Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,662)

Search Parameters:
Keywords = protein materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 1561 KB  
Review
Black Soldier Fly (Hermetia illucens) Larvae and Frass: Sustainable Organic Waste Conversion, Circular Bioeconomy Benefits, and Nutritional Valorization
by Nicoleta Ungureanu and Nicolae-Valentin Vlăduț
Agriculture 2026, 16(3), 309; https://doi.org/10.3390/agriculture16030309 - 26 Jan 2026
Abstract
The rapid increase in organic waste generation poses significant environmental challenges and highlights the limitations of conventional waste management practices. In this context, black soldier fly (Hermetia illucens) larvae (BSFL) have emerged as a promising biological tool for valorizing organic residues [...] Read more.
The rapid increase in organic waste generation poses significant environmental challenges and highlights the limitations of conventional waste management practices. In this context, black soldier fly (Hermetia illucens) larvae (BSFL) have emerged as a promising biological tool for valorizing organic residues within circular bioeconomy frameworks. This review provides an integrated analysis of BSFL-based bioconversion systems, focusing on the biological characteristics of BSFL, suitable organic waste streams, and the key process parameters influencing waste reduction efficiency, larval biomass production, and frass (the residual material from larval bioconversion) yield. The performance of BSFL in converting organic waste is assessed with emphasis on substrate characteristics, environmental conditions, larval density, and harvesting strategies. Environmental and economic implications are discussed in comparison with conventional treatments such as landfilling, composting, and anaerobic digestion. Special attention is given to the nutritional composition of BSFL and the valorization of larvae as sustainable protein and lipid sources for animal feed and emerging human food applications, while frass is highlighted as a nutrient-rich organic fertilizer and soil amendment. Finally, current challenges related to scalability, safety, regulation, and social acceptance are highlighted. By linking waste management, resource recovery, and sustainable protein production, this review clarifies the role of BSFL and frass in resilient and resource-efficient food and waste management systems. Full article
15 pages, 1518 KB  
Article
Biophysical Features of Outer Membrane Vesicles (OMVs) from Pathogenic Escherichia coli: Methodological Implications for Reproducible OMV Characterization
by Giorgia Barbieri, Linda Maurizi, Maurizio Zini, Federica Fratini, Agostina Pietrantoni, Ilaria Bellini, Serena Cavallero, Eleonora D’Intino, Federica Rinaldi, Paola Chiani, Valeria Michelacci, Stefano Morabito, Barbara Chirullo and Catia Longhi
Antibiotics 2026, 15(2), 117; https://doi.org/10.3390/antibiotics15020117 - 26 Jan 2026
Abstract
Background/Objectives: Bacterial outer membrane vesicles (OMVs) play a role in bacterial communication, virulence, antimicrobial resistance, and host–pathogen interaction. OMV isolation is a key step for studying these particles’ functions; nevertheless, isolation procedures can greatly influence the yield, purity, and structural integrity of [...] Read more.
Background/Objectives: Bacterial outer membrane vesicles (OMVs) play a role in bacterial communication, virulence, antimicrobial resistance, and host–pathogen interaction. OMV isolation is a key step for studying these particles’ functions; nevertheless, isolation procedures can greatly influence the yield, purity, and structural integrity of OMVs, thereby affecting downstream biological analyses and functional interpretation. Methods: In this study, we compared the efficacy of two OMV isolation techniques, differential ultracentrifugation (dUC) and size-exclusion chromatography (SEC), in separating and concentrating vesicles produced by two Escherichia coli strains belonging to uropathogenic (UPEC) and Shiga toxin-producing (STEC) pathotypes. The isolated OMVs were characterized using a multi-analytical approach including transmission and scanning electron microscopy (TEM, SEM), nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), ζ-potential measurement, and protein quantification to assess the purity of the preparations. Results: Samples obtained by dUC exhibited higher total protein content, broader particle size distributions, and more pronounced contamination by non-vesicular material. In contrast, SEC yielded morphologically homogeneous and structurally well-preserved vesicles, higher particle-to-protein ratios, and lower total protein content, reflecting reduced co-isolation of protein aggregates. NTA and DLS analyses revealed polydisperse populations in samples obtained with both isolation methods, with DLS measurements highlighting the contribution of larger or transient aggregates. ζ-potential values were close to neutrality for all samples, consistent with limited electrostatic repulsion and with the aggregation tendencies observed in some preparations. Conclusions: This study describes features of OMV produced by two relevant E. coli strains considering two isolation strategies which exert method- and strain-dependent effects on vesicle properties, including size distribution and surface charge, and emphasizes the trade-offs between yield, purity, and vesicle integrity. Full article
Show Figures

