Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (623)

Search Parameters:
Keywords = protein elasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8159 KB  
Article
Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism
by Xiaoting Chen, Shiqing Zhuo, Nan Pan, Yongchang Su, Zhiyu Liu and Jingna Wu
Foods 2025, 14(17), 3014; https://doi.org/10.3390/foods14173014 - 28 Aug 2025
Abstract
To develop highly nutritious Bangia fusco-purpurea (BFP) vegan sausages, we investigated the effects of BFP, gluten, and xanthan gum–konjac gum–carrageenan complex gel (CG) on the gel strength and sensory quality of the sausages. The formulation process was optimized through single-factor and orthogonal tests, [...] Read more.
To develop highly nutritious Bangia fusco-purpurea (BFP) vegan sausages, we investigated the effects of BFP, gluten, and xanthan gum–konjac gum–carrageenan complex gel (CG) on the gel strength and sensory quality of the sausages. The formulation process was optimized through single-factor and orthogonal tests, whereas the gel formation mechanism of the key factors was explored. The orthogonal test results showed that the optimal addition levels of BFP, gluten, and CG were 5%, 56%, and 37%, respectively. Variance analysis revealed that both gluten and CG significantly affected gel strength (p < 0.05), with gluten notably influencing the overall sensory quality (p < 0.05). Texture profile analysis (TPA) and rheological properties demonstrated that as gluten (33–37%) and CG (52–56%) concentrations increased, the gel strength and elastic modulus exhibited concentration-dependent enhancement. Further analysis of the sulfhydryl content, disulfide bonds, surface hydrophobicity, and microstructure revealed that higher gluten content promoted intermolecular disulfide crosslinking and hydrophobic group exposure, whereas CG contributed to physical filling via hydrogen and ionic bonds, resulting in a uniform and dense gel network structure. The synergistic effects of gluten and CG enhanced the gel properties of BFP vegan sausages, providing a theoretical foundation for the development of high-quality plant protein-based meat alternatives. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

28 pages, 2260 KB  
Article
Automated Spectral Preprocessing via Bayesian Optimization for Chemometric Analysis of Milk Constituents
by Habeeb Abolaji Babatunde, Owen M. McDougal and Timothy Andersen
Foods 2025, 14(17), 2996; https://doi.org/10.3390/foods14172996 - 27 Aug 2025
Abstract
The preprocessing of infrared spectra can significantly improve predictive accuracy for protein, carbohydrate, lipid, or other nutrition components, yet optimal preprocessing selection is typically empirical, tedious, and dataset specific. This study introduces a Bayesian optimization-based framework designed for the automated selection of optimal [...] Read more.
The preprocessing of infrared spectra can significantly improve predictive accuracy for protein, carbohydrate, lipid, or other nutrition components, yet optimal preprocessing selection is typically empirical, tedious, and dataset specific. This study introduces a Bayesian optimization-based framework designed for the automated selection of optimal spectral preprocessing pipelines within a chemometric modeling context. The framework was applied to mid-infrared spectra of milk to predict compositional parameters for fat, protein, lactose, and total solids. A total of 385 averaged spectra corresponding to 198 unique samples was split into a 70/30 ratio (training/test) using a group-aware Kennard-Stone algorithm, resulting in 269 averaged spectra (135 unique samples) for training and 116 spectra (58 unique samples) for testing. Six regression models: Elastic Net, Gradient Boosting Machines (GBM), Partial Least Squares (PLS), RidgeCV Regression, LassoLarsCV, and Support Vector Regression (SVR) were evaluated across three preprocessing conditions: (1) no preprocessing, (2) literature-derived custom preprocessing (e.g., MSC, SNV, and first and second derivatives), and (3) optimized preprocessing via the proposed Bayesian framework. Optimized preprocessing consistently outperformed other methods, with RidgeCV achieving the best performance for all components except lactose, where PLS slightly outperformed it. Improvements in predictive accuracy, particularly in terms of RMSEP were observed across all milk components. The best RMSEP results were achieved for protein (RMSEP = 0.054, R2=0.981) and lactose (RMSEP = 0.026, R2=0.917), followed by fat (RMSEP = 0.139, R2=0.926) and total solids (RMSEP = 0.154, R2=0.960). Literature-based pipelines demonstrated inconsistent effectiveness, highlighting the limitations of transferring preprocessing methods between datasets. The Bayesian optimization approach identified relatively simple yet highly effective preprocessing pipelines, typically involving few steps. By eliminating manual trial and error, this data-driven strategy offers a robust and generalizable solution that streamlines spectral modeling in dairy analysis and can be readily applied to other types of spectroscopic data across various domains. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

