Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,804)

Search Parameters:
Keywords = protein-inhibitor complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9432 KB  
Article
Exploring the Anticancer Potential of Proton Pump Inhibitors by Targeting GRP78 and V-ATPase: Molecular Docking, Molecular Dynamics, PCA, and MM-GBSA Calculations
by Abdo A. Elfiky, Kirolos R. Mansour, Yousef Mohamed, Yomna Kh. Abdelaziz and Ian A. Nicholls
Int. J. Mol. Sci. 2025, 26(17), 8170; https://doi.org/10.3390/ijms26178170 - 22 Aug 2025
Viewed by 143
Abstract
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted [...] Read more.
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted to investigate the inhibitory potential of four proton pump inhibitors (PPIs), dexlasnoprazole (DEX), esomeprazole (ESO), pantoprazole (PAN), and rabeprazole (RAB), against GRP78 and V-ATPase. Molecular docking revealed high-affinity scores for PPIs against both proteins. Moreover, molecular dynamics showed favorable root mean square deviation values for GRP78 and V-ATPase complexes, whereas root mean square fluctuations were high at the substrate-binding subdomains of GRP78 complexes and the α-helices of V-ATPase. Meanwhile, the radius of gyration and the surface-accessible surface area of the complexes were not significantly affected by ligand binding. Trajectory projections of the first two principal components showed similar motions of GRP78 structures and the fluctuating nature of V-ATPase structures, while the free-energy landscape revealed the thermodynamically favored GRP78-RAB and V-ATPase-DEX conformations. Furthermore, the binding free energy was −16.59 and −18.97 kcal/mol for GRP78-RAB and V-ATPase-DEX, respectively, indicating their stability. According to our findings, RAB and DEX are promising candidates for GRP78 and V-ATPase inhibition experiments, respectively. Full article
(This article belongs to the Special Issue Benchmarking of Modeling and Informatic Methods in Molecular Sciences)
Show Figures

Figure 1

16 pages, 2489 KB  
Article
Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening
by Emanuele Liborio Citriniti, Roberta Rocca, Claudia Sciacca, Nunzio Cardullo, Vera Muccilli, Francesco Ortuso and Stefano Alcaro
Pharmaceuticals 2025, 18(9), 1246; https://doi.org/10.3390/ph18091246 - 22 Aug 2025
Viewed by 91
Abstract
Background: Pancreatic lipase (PL), the principal enzyme catalyzing the hydrolysis of dietary triacylglycerols in the intestinal lumen, is pivotal for efficient lipid absorption and plays a central role in metabolic homeostasis. Enhanced PL activity promotes excessive lipid assimilation and contributes to positive [...] Read more.
Background: Pancreatic lipase (PL), the principal enzyme catalyzing the hydrolysis of dietary triacylglycerols in the intestinal lumen, is pivotal for efficient lipid absorption and plays a central role in metabolic homeostasis. Enhanced PL activity promotes excessive lipid assimilation and contributes to positive energy balance, key pathophysiological mechanisms underlying the escalating global prevalence of obesity—a complex, multifactorial condition strongly associated with metabolic disorders, including type 2 diabetes mellitus and cardiovascular disease. Inhibition of pancreatic lipase (PL) constitutes a well-established therapeutic approach for attenuating dietary lipid absorption and mitigating obesity. Methods: With the aim to identify putative PL inhibitors, a Structure-Based Virtual Screening (SBVS) of PhytoHub database naturally occurring derivatives was performed. A refined library of 10,404 phytochemicals was virtually screened against a crystal structure of pancreatic lipase. Candidates were filtered out based on binding affinity, Lipinski’s Rule of Five, and structural clustering, resulting in six lead compounds. Results: In vitro, enzymatic assays confirmed theoretical suggestions, highlighting Pinoresinol as the best PL inhibitor. Molecular dynamics simulations, performed to investigate the stability of protein–ligand complexes, revealed key interactions, such as persistent hydrogen bonding to catalytic residues. Conclusions: This integrative computational–experimental workflow highlighted new promising natural PL inhibitors, laying the foundation for future development of safe, plant-derived anti-obesity therapeutics. Full article
(This article belongs to the Special Issue Computer-Aided Drug Design and Drug Discovery, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 3442 KB  
Article
Drebrin Is Involved in the Life Cycle of Pseudorabies Virus by Regulating the Actin Cytoskeleton
by Kun Xu, Xiao-Han Wang, Yan-Pei Ku, Jie-Yuan Guo, Shu-Han Fan, Miao-Miao Xue, Jiang Wang, Shuang Guo, Jia-Jia Pan and Bei-Bei Chu
Microorganisms 2025, 13(9), 1969; https://doi.org/10.3390/microorganisms13091969 - 22 Aug 2025
Viewed by 80
Abstract
Pseudorabies virus (PRV), a highly pathogenic alphaherpesvirus, poses a potential threat to public health and safety due to its broad host range and risk of cross-species transmission. Viruses have evolved multiple strategies to exploit host factors for entry into and survival in host [...] Read more.
Pseudorabies virus (PRV), a highly pathogenic alphaherpesvirus, poses a potential threat to public health and safety due to its broad host range and risk of cross-species transmission. Viruses have evolved multiple strategies to exploit host factors for entry into and survival in host cells. Drebrin is an actin-binding protein that restricts rotavirus entry by inhibiting dynamin-mediated endocytosis. However, its role and mechanism in DNA virus infection, particularly in herpesviruses, remain unexplored. In this study, we investigated the role of Drebrin in PRV infection using pharmacological inhibition (BTP−2) and CRISPR-Cas9-mediated gene knockout. Both the Drebrin inhibitor BTP−2 and gene knockout significantly suppressed PRV replication. Intriguingly, Drebrin exhibited stage-specific effects on the viral life cycle: its inhibition enhanced viral internalization during early infection but impaired viral replication at later stages, suggesting that Drebrin plays a complex role in the regulation of PRV infection. PRV infection partially disrupted actin stress fibers and caused an increase in cell size. Drebrin knockout also altered the host-cell morphology, reduced the cell surface area, and induced actin cytoskeleton rearrangement, which was further modulated in PRV-infected cells. In summary, our data demonstrate that Drebrin functions as a critical host factor governing the entire PRV life cycle by regulating actin cytoskeleton reorganization. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