Figure 1

18 pages, 4535 KB  
Article
Sequence-Encoded Aggregation of AA10 LPMO Domains as a Basis for Inclusion Body Design
by Ahmad Muaaz Hassan Butt and Anwar Sunna
Int. J. Mol. Sci. 2026, 27(3), 1188; https://doi.org/10.3390/ijms27031188 - 24 Jan 2026
Viewed by 49
Abstract
Inclusion bodies (IBs) in Escherichia coli are increasingly recognised as nanostructured materials with tunable morphology and functional potential. The N-terminal auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenase (LPMO) domain from Caldibacillus cellulovorans (Ccelp40) consistently forms IBs and, when fused to [...] Read more.
Inclusion bodies (IBs) in Escherichia coli are increasingly recognised as nanostructured materials with tunable morphology and functional potential. The N-terminal auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenase (LPMO) domain from Caldibacillus cellulovorans (Ccelp40) consistently forms IBs and, when fused to diverse proteins, generates functional IBs. Here, we examined whether this strong aggregation propensity is unique to Ccelp40 or a broader feature of AA10 LPMOs. Four homologous domains from phylogenetically distinct microorganisms, Kallotenue papyrolyticum (Kpapp40), Kibdelosporangium aridum (Karip40), Archangium lipolyticum (Alipp40), and Phytohabitans suffuscus (Psufp40), were heterologously expressed in E. coli under identical cytosolic conditions. All homologues accumulated predominantly in the insoluble fraction, forming morphologically uniform IBs with sub-micron diameters (550–860 nm) and moderate polydispersity indices (0.45–0.54). SDS-PAGE densitometry indicated that most of each expressed protein partitioned into the insoluble fraction. Field-emission scanning electron microscopy revealed compact spherical aggregates, and Fourier-transform infrared spectroscopy showed β-sheet-enriched secondary structures characteristic of ordered IBs. These results indicate that the pronounced aggregation tendency previously observed for Ccelp40 is conserved across the AA10 homologues examined. The findings support the view that the AA10 domain represents a promising scaffold for generating stable, recyclable protein nanoparticles and provides a comparative basis for future IB-based biotechnological designs. Full article
(This article belongs to the Section Molecular Microbiology)
16 pages, 933 KB  
Article
Evaluation of the Chemical Properties of Tomato Products Enriched with Plant-Based Ingredients
by Rose Daphnee Tchonkouang, Dorcas Martekie Martey, Custódia Gago, Adriana Guerreiro, Sara Raposo, Brígida Rodrigues, M. Margarida Cortez Vieira and Maria Dulce Antunes
Horticulturae 2026, 12(2), 129; https://doi.org/10.3390/horticulturae12020129 - 24 Jan 2026
Viewed by 125
Abstract
Reformulating tomato-based products with beneficial plant-based ingredients is a promising approach for enhancing dietary quality. In this study, the chemical properties of reformulated tomato products—a juice and a sauce enriched with pea protein, olive powder, and tomato peel powder—were evaluated alongside the tomatoes [...] Read more.
Reformulating tomato-based products with beneficial plant-based ingredients is a promising approach for enhancing dietary quality. In this study, the chemical properties of reformulated tomato products—a juice and a sauce enriched with pea protein, olive powder, and tomato peel powder—were evaluated alongside the tomatoes used as raw material (cultivar ‘H1657’) to determine the changes occurring during their conversion into reformulated products. The chemical properties were assessed by analyzing lycopene, antioxidant capacity (by total phenolic content, DPPH, ABTS, and FRAP), sugars (glucose, fructose, and sucrose), and organic acids (citric, malic, ascorbic, and oxalic acids). The results showed that the fruit had the highest contents of glucose and fructose. Citric, malic, and oxalic acids were lower in the reformulated products than in the fruit sample, while ascorbic acid did not differ significantly. The sauce and fresh fruit exhibited the highest lycopene, ABTS, DPPH, and FRAP, whereas the juice had the lowest. Polyphenol content was highest in the sauce followed by the fruit and then the juice. The results suggest that incorporating plant-based ingredients into the sauce formulation can help compensate for nutrient losses that occur during tomato processing, making it a promising tomato-based product. Full article
(This article belongs to the Section Processed Horticultural Products)
Show Figures

