | 7.1 | 14.4923 μAμM−1cm−2 | 0.16–27.9 | Hair dye | [36] |
| ZnCo2O4 NPAs/CFC | CV | 0.15 | 15.18 μAμM−1cm−2 | 2–500 | Lake and river water | [37] |
| Zno/Co3O4/MCPE | DPV | 2.92 | - | - | Tap water | [38] |
| Bi2WO6 | SWV | 4.3 | - | 20–5000 | Tap water | [39] |
| ZrO210Sc/SPCE | SWV | 5.61 | 0.651 μAμM−1cm−2 | 0–100 | Tap and mineral water | [40] |
| MnWO4/rGO/SPGE | DPV | 0.005 | - | 0.01–600 | Tap and river water | [41] |
| CoMOF/rGO paper | Amp | 0.019 | - | 0.1–800 | Tap water | [43] |
| ZIF-67/KB-MWCNTs | DPV | 0.198 | - | 2–180 | River and lake water | [45] |
| TFPB-BD-COF/PtNPs/NH2-MWCNT/GCE | DPV | 0.26 | - | 4–360 | Tap water, river water, and sanitary sewage | [47] |
| MCHSs/Co@N-CNTs/GCE | DPV | 4.21 | - | 20–1000 | Water samples | [48] |
| P-rGO | DPV | 2.62 | - | 5–90 | Tap water | [49] |
| Au-PdNF/rGO/GCE | DPV | 0.7 | - | 2.0–100 | Tap, river, and lake water | [50] |
| KOH-activated GSEC film | SWV | 0.05 | - | 0.2–400 | - | [52] |
| Pd/rGO/GC | CV | 0.070 | - | 0.1–50 | Tap, lake, and Oilfield wastewater | [55] |
| MWCNTs/CDs/MWCNTs/GCE | DPV | 0.15 | - | 1–400 | Tap, well and river water | [56] |
| MWNTs/GCE | DPV | 0.49 | - | 1.2–190 | Artificial waste water | [58] |
| WS2-Gr/GCE | DPV | 0.1 μmol dm−3 | - | 1–100 μmol dm−3 | Pond, sewage, river, and rainwater | [60] |
| LDH Co/Fe-LDH/GCE | DPV | 0.005 | - | 0.0075–4.2 | Lake water | [62] |
| FeCu-MOF-919/Ti3C2Tx/GCE | DPV | 0.08 | 0.23 μAμM−1cm−2 | 0.5–152.5 | Tap water | [63] |
| PTAGCE | DPV | 3.91 | - | 391–500 | - | [65] |
| ASPCE | Amp | 0.289 | - | 1–49.67 | Hair dye | [66] |
| NaOH/GCE | SWV | 0.09 | - | 0.5–1500 | Tap water | [67] |
| MgO/MPCPE | DPV | 0.25 | - | 10–80 | Tap water | [69] |
| 3D printed CB/PLA | SWV | 3.4 | 0.0065 µA.µM−1 | 5–400 | Water | [70] |
| SA-Co/NG | DPV | 0.164 | - | 0.50–153.5 | Textile waste water | [73] |
| PGE/p-NBA | - | 0.16 | 3.75 μAμM−1cm−2 | 1–300 | - | [74] |
| Ru SA/GFs | DPV | 0.038 | - | 0.1–800.1 | River water | [76] |
| GCE/AuNPs/r-pNAover-oxidized | LSV | 0.4 | - | 0.8–500 | Waste water | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkumar, C.; Ahmad, K.; Vignesh, S.; Oh, T.H. Progress in the Determination of Resorcinol Using Electrochemical Method. Biosensors 2025, 15, 723. https://doi.org/10.3390/bios15110723
Rajkumar C, Ahmad K, Vignesh S, Oh TH. Progress in the Determination of Resorcinol Using Electrochemical Method. Biosensors. 2025; 15(11):723. https://doi.org/10.3390/bios15110723
Chicago/Turabian StyleRajkumar, Chellakannu, Khursheed Ahmad, Shanmugam Vignesh, and Tae Hwan Oh. 2025. "Progress in the Determination of Resorcinol Using Electrochemical Method" Biosensors 15, no. 11: 723. https://doi.org/10.3390/bios15110723
APA StyleRajkumar, C., Ahmad, K., Vignesh, S., & Oh, T. H. (2025). Progress in the Determination of Resorcinol Using Electrochemical Method. Biosensors, 15(11), 723. https://doi.org/10.3390/bios15110723