22 pages, 7877 KB  
Article
From SARS to MERS and SARS-CoV-2: Comparative Spike Protein Remodeling and Ligand-Binding Hot-Spots Revealed by Multiscale Simulations
by Gianfranco Cavallaro, Giuseppe Forte, Carmela Bonaccorso, Milena Nicolosi, Federica Sipala, Giulia Varrica, Cosimo Gianluca Fortuna and Simone Ronsisvalle
Chemistry 2025, 7(4), 132; https://doi.org/10.3390/chemistry7040132 - 19 Aug 2025
Viewed by 166
Abstract
The COVID-19 pandemic has prompted the scientific community to develop new weapons against the SARS-CoV-2 spike protein. The study of its mutations is important to understand how it interacts with human receptors and how to prevent a future pandemic. In this study, four [...] Read more.
The COVID-19 pandemic has prompted the scientific community to develop new weapons against the SARS-CoV-2 spike protein. The study of its mutations is important to understand how it interacts with human receptors and how to prevent a future pandemic. In this study, four mutations of the Omega variant, along with those from the SARS-CoV-1 and MERS variants, were analyzed in complex with the angiotensin-converting enzyme 2 (ACE2) receptor. In silico studies were carried out to demonstrate that these mutations affect the interaction with the compounds under investigation. The ligands studied are heterocyclic compounds previously considered as potential inhibitors. Our results show that these compounds interact well with the spike protein and provide insights into how mutations, especially in the RBD region, can lead to perturbations in ligand–protein interactions. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 1567 KB  
Article
Novel Carbazole–Thiazole Conjugates: Synthesis and Biophysical Characterization
by Beata Donarska, Klaudia Seklecka, Joanna Cytarska, Katarzyna Piechowska, Przemyslaw Ledwon, Sławomir Kula, Przemysław Krawczyk, Angelika Baranowska-Łączkowska and Krzysztof Z. Łączkowski
Int. J. Mol. Sci. 2025, 26(16), 7945; https://doi.org/10.3390/ijms26167945 - 18 Aug 2025
Viewed by 261
Abstract
This presented study depicts the synthesis of three novel carbazole–thiazole conjugates, thoroughly investigating their spectroscopic properties as well as evaluating their biological activity as tyrosinase inhibitors. Additionally, we investigated the possibility of using Concanavalin A (ConA) complexes with dyes from a theoretical point [...] Read more.
This presented study depicts the synthesis of three novel carbazole–thiazole conjugates, thoroughly investigating their spectroscopic properties as well as evaluating their biological activity as tyrosinase inhibitors. Additionally, we investigated the possibility of using Concanavalin A (ConA) complexes with dyes from a theoretical point of view, developing a promising protein-based strategy of delivery of dyes to the target cells. The tyrosinase inhibition assay showed that compounds K1 and K3 demonstrated higher activity than the kojic acid with IC50 values of 46 and 59 mM, respectively. Among the tested compounds, carbazole K3 exhibits the most pronounced nonlinear optical response due to its high electronic flexibility, strong solvatochromism, large excited-state dipole moments, and efficient intramolecular charge transfer. Additionally, all investigated carbazoles demonstrate high ability to form stable supramolecular complexes with ConA, which was confirmed using molecular docking studies. It was found experimentally and theoretically that the compound K3 has the best biophysical parameters, making it a promising candidate for potential diagnostic applications. Full article
(This article belongs to the Special Issue Spectroscopic Techniques in Molecular Sciences)
Show Figures