Figure 1

22 pages, 2728 KB  
Article
Explorative Insights into Local Immune Response to BK Virus—A Cross-Sectional Study in Urine Samples Between Transplant Recipients and Non-Immunocompromised Hosts
by Agata Michnowska, Bartosz Wojciuk, Paulina Reus, Agata Filipowska, Magdalena Mnichowska-Polanowska, Bartłomiej Grygorcewicz, Kazimierz Ciechanowski and Karolina Kędzierska-Kapuza
Medicina 2026, 62(2), 240; https://doi.org/10.3390/medicina62020240 - 23 Jan 2026
Viewed by 70
Abstract
Background and Objectives: BK virus (BKPyV) is a common latent pathogen in humans, but it becomes particularly insidious in kidney transplant recipients, where reactivation may contribute to allograft loss. The immune mechanisms controlling BKPyV latency in immunocompromised hosts remain incompletely understood. We [...] Read more.
Background and Objectives: BK virus (BKPyV) is a common latent pathogen in humans, but it becomes particularly insidious in kidney transplant recipients, where reactivation may contribute to allograft loss. The immune mechanisms controlling BKPyV latency in immunocompromised hosts remain incompletely understood. We assume the urinary immune proteome reflects local immune response in the kidney and the urinary tract. Thus, this study aimed to determine whether the presence of BKPyV alters the urinary immune-related proteomic profile of kidney transplant recipients and shifts it away to that observed in healthy individuals. Materials and Methods: 137 urine samples were collected from kidney recipients, both BKPyV-positive and BKPyV-negative, patients with stage 5 chronic kidney disease, and healthy controls. Targeted proteomic analysis was performed using the proximity extension assay, followed by heatmapping, principal component analysis, random forest, and linear regression modeling. Results: The urinary proteome of BKPyV-positive recipients remained more distinct from healthy controls than that of BKPyV-negative ones. Among the 33 proteins detected across all samples, 17 showed significant intergroup differences, with KLRD1 (CD94) uniquely upregulated in all transplant recipients, but downregulated in BKPyV-positive samples. Conclusions: We conclude that the presence of BKPyV in the urinary tract of kidney recipients notably interplays with the local immune response even in the absence of clinical disease. Full article
(This article belongs to the Special Issue Allergic and Immune Disorders: New Insights and Future Directions)
10 pages, 863 KB  
Article
Destruction/Inactivation of SARS-CoV-2 Virus Using Ultrasound Excitation: A Preliminary Study
by Almunther Alhasawi, Fajer Alassaf and Alshimaa Hassan
Viruses 2026, 18(2), 152; https://doi.org/10.3390/v18020152 - 23 Jan 2026
Viewed by 194
Abstract
SARS-CoV-2, the causative virus of the COVID-19 pandemic, is a highly transmissible, enveloped, single-stranded RNA virus that has mutated into several variants, complicating vaccine strategies and drug resistance. Novel treatment modalities targeting conserved structural vulnerable points are essential to combat these variants. The [...] Read more.
SARS-CoV-2, the causative virus of the COVID-19 pandemic, is a highly transmissible, enveloped, single-stranded RNA virus that has mutated into several variants, complicating vaccine strategies and drug resistance. Novel treatment modalities targeting conserved structural vulnerable points are essential to combat these variants. The primary aim of the current study is to test the mechanical vulnerability of the SARS-CoV-2 virus envelope and spike proteins to focused, high-frequency ultrasound waves (25 MHz) in vitro. Utilizing a preliminary pretest and posttest study design, the study was conducted on a virus sample within a distilled water matrix, under controlled laboratory biosafety conditions. Since detailed imaging tools were unavailable, viral disruption was indirectly measured using real-time PCR cycle threshold (Ct) values. Ct values increased significantly after high-frequency ultrasound exposure, indicating a reduction in amplifiable viral genomic material. A paired t-test indicated a significant difference between the pretest and posttest Ct (p < 0.001), which is supported by Monte Carlo test results that revealed statistically significant shifting in viral load categories (p = 0.001, two-sided). Specifically, 85.7% of high-viral-load samples converted to low or moderate content, 46.7% of low or moderate samples were shifted to negative content. This intervention produced a large effect size (Cohen’s d = 2.422). These results indicate that ultrasound may offer a promising non-pharmacological approach to destroy or inactivate SARS-CoV-2 variants in an aqueous environment. Full article
Show Figures