14 pages, 1022 KB  
Review
Effects of Cytokines (or Activating Factors) on Arterial Endothelial Cells
by Leon M. T. Dicks
Int. J. Mol. Sci. 2025, 26(17), 8142; https://doi.org/10.3390/ijms26178142 - 22 Aug 2025
Viewed by 135
Abstract
The internal mammary arteries (IMAs) and coronary arteries share many common characteristics. The inner layer (tunica intima, or intima) of both arteries is lined with a smooth, longitudinally orientated monolayer of endothelial cells (ECs), connective tissue, and an internal elastic lamina that separates [...] Read more.
The internal mammary arteries (IMAs) and coronary arteries share many common characteristics. The inner layer (tunica intima, or intima) of both arteries is lined with a smooth, longitudinally orientated monolayer of endothelial cells (ECs), connective tissue, and an internal elastic lamina that separates the tunica intima from the tunica media (middle layer). The intima of IMAs is lined with an additional protective layer, the neointima, containing vascular smooth muscle cells (VSMCs). The neointima, located between the intima and internal elastic lamina, protects IMAs from damage by assisting in the remodeling of VSMCs. Coarse longitudinal folds in the internal elastic lamina of IMAs partially prevent the infiltration of VSMCs into damaged IMAs, and intimal thickening is thus less likely to occur. Inflamed IMAs resist the migration of monocytes across the endothelial layer and prevent the formation of lipid-rich macrophages (foam cells) within the subintimal or medial layers of arteries. IMAs are thus less likely to form plaques and develop atherosclerosis (AS). Higher levels of prostacyclin (PGI2) in IMAs prevent blood clotting. The anti-thrombotic agents, and production of tumor necrosis factor α (TNF-α), interferon-γ (INF-γ), and visfatin render IMAs more resistant to inflammation. An increase in the production of nitric oxide (NO) by ECs of IMAs may be due to small ubiquitin-like modifier (SUMO) proteins that alter the nuclear factor kappa B (NF-κB) and TLR pathways. The production of reactive oxygen species (ROS) in IMAs is suppressed due to the inhibition of NADPH oxidase (NOX) by a pigment epithelium-derived factor (PEDF), which is a serine protease inhibitor (SERPIN). In this review, a comparison is drawn between the anatomy of IMAs and coronary arteries, with an emphasis on how ECs of IMAs react to immunological changes, rendering them more suited for coronary artery bypass grafts (CABGs). This narrative review covers the most recent findings published in PubMed and Crossref databases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 1318 KB  
Article
Bioprotective Potential of Lactic Acid Bacteria in Pickled Pepper Rabbit Meat During Refrigerated Storage
by Jiamin Liang, Bo Wang, Jiamin Zhang, Ting Bai, Zhenguo Zhong and Zhonghua Tang
Foods 2025, 14(16), 2918; https://doi.org/10.3390/foods14162918 - 21 Aug 2025
Viewed by 178
Abstract
The impacts of Lactilactilactobacillus sakei (LS), Pediococcus acidilactici (PA), and Latilactobacillus curvatus (LC) on quality properties, protein and lipid oxidation, and microbial dynamics of pickled pepper rabbit meat during refrigerated storage (4 °C for 1, 3, 5, and 7 days) were investigated. The [...] Read more.
The impacts of Lactilactilactobacillus sakei (LS), Pediococcus acidilactici (PA), and Latilactobacillus curvatus (LC) on quality properties, protein and lipid oxidation, and microbial dynamics of pickled pepper rabbit meat during refrigerated storage (4 °C for 1, 3, 5, and 7 days) were investigated. The results showed that the addition of lactic acid bacteria bioprotective agents effectively reduced the pH of pickled pepper rabbit meat, inhibited protein and lipid oxidation, suppressed the growth and proliferation of spoilage bacteria, and maintained favorable textural characteristics. Among the tested strains, Latilactobacillus curvatus exhibited the most significant preservation effects throughout the storage period. On day 7 of storage, the TBARS value of the LC group was 20.60% lower than that of the LS group and 14.68% lower than that of the PA group. Similarly, the total carbonyl content was 12.30% lower than the LS group and 6.21% lower than the PA group, while the total sulfhydryl content was 20.81% and 10.12% higher, respectively. Additionally, the TVB-N value was 11.91% lower than the LS group and 4.37% lower than the PA group. Additionally, the Latilactobacillus curvatus group maintained a lower pH, superior elasticity, chewiness, and cohesiveness, while effectively inhibiting spoilage bacterial growth and proliferation. In conclusion, Latilactobacillus curvatus was the most effective bioprotective agent for preserving the storage characteristics of pickled pepper rabbit meat. Full article
(This article belongs to the Special Issue Safety and Quality Control in Meat Processing)
Show Figures