Figure 1

16 pages, 698 KB  
Review
Broad-Spectrum Antiviral Activity of Cyclophilin Inhibitors Against Coronaviruses: A Systematic Review
by Abdelazeem Elhabyan, Muhammad Usman S. Khan, Aliaa Elhabyan, Rawan Abukhatwa, Hadia Uzair, Claudia Jimenez, Asmaa Elhabyan, Yee Lok Chan and Basma Shabana
Int. J. Mol. Sci. 2025, 26(16), 7900; https://doi.org/10.3390/ijms26167900 - 15 Aug 2025
Viewed by 352
Abstract
Cyclophilins (Cyps), a family of peptidyl-prolyl isomerases, play essential roles in the life cycle of coronaviruses by interacting with viral proteins and modulating host immune responses. In this systematic review, we examined cell culture, animal model, and clinical studies assessing the anti-viral efficacy [...] Read more.
Cyclophilins (Cyps), a family of peptidyl-prolyl isomerases, play essential roles in the life cycle of coronaviruses by interacting with viral proteins and modulating host immune responses. In this systematic review, we examined cell culture, animal model, and clinical studies assessing the anti-viral efficacy of cyclosporine A (CsA, PubChem CID: 5284373) and its non-immunosuppressive derivatives against coronaviruses. CsA demonstrated robust anti-viral activity in vitro across a broad range of coronaviruses, including but not limited to HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2, with potent EC50 values in the low micromolar range. Non-immunosuppressive analogs such as Alisporivir and NIM811 exhibited similar inhibitory effects. In vivo, CsA treatment significantly reduced viral load, ameliorated lung pathology, and improved survival in coronavirus-infected animals. Clinical studies further indicated that CsA administration was associated with improved outcomes in COVID-19 patients, including reduced mortality and shorter hospital stays. Mechanistic studies revealed that CsA disrupts the formation of viral replication complexes, interferes with critical Cyp–viral protein interactions, and modulates innate immune signaling. These findings collectively demonstrate the therapeutic potential of cyclophilin inhibitors as broad-spectrum anti-virals against current and emerging coronaviruses. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

24 pages, 2999 KB  
Review
Calpain in Traumatic Brain Injury: From Cinderella to Central Player
by Carla Schallerer, Stephan Neuschmid, Barbara E. Ehrlich and Declan McGuone
Cells 2025, 14(16), 1253; https://doi.org/10.3390/cells14161253 - 14 Aug 2025
Viewed by 405
Abstract
Traumatic Brain Injury (TBI) is a major global health concern and a leading cause of death and disability, especially in young adults. It triggers complex secondary injury cascades, e.g., calcium dysregulation, mitochondrial dysfunction and protease activation, that extend well beyond the initial mechanical [...] Read more.
Traumatic Brain Injury (TBI) is a major global health concern and a leading cause of death and disability, especially in young adults. It triggers complex secondary injury cascades, e.g., calcium dysregulation, mitochondrial dysfunction and protease activation, that extend well beyond the initial mechanical insult to drive ongoing neurodegeneration. The calcium-dependent protease calpain has emerged as a central mediator of TBI cellular pathology. Calpain cleaves a broad range of cytoskeletal and regulatory proteins across neuronal compartments, disrupting axonal integrity, synaptic function and calcium homeostasis. Despite decades of research, calpain remains an elusive therapeutic target. In this review, we examine the spatial and temporal patterns of calpain activation in the traumatically injured brain, categorize key calpain substrates by structure and location, and assess their mechanistic roles in TBI pathology. We also review recent advances in next-generation calpain-2 selective inhibitors with enhanced specificity and preclinical efficacy and discuss the emerging use of calpain-cleaved protein fragments such as SBDP145 and SNTF as candidate biomarkers for TBI diagnosis and progression. Drawing on molecular, preclinical, and clinical data, we argue that calpain warrants renewed attention as both a therapeutic target and mechanistic biomarker in TBI. It may be time for Cinderella to leave the basement. Full article
(This article belongs to the Special Issue Role of Calpains in Health and Diseases)
Show Figures