Graphical abstract

16 pages, 14226 KB  
Article
Preparation of a Magnetic Ti-IMAC Material Based on Thiol-Ene Click Reaction and the Application in Intact Phosphoprotein Enrichment
by Yan Lu, Sen Zhang, Hong-Yan Ge, Han-Yue Yang, Feng Zhang, Yi-Fan Pan and Hong-Zhen Lian
Molecules 2026, 31(3), 396; https://doi.org/10.3390/molecules31030396 - 23 Jan 2026
Viewed by 149
Abstract
Protein phosphorylation is a crucial post-translational modification that regulates protein activity, cellular signaling, transcriptional regulation, and cell cycle control. However, the analysis of phosphoproteins in biological samples is often compromised by complex sample matrices and interference from high-abundance proteins. While the top-down phosphoproteomics [...] Read more.
Protein phosphorylation is a crucial post-translational modification that regulates protein activity, cellular signaling, transcriptional regulation, and cell cycle control. However, the analysis of phosphoproteins in biological samples is often compromised by complex sample matrices and interference from high-abundance proteins. While the top-down phosphoproteomics strategy enables comprehensive analysis of post-translational modifications based on intact proteins, its requirement for higher protein purity due to low protein ionization efficiency poses stern challenges. Consequently, developing appropriate enrichment methods for phosphoproteins in practical samples becomes essential. Immobilized metal ion affinity chromatography (IMAC) represents a common strategy for phosphorylated protein separation and enrichment. Among metal ions, Ti4+ has gained widespread application as IMAC chelating ligands due to its capacity to form multiple coordination networks and its high selectivity for phosphorylated protein enrichment, leveraging the strong chelating ability of phosphate groups toward metal ions. This paper presents the design and preparation of a novel magnetic Ti-IMAC nanocomposite, MNP@MPTMS–VPA–Ti(IV). The material is modified with phosphate groups via facile thiol-ene click chemistry and then immobilizes Ti4+, enabling selective enrichment of intact phosphoproteins through IMAC affinity. The efficiency of enrichment was evaluated using subsequent matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and analysis. This Ti-IMAC material-based magnetic solid-phase extraction (MSPE)-MALDI-TOF MS protocol has been successfully applied to enrich intact phosphoproteins in milk and eel mucus with high selectivity, sensitivity, and suitability. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

20 pages, 1623 KB  
Article
Evaluating the Feed Value of Sawdust as a Roughage Substitute for Ruminants: Implications Based on In Vitro, In Sacco and In Vivo Studies
by Seid Ali Yimam, Egil Prestløkken, Lars Martin Hval and Alemayehu Kidane
Agriculture 2026, 16(3), 288; https://doi.org/10.3390/agriculture16030288 - 23 Jan 2026
Viewed by 360
Abstract
Sawdust represents a locally available lignocellulosic resource that may complement ruminant diets during periods of forage shortage. This study evaluated the feeding value of birch (Betula pendula) sawdust subjected to physical and chemical processing using a stepwise experimental approach. Steam-exploded and fresh sawdust [...] Read more.
Sawdust represents a locally available lignocellulosic resource that may complement ruminant diets during periods of forage shortage. This study evaluated the feeding value of birch (Betula pendula) sawdust subjected to physical and chemical processing using a stepwise experimental approach. Steam-exploded and fresh sawdust were treated with 0, 4% ammonia, or 4% sodium hydroxide in a 2 × 3 factorial design and initially evaluated by in vitro gas production, dry matter digestibility, and fermentation pH. Based on these results, selected materials were further assessed for rumen dry matter and fiber degradation using the in sacco technique in cannulated dairy cows, with untreated and ammonia-treated wheat straw included for comparison. In addition, steam-exploded sawdust was compared with wheat straw and grass silage for in vivo digestibility in sheep. A pilot study also tested aspen (Populus tremula) sawdust in lactating cow diets. Steam explosion substantially reduced fiber fractions, particularly hemicellulose, and increased residual carbohydrates, resulting in higher gas production and in vitro digestibility compared with fresh sawdust (p < 0.05). Ammonia treatment markedly increased crude protein content, whereas sodium hydroxide primarily increased ash concentration. In sacco, steam-exploded birch showed similar or higher ruminal dry matter and neutral detergent fiber degradation compared with ammonia-treated wheat straw, while untreated fresh birch remained largely undegraded. In vivo, steam-exploded sawdust exhibited greater organic matter digestibility and net energy than untreated wheat straw but remained less digestible than grass silage (p < 0.0001). A pilot feeding test with lactating dairy cows demonstrated good acceptance of untreated aspen sawdust as a partial roughage substitute under non-standardized conditions. Overall, the results indicate that steam-exploded sawdust has potential as a complementary roughage source for ruminants when conventional forages are limited. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