Figure 1

27 pages, 1408 KB  
Article
Physico-Chemical and Sensory Characteristics of Extruded Cereal Composite Flour Porridge Enriched with House Crickets (Acheta domesticus)
by Tom Bbosa, Dorothy Nakimbugwe, Christophe Matthys, Jolien Devaere, Ann De Winne, Deniz Zeynel Gunes and Mik Van Der Borght
Foods 2025, 14(16), 2893; https://doi.org/10.3390/foods14162893 - 20 Aug 2025
Viewed by 338
Abstract
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, [...] Read more.
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, and 25.0% millet were compared to a control formulation with 73.0% maize and 27.0% millet, both extruded at 140 °C. Cricket enrichment slightly reduced lightness L* (59.99 vs. 61.28) and significantly increased aroma intensity (23,450 × 104 AU vs. 18,210 × 104 AU; p < 0.05), attributable to higher extrusion-induced Strecker degradation, Maillard reaction, and lipid oxidation. Rheological analysis revealed that paste made from cricket-enriched flour had lower critical strain (≈0.01%) and softened sooner than the control paste (≈0.03%) without becoming fragile. Both flours displayed stable paste-like behavior at stresses >10 Pa, with elastic moduli under 104 Pa, which is typical for soft pastes. Reduced pasting values relative to native flours are attributable to starch pre-gelatinization during extrusion. Sensory evaluation showed positive hedonic ratings for both porridges, and a choice test indicated no significant consumer preference. Generally, physico-chemical and sensory changes were minimal, supporting the use of house crickets for nutrient enrichment of composite cereal porridges. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

