Innovative Analytical Strategies Based on Mass Spectrometry in Food Analysis

A special issue of Separations (ISSN 2297-8739). This special issue belongs to the section "Analysis of Food and Beverages".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 524

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry and Chemical Technologies, Università della Calabria, Via Pietro Bucci, 87036 Arcavacata CS, Italy
Interests: mass spectrometry; separation science; analytical methods; biomolecules; food quality and safety
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore the cutting-edge applications of mass spectrometry (MS) in food analysis. By exploiting highly sensitive and specific techniques such as mass spectrometry, also coupled with chromatographic separation systems, researchers are revolutionising our understanding of food quality, safety, and authenticity. This Issue intends to delve into the investigation of molecular profiles and bioactive compounds in food matrices. In particular, it is dedicated to the quantification of specific analytes related to the quality and authenticity of food, the characterisation of novel markers, the use of targeted and untargeted approaches to monitor quality and authenticate food origins, as well as the detection of adulteration and the monitoring of contaminants and allergens to ensure food safety. This Special Issue aims to highlight the transformative impact of MS on the future of food analysis, providing valuable insights for researchers, practitioners, and regulators.

Dr. Lucia Bartella
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Separations is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • analytical methods
  • mass spectrometry
  • chromatography
  • bioactive compounds
  • contaminants
  • targeted analysis
  • untargeted analysis
  • food
  • vegetables
  • beverages

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1369 KiB  
Article
Optimized Ethyl Chloroformate Derivatization Using a Box–Behnken Design for Gas Chromatography–Mass Spectrometry Quantification of Gallic Acid in Wine
by Sofia Botta, Roberta Piacentini, Chiara Cappelletti, Alessio Incocciati, Alberto Boffi, Alessandra Bonamore and Alberto Macone
Separations 2025, 12(7), 183; https://doi.org/10.3390/separations12070183 - 9 Jul 2025
Viewed by 345
Abstract
Gallic acid, a major phenolic compound in wine, significantly influences its sensory profile and health-related properties, making its accurate measurement essential for both enological and nutritional studies. In this context, a derivatization protocol for gallic acid using ethyl chloroformate (ECF) was developed and [...] Read more.
Gallic acid, a major phenolic compound in wine, significantly influences its sensory profile and health-related properties, making its accurate measurement essential for both enological and nutritional studies. In this context, a derivatization protocol for gallic acid using ethyl chloroformate (ECF) was developed and optimized for GC-MS analysis, with experimental conditions refined through a Box–Behnken Design (BBD). The BBD systematically investigated the effects of three critical reagent volumes: ethyl chloroformate, pyridine, and ethanol. This approach elucidated complex interactions and quadratic effects, leading to a predictive second-order polynomial model and identifying the optimal derivatization conditions for maximum yield (137 µL of ethyl chloroformate, 51 µL of pyridine, and 161 µL of ethanol per 150 µL of wine). The BBD-optimized GC-MS method was validated and successfully applied to quantify gallic acid in diverse commercial wine samples (white, red, conventional, natural). A key finding was the method’s wide dynamic range, enabling accurate quantification from 5 up to over 600 µg/mL without sample dilution. This work represents, to our knowledge, the first application of a BBD for optimizing the ethyl chloroformate derivatization of gallic acid, providing a robust, efficient, and widely applicable analytical tool for routine quality control and enological research. Full article
Show Figures

Graphical abstract

Back to TopTop