27 pages, 8516 KB  
Article
Cell Supported Single Membrane Technique for the Treatment of Large Bone Defects: Depletion of CD8+ Cells Enhances Bone Healing Mechanisms During the Early Bone Healing Phase
by Marissa Penna-Martinez, Lia Klausner, Andreas Kammerer, Minhong Wang, Alexander Schaible, René Danilo Verboket, Christoph Nau, Ingo Marzi and Dirk Henrich
Cells 2026, 15(3), 215; https://doi.org/10.3390/cells15030215 - 23 Jan 2026
Viewed by 82
Abstract
Introduction: The one-step membrane technique, derived from the Masquelet induced membrane technique, uses human acellular dermal matrix (hADM) that is wrapped around the bone defect to bypass membrane induction, reducing treatment time. Pre-colonization of hADM with bone marrow cells (BMC), particularly after CD8 [...] Read more.
Introduction: The one-step membrane technique, derived from the Masquelet induced membrane technique, uses human acellular dermal matrix (hADM) that is wrapped around the bone defect to bypass membrane induction, reducing treatment time. Pre-colonization of hADM with bone marrow cells (BMC), particularly after CD8+ T cell depletion, enhances bone regeneration. This study examined how CD8+ T cell depletion alters the proteins accumulated in the hADM during early healing. Materials and Methods: Eighteen male Sprague-Dawley rats received 5 mm femoral defects filled with autologous bone chips and wrapped with hADM, hADM + BMC, or hADM + BMC-CD8. hADMs were recovered on days 3 and 7 (n = 3/group/timepoint), incubated ex vivo, and conditioned medium analyzed with a proteome profiler detecting 79 proteins. Results: The protein content of the hADM evolved dynamically. At day three, 41 proteins were detected, rising to 47 by day seven, with RGM-A, osteoprotegerin, LIF, IL-6, CCL20, and CCL17 emerging late, consistent with increased regenerative activity. CD8+ T cell depletion suppressed early inflammatory and pro-osteogenic mediators (e.g., CCL2, IGF-I, IL-1RA) while upregulating LIX. By day seven, regenerative mediators (CCL20, GDF-15, RGM-A) were enriched, whereas inflammatory factors (CCL21, IL-1a, WISP-1) declined. MMP-9, Galectin-1, and GDF-15 increased exclusively in the CD8-depleted group. Conclusions: The hADM protein content transitions from pro-inflammatory to pro-regenerative within one week after surgery. CD8+ T cell depletion accelerates this shift, highlighting hADM as a dynamic scaffold that contributes to the immune–regenerative crosstalk in bone healing. Full article
(This article belongs to the Special Issue New Advances in Tissue Engineering and Regeneration)
23 pages, 1163 KB  
Article
Agronomic and Nutritional Potential of Ryegrass (Lolium multiflorum Lam.) Accessions as Raw Material for Silage in the Tropical Andes of Peru
by Leidy G. Bobadilla, Miguel A. Altamirano-Tantalean, William Carrasco-Chilón, Vanesa Lizbeth Silva Baca, Flor L. Mejía, Ysai Paucar, Leandro Valqui, William Bardales, Jorge L. Maicelo and Héctor V. Vásquez
Agronomy 2026, 16(2), 275; https://doi.org/10.3390/agronomy16020275 - 22 Jan 2026
Viewed by 47
Abstract
In the tropical Andes, rangeland degradation has become one of the main threats to the sustainability of livestock production in the face of climate change. In this context, optimizing the yield and nutritional quality of raw material for silage is essential to sustain [...] Read more.
In the tropical Andes, rangeland degradation has become one of the main threats to the sustainability of livestock production in the face of climate change. In this context, optimizing the yield and nutritional quality of raw material for silage is essential to sustain livestock productivity. The aim of this study was to identify local accessions (LM) of Lolium multiflorum Lam. with greater forage potential through evaluations in consecutive cuts made at the anthesis phenological stage, using a randomized complete block design with four replicates and ten local accessions (LM1, LM2, LM3, LM4, LM6, LM7, LM8, LM11, LM12 and LM13). The statistical analysis, based on linear mixed models, showed that cuts at anthesis had a significant effect among accessions, revealing high variability in agronomic and nutritional performance across cuts. In LM4, plant height at the fourth cut was 2.48-fold higher than at the first cut. Likewise, LM4 and LM13 were identified as the latest accessions to reach anthesis in the first cut, with a decreasing trend across cuts and stabilization from the third cut onward. These accessions also showed the greatest basal coverage area, increasing 9.94- and 8.18-fold in the fourth cut relative to the first. Fresh forage yields in LM4 and LM13 increased 13.2- and 10.1-fold, and dry matter yields 13.98- and 9.86-fold, compared with the first cut. They also exhibited the highest average daily dry matter ac-cumulation rate. By contrast, the fresh forage and dry matter yields of the remaining accessions were significantly lower than those of LM4 and LM13. The main difference between these two accessions was observed in dry matter percentage, with higher values and a stable trend in LM4 across all cuts. In terms of nutritional quality, LM4 presented crude protein of 24.2% in the second cut and 24.0% in the fourth cut, while digestibility was 86.2% in the second cut and 85.0% in the fourth cut. In conclusion, although the ensiling process was not evaluated in this study, LM4 showed the most stable and outstanding values in both agronomic and nutritional performance, thus emerging as a promising accession for selection and use as raw material for silage production in the tropical Andes. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