19 pages, 5164 KB  
Article
Comparative Analysis of Roller Milling Strategies on Wheat Flour Physicochemical Properties and Their Implications for Microwave Freeze-Dried Instant Noodles
by Junliang Chen, Peijie Zhang, Linlin Li, Tongxiang Yang, Weiwei Cao, Wenchao Liu, Xu Duan and Guangyue Ren
Foods 2025, 14(16), 2885; https://doi.org/10.3390/foods14162885 - 20 Aug 2025
Viewed by 321
Abstract
The milling process is a critical technological step that regulates wheat flour characteristics and ultimately determines end-product quality. This study systematically evaluated the effects of three key milling parameter adjustments in a laboratory-scale roller mill—double sifting (2S), double break milling (2BM), and increased [...] Read more.
The milling process is a critical technological step that regulates wheat flour characteristics and ultimately determines end-product quality. This study systematically evaluated the effects of three key milling parameter adjustments in a laboratory-scale roller mill—double sifting (2S), double break milling (2BM), and increased roll gap (IRG)—on the physicochemical properties of wheat flour and the quality of microwave freeze-dried non-fried instant noodles. The results demonstrated that milling processes significantly influenced the particle size and composition of flour. The 2BM-IRG process increased the volume mean diameter of flour to 86.38 μm, while significantly improving flour extraction rate (69.80%), protein content (10.98%), and ash content (0.54%). In contrast, the 2S process significantly reduced the volume mean diameter (65.27 μm). These changes in flour properties directly affected noodle quality—noodles made from 2BM-IRG flour exhibited the highest rehydration ratio but also the greatest cooking loss, along with the lowest expected glycaemic index (eGI); noodles produced from 2S flour showed the highest hardness, while the 2BM process endowed noodles with superior elasticity. A correlation analysis revealed that the digestibility characteristics of noodles (eGI) were predominantly and significantly influenced by flour protein and ash content (p < 0.01), while also being significantly affected by particle size (p < 0.05). The study confirmed distinct quality trade-offs between different milling strategies. Therefore, by optimizing combinations of break milling and sifting processes, it is possible to develop specialized flour tailored for specific quality requirements. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 778 KB  
Article
Fortification of Durum Wheat Pasta with Nut Oil Cake: Effects on Nutritional and Technological Properties
by Dorota Gałkowska, Karolina Pycia and Anastasiia Krykhta
Molecules 2025, 30(16), 3411; https://doi.org/10.3390/molecules30163411 - 18 Aug 2025
Viewed by 459
Abstract
The study aimed to produce semolina pasta enriched with walnut or hazelnut oil cake and to investigate its nutritional and technological properties. The pasta was prepared by substituting 10% of semolina with walnut or hazelnut oil cakes. The chemical composition, antioxidant properties, and [...] Read more.
The study aimed to produce semolina pasta enriched with walnut or hazelnut oil cake and to investigate its nutritional and technological properties. The pasta was prepared by substituting 10% of semolina with walnut or hazelnut oil cakes. The chemical composition, antioxidant properties, and culinary characteristics of the pasta were determined. Additionally, the texture and color of uncooked and cooked pasta were examined using instrumental techniques. The enriched pastas showed higher protein, fat, ash, and dietary fiber contents compared to standard pasta (SP). Walnut oil cake pasta (WOCP) had the highest protein content, amounting to 15.8 g/100 g dry weight (d.w.), while hazelnut oil cake pasta (HOCP) had the highest dietary fiber content (6.75 g/100 g d.w.). Moreover, the enriched pastas showed significantly higher antioxidant potential and total phenolic content, both before and after cooking. The total phenolic content (TPC) of cooked pasta ranged from 88.85 mg GAE/100 g d.w. (SP) to 145.48 mg GAE/100 g d.w. (WOCP). Compared to SP, the developed pastas required cooking times of 2–3 min longer and showed higher water absorption, accompanied by increased cooking losses. They were characterized by a specific, dark color and showed reduced hardness and lower elasticity after cooking compared to SP. Pasting properties further suggested that starch swelling was restricted by the nut oil cakes. Overall, incorporating walnut and hazelnut oil cakes enhanced the nutritional profile and imparted notable health-promoting attributes to the pasta, underscoring the potential of these by-products as functional ingredients in pasta formulations. Full article
Show Figures

Figure 1

19 pages, 1899 KB  
Article
Effects of the Ratio of Alaskan Pollock Surimi to Wheat Flour on the Quality Characteristics and Protein Interactions of Innovative Extruded Surimi–Flour Blends
by Xinru Fan, Xinyue Zhang, Yingying Zhou, Maodong Song, Meng Li, Soottawat Benjakul, Zhibo Li and Qiancheng Zhao
Foods 2025, 14(16), 2851; https://doi.org/10.3390/foods14162851 - 17 Aug 2025
Viewed by 404
Abstract
Snack foods (e.g., extruded flour-based products) are widely favored by consumers because of their convenience, affordability, and time-saving attributes. However, with the growing demand for high-quality snacks, several challenges have emerged that hinder industry development, such as relatively underdeveloped industrial standards, limited raw [...] Read more.
Snack foods (e.g., extruded flour-based products) are widely favored by consumers because of their convenience, affordability, and time-saving attributes. However, with the growing demand for high-quality snacks, several challenges have emerged that hinder industry development, such as relatively underdeveloped industrial standards, limited raw material diversity (primarily starch and soy protein), and, consequently, insufficient nutritional value. In this study, a novel type of puffed snack was developed using Alaskan pollock surimi and wheat flour using extrusion puffing technology. The effects of varying ratios of surimi to wheat flour (0:10, 1:9, 2:8, 3:7, and 4:6, which served as SFBC, SFB1, SFB2, SFB3, and SFB4, respectively), on the physicochemical properties, apparent morphology, microstructure, thermal stability, and protein structure of spicy strips were systematically investigated, and the interaction between extruded protein and flour mixtures was analyzed. The results indicated that increasing the proportion of surimi led to decreases in hardness, elasticity, and chewiness, whereas the moisture content and water solubility index increased. The maximum expansion rate (202.2%) was observed in the SFB1 sample. Morphological and microstructural observations further revealed that a higher surimi content resulted in a denser internal structure and a reduced degree of puffing. The protein distribution was relatively uniform, with large pores. Moreover, increased surimi content increased the proportion of immobilized water and improved the thermal stability. These findings provide valuable insights into starch–protein-complex-based extrusion puffing technologies and contribute to the development of innovative surimi-based puffed food products. Full article
Show Figures