Figure 1

15 pages, 925 KB  
Article
8-OXO-Cordycepin Is Not a Suitable Substrate for Adenosine Deaminase-Preliminary Experimental and Theoretical Studies
by Boleslaw T. Karwowski
Molecules 2025, 30(16), 3377; https://doi.org/10.3390/molecules30163377 - 14 Aug 2025
Viewed by 341
Abstract
Adenosine deaminase (ADA) is one of the most important enzymes in nucleoside metabolism, regulating the levels of adenosine and deoxyadenosine triphosphate (ADT/dATP) on either side of the cell membrane. This small protein (weighing approximately 40 kDa) exhibits deamination properties towards other pharmaceuticals built [...] Read more.
Adenosine deaminase (ADA) is one of the most important enzymes in nucleoside metabolism, regulating the levels of adenosine and deoxyadenosine triphosphate (ADT/dATP) on either side of the cell membrane. This small protein (weighing approximately 40 kDa) exhibits deamination properties towards other pharmaceuticals built on adenine as the leading structure, which requires co-administration of ADA inhibitors. 3′-deoxyadenosine (Cordycepin, Cord) is an active compound isolated from the fungus Cordyceps, which has been used in traditional Chinese medicine for over 2000 years. Its anticancer activity is likely related to the inhibition of primer elongation of lagging strands during genetic information replication. Unfortunately, Cord is rapidly deaminated by ADA into inactive 3′-deoxyinosine, necessitating its co-administration with ADA inhibitors. Here, for the first time, the synthesis and discussion of the oxidised form of Cord are presented. The 7,8-dihydro-8-oxo-3′-deoxyadenosine (CordOXO) exhibits high resistance to ADA because of its syn conformation, as shown experimentally by UV spectroscopy and RP-HPLC monitoring. Theoretical Density Functional based Tight Binding (DFTB) studies of the Michaelis complex ADA-CordOXO have revealed significant distance increases between the “active” H2O molecule and C6 of the 8-oxo-adenine moiety of CordOXO, i.e., 4 Å as opposed to 2.7 Å in the cases of ADA-dAdo and Cord. In conclusion, it can be postulated that the conversion of Cord to CordOXO enhances its therapeutic potential; however, this needs to be verified in vitro and in vivo. It should be emphasised that the therapeutic effect, if any, can be achieved theoretically without ADA inhibitors, e.g., pentostatin, thus reducing adverse effects. These promising preliminary results, presented here, warrant further investigations. Full article
Show Figures

Graphical abstract

25 pages, 4622 KB  
Review
Immunological Landscape and Molecular Therapeutic Targets of the Tumor Microenvironment in Hepatocellular Carcinoma
by Yusra Zarlashat, Abdul Ghaffar, Flora Guerra and Anna Picca
Int. J. Mol. Sci. 2025, 26(16), 7836; https://doi.org/10.3390/ijms26167836 - 13 Aug 2025
Viewed by 467
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, with poor survival rates in advanced stages due to late diagnosis, tumor heterogeneity, and therapy resistance. The tumor microenvironment (TME) in HCC has a crucial role in tumor progression, characterized by a complex interaction [...] Read more.
Hepatocellular carcinoma (HCC) is the most common liver cancer, with poor survival rates in advanced stages due to late diagnosis, tumor heterogeneity, and therapy resistance. The tumor microenvironment (TME) in HCC has a crucial role in tumor progression, characterized by a complex interaction of immune cells, stromal components, and immunosuppressive signaling pathways. Chronic inflammation driven by viral infections, metabolic dysfunction, and alcohol consumption triggers an immunosuppressive TME, promoting immune evasion and tumor growth. Immune cell populations, such as myeloid-derived suppressor cells, regulatory T cells, and tumor-associated macrophages, contribute to immunosuppression, while cytotoxic T lymphocytes and natural killer cells exert anti-tumor effects. Recent advances in immunotherapy, mainly immune checkpoint inhibitors (ICIs) targeting programmed death-ligand 1 and programmed cell death protein 1 and cytotoxic T-lymphocyte-associated protein 4, have revolutionized HCC treatment, though response rates remain limited. Combined therapies using tyrosine kinase inhibitors, anti-angiogenic agents, and ICIs improve patient outcomes. This review discusses the immunological mechanisms contributing to HCC progression, the role of immune cell subsets in tumor evasion, and therapeutic interventions, from conventional treatments to advanced immunotherapies. Ongoing clinical trials, barriers to effective treatment, and future directions to enhance HCC management and patient survival will also be overviewed. Full article
Show Figures