10 pages, 1864 KB  
Article
Application of Phycocyanin Extracted from Cyanidioschyzon merolae in Luminescent Solar Concentrators
by Shang-Ping Ying, Han-Yi Fu, Bing-Mau Chen, You-Wei Liang and Yu-Kang Chang
Photonics 2026, 13(1), 103; https://doi.org/10.3390/photonics13010103 - 22 Jan 2026
Viewed by 81
Abstract
Building-integrated photovoltaics (BIPVs) enable the seamless incorporation of solar energy systems into architectural structures. Luminescent solar concentrators (LSCs) represent a technology that offers a promising route for semitransparent solar harvesting. In this study, phycocyanin, a bio-derived luminescent material extracted from the extremophilic red [...] Read more.
Building-integrated photovoltaics (BIPVs) enable the seamless incorporation of solar energy systems into architectural structures. Luminescent solar concentrators (LSCs) represent a technology that offers a promising route for semitransparent solar harvesting. In this study, phycocyanin, a bio-derived luminescent material extracted from the extremophilic red alga Cyanidioschyzon merolae, was used as the emissive layer in thin-film LSCs to achieve a sustainable BIPV system. This material exhibited high transparency, strong red fluorescence, and notable stability under illumination conditions, primarily attributable to its unique pigment–protein structure. Thin-film LSCs incorporating phycocyanin at various weight ratios were fabricated and evaluated under simulated sunlight conditions. These concentrators demonstrated efficient photon collection and maintained stable optical performance during solar exposure. Overall, these findings underscore the potential of phycocyanin derived from C. merolae as an eco-friendly and renewable alternative to conventional organic or synthetic luminophores, which can advance the development of sustainable and efficient LSC systems for next-generation BIPV applications. Full article
Show Figures