Figure 1

14 pages, 1159 KB  
Article
Using Fish Skin Gelatin Hydrolysate as Stabilizer and/or Emulsifier Agent in Ice Cream Production and Melting, Textural, Rheological, and Sensory Characteristics
by Sefik Tekle, Hamza Goktas, Cansu Agan, Aysen Develioglu-Arslan and Zeynep Hazal Tekin-Cakmak
Gels 2025, 11(8), 643; https://doi.org/10.3390/gels11080643 - 14 Aug 2025
Viewed by 251
Abstract
The increasing global interest in fish consumption leads to a greater generation of fish waste. Fish waste, rich in nutrients such as protein, bioactive compounds, and vitamins, is attracting growing attention for its potential applications in food. In this study, gelatin hydrolysate obtained [...] Read more.
The increasing global interest in fish consumption leads to a greater generation of fish waste. Fish waste, rich in nutrients such as protein, bioactive compounds, and vitamins, is attracting growing attention for its potential applications in food. In this study, gelatin hydrolysate obtained from fish skin waste was utilized as a stabilizer and/or emulsifier in ice cream production. It was found that gelatin hydrolysate significantly increased the protein content of the ice cream samples. The K and n values in different ice cream compositions varied between 0.009 and 1.012 Pa.sn and 0.356 and 0.863, respectively. The consistency coefficients of samples D1 (sahlep and mono-diglyceride) and D3 (sahlep and gelatin hydrolysate) were almost the same, indicating that the mono-diglyceride was replaced by an equivalent amount of gelatin hydrolysate. All the ice cream mixtures tested showed non-Newtonian, pseudoplastic flow, as indicated by their n values being less than 1. All mixtures demonstrated greater elasticity than viscosity, as their storage modulus (G′) was higher than their loss modulus (G″). In the third interval of 3-ITT, all ice cream mixtures displayed thixotropic behavior, indicating that their viscoelastic properties could be restored after a sudden deformation. The overrun levels of the samples ranged from 9.55% to 21.74%; the use of gelatin hydrolysate resulted in a statistically significant increase (p < 0.05). The highest hardness and stickiness values in the samples were determined in the specific sample containing equal amounts of emulsifier, stabilizer, and gelatin hydrolysate. Furthermore, gelatin hydrolysate prolonged the first dripping time and melting rate of the samples. Full article
(This article belongs to the Special Issue Recent Developments in Food Gels (2nd Edition))
Show Figures

Graphical abstract

21 pages, 1786 KB  
Review
Aortic Stiffness and Alzheimer’s Disease: The Medin Connection
by Filippos Triposkiadis, Andrew Xanthopoulos, Harisios Boudoulas and Dirk L. Brutsaert
Biomolecules 2025, 15(8), 1148; https://doi.org/10.3390/biom15081148 - 8 Aug 2025
Viewed by 387
Abstract
Aging is associated with aortic stiffening (AoSt), a condition characterized by diminished aortic elasticity that predisposes individuals to cognitive decline, including Alzheimer’s disease (AD). Emerging evidence implicates medin, which is derived from milk fat globule-EGF factor 8 protein (MFG-E8), as a key link [...] Read more.
Aging is associated with aortic stiffening (AoSt), a condition characterized by diminished aortic elasticity that predisposes individuals to cognitive decline, including Alzheimer’s disease (AD). Emerging evidence implicates medin, which is derived from milk fat globule-EGF factor 8 protein (MFG-E8), as a key link between AoSt and AD. Medin aggregates into aortic medial amyloid (AMA), which is found in approximately 97% of Caucasian individuals aged 50 and above, contributing to vascular inflammation, calcification, and loss of arterial elasticity. These changes may promote hyperpulsatile cerebral blood flow and impair glymphatic clearance, resulting in increased deposition of neurotoxic proteins, such as amyloid-β (Aβ) and possibly medin, which colocalizes with vascular Aβ in the brain. Medin enhances Aβ aggregation, generating heterologous fibrils, and thereby contributes to cerebrovascular dysfunction and neuroinflammation. This interaction (cross-seeding) may deteriorate amyloid pathology in both the vasculature and the parenchyma in AD. Furthermore, medin per se causes endothelial dysfunction, increases oxidative stress, and activates glial cells, promoting the development of a pro-inflammatory environment that enhances cognitive decline. In this manuscript, we contend that medin might act as a bridge connecting the age-related increase in aortic stiffness to AD, and therefore, medin might present a novel therapeutic target within this context. This hypothesis deserves experimental and clinical validation. Full article
Show Figures