Figure 1

19 pages, 623 KB  
Review
Decoding Pancreatic Neuroendocrine Tumors: Molecular Profiles, Biomarkers, and Pathways to Personalized Therapy
by Linda Galasso, Federica Vitale, Gabriele Giansanti, Giorgio Esposto, Raffaele Borriello, Irene Mignini, Alberto Nicoletti, Lorenzo Zileri Dal Verme, Antonio Gasbarrini, Maria Elena Ainora and Maria Assunta Zocco
Int. J. Mol. Sci. 2025, 26(16), 7814; https://doi.org/10.3390/ijms26167814 - 13 Aug 2025
Viewed by 419
Abstract
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1–2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not [...] Read more.
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1–2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not fully capture the complex mechanisms involved, such as oxidative stress, mitochondrial dysfunction, and tumor-associated macrophage infiltration. Recent advances in molecular profiling have revealed key oncogenic drivers, including MEN1 (menin 1), DAXX (death domain–associated protein), ATRX (alpha thalassemia/mental retardation syndrome X-linked), CDKN1B (cyclin-dependent kinase inhibitor 1B) mutations, chromatin remodeling defects, and dysregulation of the mTOR pathway. Somatostatin receptors, particularly SSTR2, play a central role in tumor biology and serve as important prognostic markers, enabling the use of advanced diagnostic imaging (e.g., Gallium-68 DOTATATE PET/CT) and targeted therapies like somatostatin analogs and peptide receptor radionuclide therapy (PRRT). Established biomarkers such as Chromogranin A and the Ki-67 proliferation index remain vital for diagnosis and prognosis, while emerging markers, like circulating tumor DNA and microRNAs, show promise for enhancing disease monitoring and diagnostic accuracy. This review summarizes the molecular landscape of pNETs and highlights genomic, transcriptomic, proteomic, and epigenomic factors that support the identification of novel diagnostic, prognostic, and therapeutic biomarkers, ultimately advancing personalized treatment strategies. Full article
Show Figures

Figure 1

22 pages, 4751 KB  
Article
Biophysical Insights into the Binding Interactions of Inhibitors (ICA-1S/1T) Targeting Protein Kinase C-ι
by Radwan Ebna Noor, Shahedul Islam, Tracess Smalley, Katarzyna Mizgalska, Mark Eschenfelder, Dimitra Keramisanou, Aaron Joshua Astalos, James William Leahy, Wayne Charles Guida, Aleksandra Karolak, Ioannis Gelis and Mildred Acevedo-Duncan
Biophysica 2025, 5(3), 36; https://doi.org/10.3390/biophysica5030036 - 11 Aug 2025
Viewed by 267
Abstract
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have [...] Read more.
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have demonstrated their specificity and promising efficacy against various cancers. Moreover, the in vivo studies have demonstrated low toxicity levels in acute and chronic murine models. Despite these prior developments, the binding affinities of the inhibitors were never thoroughly explored from a biophysical perspective. Here, we present the biophysical characterizations of PKC-ι in combination with ICA-1S/1T. Various methods based on molecular docking, light scattering, intrinsic fluorescence, thermal denaturation, and heat exchange were applied. The biophysical characteristics including particle sizing, thermal unfolding, aggregation profiles, enthalpy, entropy, free energy changes, and binding affinity (Kd) of the PKC-ι in the presence of ICA-1S were observed. The studies indicate the presence of domain-specific stabilities in the protein–ligand complex. Moreover, the results indicate a spontaneous reaction with an entropic gain, resulting in a possible entropy-driven hydrophobic interaction and hydrogen bonds in the binding pocket. Altogether, these biophysical studies reveal important insights into the binding interactions of PKC-ι and its inhibitors ICA-1S/1T. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