Figure 1

22 pages, 1861 KB  
Article
Differential Expression of S100A Genes in hDPSCs Following Stimulation with Two Hydraulic Calcium Silicate Cements: A Laboratory Investigation
by Holger Jungbluth, Diana Lalaouni, Jochen Winter, Søren Jepsen and Dominik Kraus
J. Funct. Biomater. 2026, 17(1), 55; https://doi.org/10.3390/jfb17010055 - 21 Jan 2026
Viewed by 97
Abstract
Hydraulic calcium silicate cements (HCSCs) are contemporary materials in vital pulp therapy (VPT) and regenerative endodontic therapy (RET) due to their favorable effects on pulpal and periodontal cells, including cell differentiation and hard tissue formation. Recent studies also indicated the involvement of several [...] Read more.
Hydraulic calcium silicate cements (HCSCs) are contemporary materials in vital pulp therapy (VPT) and regenerative endodontic therapy (RET) due to their favorable effects on pulpal and periodontal cells, including cell differentiation and hard tissue formation. Recent studies also indicated the involvement of several S100A proteins in inflammatory, differentiation, and mineralization processes of the pulp. The aim of the present study was to investigate the effects of HCSCs on S100A gene expression in human dental pulp stem cells (hDPSCs). Human DPSCs were isolated and characterized by multi-lineage stem-cell markers and differentiation protocols. In stimulation experiments hDPSCs were exposed to ProRoot®MTA, Biodentine®, IL-1β, and dexamethasone. Cell viability was determined by XTT assay. IL-6 and IL-8 mRNA expression was measured to analyze proinflammatory response. In addition, odontogenic differentiation and biomineralization assays were conducted (DSPP- and ALP-mRNA expression, ALP activity, and Alizarin Red staining). Differential expression of 13 S100A genes was examined using qPCR. Low concentrations of HCSCs enhanced the proliferation of hDPSCs, whereas higher concentrations exhibited cytotoxic effects. HCSCs induced a pro-inflammatory response and led to odontogenic differentiation and biomineralization. This was accompanied by significant alterations in the expression levels of various S100A genes. ProRoot®MTA and Biodentine® significantly affect the expression of several S100A genes in hDPSCs, supporting their role in inflammation, differentiation, and mineralization. These findings indicate a link between the effects of HCSCs on human pulp cells during VPT or RET and S100A proteins. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

13 pages, 607 KB  
Article
Phospholipid Profiling: A Computationally Assisted LC-HRMS Approach in Lecithin
by Ana Šijanec and Matevž Pompe
Separations 2026, 13(1), 40; https://doi.org/10.3390/separations13010040 - 21 Jan 2026
Viewed by 41
Abstract
The use of lecithin as an emulsifier in food supplements has increased in recent years. However, successful formation of liposomes or micelles requires an appropriate mixture of phospholipids in lecithin. To evaluate the emulsification properties of lecithin for food supplements, a reliable analytical [...] Read more.
The use of lecithin as an emulsifier in food supplements has increased in recent years. However, successful formation of liposomes or micelles requires an appropriate mixture of phospholipids in lecithin. To evaluate the emulsification properties of lecithin for food supplements, a reliable analytical procedure for characterizing phospholipids is necessary. A liquid chromatography–mass spectrometry method was developed to identify phospholipids in lecithin without standard reference materials. For efficient separation of phospholipids before mass spectrometric analysis, a reverse-phase high-performance liquid chromatography method was optimized using a Waters XBridge Protein BEH C4 column. The optimized chromatographic method demonstrated good linearity and precision. Molecular ions were detected in full scan mode to determine accurate mass-to-charge ratios for individual peaks in the chromatogram. A custom Python program was then used to generate a list of possible phospholipid species for each peak based on the measured mass-to-charge ratios. Tandem mass spectrometry was performed to confirm the identity of specific phospholipids by comparing experimental fragmentation patterns with theoretical predictions. Identification of the phospholipids was also confirmed with four commercially available standard reference compounds, demonstrating the reliability of the proposed approach. The developed method offers a practical and cost-effective strategy for identifying phospholipids in complex matrices, especially when standard reference compounds are unavailable. Additionally, it enables targeted selection of standard compounds for future quantitative analyses, making it a valuable tool for comprehensive lipid profiling. Full article
Show Figures