22 pages, 4443 KB  
Article
Integrating Multi-Domain Approach for Identification of Neo Anti-DHPS Inhibitors Against Pathogenic Stenotrophomonas maltophilia
by Alhumaidi Alabbas
Biology 2025, 14(8), 1030; https://doi.org/10.3390/biology14081030 - 11 Aug 2025
Viewed by 328
Abstract
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: [...] Read more.
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: The present study aimed to identify novel dihydropteroate synthase (DHPS) inhibitors from Stenotrophomonas maltophilia using structure-based computational techniques. Methodology: This in silico study used various bioinformatics and cheminformatics approaches to find new DHPS inhibitors. It began by retrieving the crystal structure via PDB ID: 7L6P, followed by energy minimization. The DHPS enzyme was virtually screened against the CHEMBL library to target S. maltophilia through enzyme inhibition. Then, absorption, distribution, metabolism, and excretion (ADME) analysis was performed to select the top hits. This process identified the top-10 hits. Additionally, imidazole (control) was used for comparative assessment. Furthermore, a 100 ns molecular dynamics simulation and post-simulation analyses were conducted. The docking results were validated through binding free energy calculations and entropy energy estimation approaches. Results: The docking results prioritized 10 compounds based on their binding scores, with a maximum threshold of −7 kcal/mol for selection. The ADME assessment shortlisted 3 out of 10 compounds: CHEMBL2322256, CHEMBL2316475, and CHEMBL2334441. These compounds satisfied Lipinski’s rule of five and were considered drug-like. The identified inhibitors demonstrated greater stability and less deviation compared to the control (imidazole). The average RMSD stayed below 2 Å, indicating overall stability without major deviations in the DHPS–ligand complexes. Post-simulation analysis assessed the stability and interaction profiles of the complexes under physiological conditions. Hydrogen bonding analysis showed the control to be more stable than the three tested complexes. Increased salt bridge interactions suggested stronger electrostatic stabilization, while less alteration of the protein’s secondary structure indicated better structural compatibility. These findings support the potential of these novel ligands as potent DHPS inhibitors. Binding energy estimates showed that CHEMBL2322256 was the most stable, with scores of −126.49 and −124.49 kcal/mol. Entropy calculations corroborated these results, indicating that CHEMBL2322256 had an estimated entropy of 8.63 kcal/mol. Conclusions: The newly identified compounds showed more promising results compared to the control. While these compounds have potential as innovative drugs, further research is needed to confirm their effectiveness as anti-DHPS agents against antibiotic resistance and S. maltophilia infections. Full article
Show Figures

Figure 1

27 pages, 14027 KB  
Article
Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries
by Rana Alateeq
Pharmaceuticals 2025, 18(8), 1178; https://doi.org/10.3390/ph18081178 - 10 Aug 2025
Viewed by 438
Abstract
Background: Anaplastic lymphoma kinase (ALK) is a validated oncogenic driver in non-small cell lung cancer and other malignancies, making it a clinically relevant target for small-molecule inhibition. Methods: Here, we report a computational discovery pipeline integrating structure-based virtual screening, machine learning-guided [...] Read more.
Background: Anaplastic lymphoma kinase (ALK) is a validated oncogenic driver in non-small cell lung cancer and other malignancies, making it a clinically relevant target for small-molecule inhibition. Methods: Here, we report a computational discovery pipeline integrating structure-based virtual screening, machine learning-guided prioritization, molecular dynamics simulations, and binding free energy analysis to identify potential ALK inhibitors from a natural product-derived subset of the ZINC20 database. We trained and benchmarked eleven machine learning models, including tree-based, kernel-based, linear, and neural architectures, on curated bioactivity datasets of ALK inhibitors to capture nuanced structure-activity relationships and prioritize candidates beyond conventional docking metrics. Results: Six compounds were shortlisted based on binding affinity, solubility, bioavailability, and synthetic accessibility. Molecular dynamics simulations over 100 ns revealed stable ligand engagement, with limited conformational fluctuations and consistent retention of the protein’s structural integrity. Key catalytic residues, including GLU105, MET107, and ASP178, displayed minimal fluctuation, while hydrogen bonding and residue interaction analyses confirmed persistent engagement across all ligand-bound complexes. Binding free energy estimates identified ZINC3870414 and ZINC8214398 as top-performing candidates, with ΔGtotal values of –46.02 and –46.18 kcal/mol, respectively. Principal component and dynamic network analyses indicated that these compounds restrict conformational sampling and reorganize residue communication pathways, consistent with functional inhibition. Conclusions: These results highlight ZINC3870414 and ZINC8214398 as promising scaffolds for further optimization and support the utility of integrating machine learning with dynamic and network-based metrics in early-stage kinase inhibitor discovery. Full article
Show Figures