Graphical abstract

21 pages, 2171 KB  
Article
Production of Gluten-Free Craft Beers of High Antioxidant and Sensory Quality
by Antonietta Baiano, Teresa De Pilli and Anna Fiore
Foods 2026, 15(2), 379; https://doi.org/10.3390/foods15020379 - 21 Jan 2026
Viewed by 202
Abstract
Usually, gluten-free “beers” are produced by replacing cereals containing gluten with substitutes that do not contain it or, alternatively, through enzymatic, precipitation, and/or clarification steps. The research was aimed at increasing the concentration of antioxidant compounds and improving the sensory quality of gluten-free [...] Read more.
Usually, gluten-free “beers” are produced by replacing cereals containing gluten with substitutes that do not contain it or, alternatively, through enzymatic, precipitation, and/or clarification steps. The research was aimed at increasing the concentration of antioxidant compounds and improving the sensory quality of gluten-free craft beers produced from gluten-containing raw materials according to a patented brewing method that represented the starting point of the research. The experiments were organized to evaluate the effects of original combinations of four brewing procedures (Strong, Light, Very Light, Ultra-Light—differing from each other by grains/water ratio, hops/water ratio, protein rest, and boiling time), three yeast strains (M21, K97, S33), and a possible dry hopping. The beer gluten contents ranged from <5 to 13.90 mg/L. The maximum total phenolic content (200 mg/L) was detected in beers produced by combining the Light procedure, inoculation with M21 strain, and dry hopping. The highest overall sensory quality scores (4.0) were assigned to the beers obtained through the Light and Ultra-Light procedures, fermented by M21 and S33 strains, and dry hopped. Dry hopping was the main factor capable of differentiating the beers, increasing antioxidant content and improving perlage, foam characteristics, the intensity of many olfactory and gustatory characteristics, and the overall sensory quality. The brewing procedure affected all the physico-chemical indices and most sensory characteristics, except for color, citrous and spicy flavors, sweetness, effervescence, and body. The use of different yeasts did not impart significant differences for most of the variables considered. Full article
Show Figures

Graphical abstract

21 pages, 3425 KB  
Article
Enhanced Cell Adhesion on Biofunctionalized Ti6Al4V Alloy: Immobilization of Proteins and Biomass from Spirulina platensis Microalgae
by Maria Fernanda Hart Orozco, Rosalia Seña, Lily Margareth Arrieta Payares, Alex A. Saez, Arturo Gonzalez-Quiroga and Virginia Paredes
Int. J. Mol. Sci. 2026, 27(2), 1041; https://doi.org/10.3390/ijms27021041 - 20 Jan 2026
Viewed by 272
Abstract
Titanium (Ti) and its alloys are widely used in biomedical applications due to their biocompatibility and corrosion resistance; however, surface modifications are required to enhance biological functionality. Surface functionalization using natural biomolecules has emerged as a promising strategy to improve early cell–surface interactions [...] Read more.
Titanium (Ti) and its alloys are widely used in biomedical applications due to their biocompatibility and corrosion resistance; however, surface modifications are required to enhance biological functionality. Surface functionalization using natural biomolecules has emerged as a promising strategy to improve early cell–surface interactions and biocompatibility of implant materials. In this study, Ti6Al4V alloy surfaces were biofunctionalized using Spirulina platensis (S. platensis) biomass and protein extract to evaluate morphological, chemical, and biological effects. The functionalization process involved activation with piranha solution, silanization with 3-aminopropyltriethoxysilane (APTES), and subsequent biomolecule immobilization. Surface characterization by scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) confirmed the successful incorporation of microalgal components, including nitrogen-, phosphorus-, and oxygen-rich organic groups. Biomass-functionalized surfaces exhibited higher phosphorus and oxygen content, while protein-coated surfaces showed nitrogen-enrich chemical signatures, reflecting the distinct molecular compositions of the immobilized biomolecules. Cell adhesion assays demonstrated enhanced early cell attachment on biofunctionalized surfaces, particularly in samples functionalized with 5 g/L biomass for three hours, which showed significantly greater cell attachment than both the control and protein-treated samples. These findings highlight the complementary yet distinct roles of S. platensis biomass and protein extract in modulating surface chemistry and cell–material interactions, emphasizing the importance of tailoring biofunctionalization strategies to optimize early biological responses on titanium-based implants. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

Back to TopTop