Graphical abstract

23 pages, 26085 KB  
Article
How Actin Polymerization and Myosin II Activity Regulate Focal Adhesion Dynamics in Motile Cells
by Anastasiia Kovaleva, Evgeniya Solomatina, Madina Tlegenova, Aleena Saidova and Ivan A. Vorobjev
Int. J. Mol. Sci. 2025, 26(16), 7701; https://doi.org/10.3390/ijms26167701 - 9 Aug 2025
Viewed by 402
Abstract
Focal adhesions (FAs) are multi-protein complexes that mediate cell attachment to the extracellular matrix. Their formation and maturation depend on intracellular tension generated by actin filaments interacting with phosphorylated myosin II. Using live-cell and confocal microscopy, we investigated how FA dynamics are regulated [...] Read more.
Focal adhesions (FAs) are multi-protein complexes that mediate cell attachment to the extracellular matrix. Their formation and maturation depend on intracellular tension generated by actin filaments interacting with phosphorylated myosin II. Using live-cell and confocal microscopy, we investigated how FA dynamics are regulated by actin polymerization and myosin II-driven contractility. We found that knockdown of myosin II resulted in complete and irreversible disassembly of FAs. However, partial inhibition of myosin II, through either ROCK or myosin light chain kinase (MLCK) inhibitors, leads to gradual FA shrinkage. In contrast, complete inhibition of myosin II phosphorylation causes disassembly of existing FAs, followed by the formation of new, small FAs at the cell periphery. In both cases, FAs formed after inhibition of myosin II phosphorylation exhibited significantly longer lifespans than FAs in control cells. Similarly, partial inhibition of actin polymerization using nanomolar concentrations of latrunculin B or cytochalasin D also promoted the formation of small FAs. Complete and irreversible FA disassembly occurred only when actin filaments were fully disrupted, leading to cell lamella retraction. These findings suggest that actin polymerization at the cell edge is the minimal and sufficient requirement for the assembly of small FAs. Notably, our data demonstrate for the first time that perturbation of the actin–myosin system results in stabilization and prolonged lifespan of small FAs, whereas larger FAs, formed in the presence of myosin II activity, are more dynamic. Together, these results emphasize the essential role of cortical actin organization and myosin II phosphorylation in the maintenance and turnover of FAs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

31 pages, 4843 KB  
Review
Glucocorticoid-Mediated Skeletal Muscle Atrophy: Molecular Mechanisms and Potential Therapeutic Targets
by Uttapol Permpoon, Jiyeong Moon, Chul Young Kim and Tae-gyu Nam
Int. J. Mol. Sci. 2025, 26(15), 7616; https://doi.org/10.3390/ijms26157616 - 6 Aug 2025
Viewed by 925
Abstract
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose [...] Read more.
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose metabolism. However, prolonged exposure to GC is directly linked to muscle atrophy, which is characterized by a reduction in muscle size and weight, particularly affecting fast-twitch muscle fibers. The GC-activated glucocorticoid receptor (GR) decreases protein synthesis and facilitates protein breakdown. Numerous antagonists have been developed to mitigate GC-induced muscle atrophy, including 11β-HSD1 inhibitors and myostatin and activin receptor blockers. However, the clinical trial results have fallen short of the expected efficacy. Recently, several emerging pathways and targets have been identified. For instance, GC-induced sirtuin 6 isoform (SIRT6) expression suppresses AKT/mTORC1 signaling. Lysine-specific demethylase 1 (LSD1) cooperates with the GR for the transcription of atrogenes. The kynurenine pathway and indoleamine 2,3-dioxygenase 1 (IDO-1) also play crucial roles in protein synthesis and energy production in skeletal muscle. Therefore, a deeper understanding of the complexities of GR transactivation and transrepression will provide new strategies for the discovery of novel drugs to overcome the detrimental effects of GCs on muscle tissues. Full article
(This article belongs to the Special Issue Understanding Aging in Health and Disease)
Show Figures

Figure 1

Back to TopTop