Figure 1

19 pages, 3771 KB  
Article
Effect of Carboxymethyl Konjac Glucomannan on the Gel Properties of Silver Carp Surimi: A Study on the Regulatory Mechanism of Substitution Degree
by Wenli Yan, Zhihan Ouyang, Xiaoying Luo, Rankun Xiao, Siqiao Liao, Fatang Jiang, Yonghui Li, Shanbai Xiong, Tao Yin and Xiangwei Zhu
Foods 2025, 14(15), 2715; https://doi.org/10.3390/foods14152715 - 1 Aug 2025
Viewed by 349
Abstract
Freshwater surimi typically exhibits poor gel-forming capability and is prone to gel deterioration, limiting its applications in food products. This study successfully prepared silver carp surimi gels with improved gel strength and water-holding capacity (WHC) using carboxymethyl konjac glucomannan (CKGM) as a functional [...] Read more.
Freshwater surimi typically exhibits poor gel-forming capability and is prone to gel deterioration, limiting its applications in food products. This study successfully prepared silver carp surimi gels with improved gel strength and water-holding capacity (WHC) using carboxymethyl konjac glucomannan (CKGM) as a functional modifier. Furthermore, the regulatory mechanism of CKGM with different degrees of substitution (DS) on the gel properties of silver carp surimi was systematically investigated. Results demonstrated that DS significantly influenced gel strength, WHC, and microstructure. CKGM (DS = 0.21%) substantially enhanced the gel strength and WHC through strengthened hydrophobic interactions and hydrogen-bond networks. However, CKGM with a higher DS (0.41%) induced a steric hindrance effect, decreasing elastic modulus and WHC and resulting in a more porous gel network. Raman spectroscopy analysis revealed that CKGM facilitated the conformational transition of myofibrillar proteins from α-helix to β-sheet, thereby improving the density of the gel network. The study provides theoretical foundations and technical guidance for the quality improvement of surimi products. Full article
(This article belongs to the Special Issue Food Proteins: Extraction, Functions and Applications)
Show Figures

Figure 1

24 pages, 4143 KB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 - 31 Jul 2025
Viewed by 381
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

15 pages, 2079 KB  
Article
Incorporation of Encapsulated Omega-3 in 3D-Printed Food Gels: A Study on Rheology, Extrusion, and Print Performance in Dual Ink Printing
by Adrián Matas-Gil, Francisco de-la-Haba, Marta Igual, Purificación García-Segovia and Javier Martínez-Monzó
Foods 2025, 14(15), 2681; https://doi.org/10.3390/foods14152681 - 30 Jul 2025
Viewed by 367
Abstract
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model [...] Read more.
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model food gel composed of gelatin and iota-carrageenan. Four formulations with varying concentrations of encapsulated omega-3 (0%, 3%, 3.75%, and 6%) were evaluated for their rheological, textural, and printability properties. Rheological analysis revealed a progressive increase in storage modulus (G′) from 1200 Pa (0%) to 2000 Pa (6%), indicating enhanced elastic behavior. Extrusion analysis showed a reduction in maximum extrusion force from 325 N (0%) to 250 N (6%), and an increase in buffer time from 390 s to 500 s. Print fidelity at time 0 showed minimal deviation in the checkerboard geometry (area deviation: −12%), while the concentric cylinder showed the highest stability over 60 min (height deviation: 9%). These findings highlight the potential of using encapsulated bioactive compounds in 3D food printing to develop functional foods with tailored nutritional and mechanical properties. Full article
Show Figures

Figure 1

16 pages, 2870 KB  
Article
Development and Characterization of Modified Biomass Carbon Microsphere Plugging Agent for Drilling Fluid Reservoir Protection
by Miao Dong
Processes 2025, 13(8), 2389; https://doi.org/10.3390/pr13082389 - 28 Jul 2025
Viewed by 444
Abstract
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified [...] Read more.
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified carbon microspheres were studied. Research indicates that after hydrothermal treatment, under the multi-level structural action of a small amount of proteins in corn stalks, the naturally occurring cellulose, polysaccharide organic compounds, and part of the ash in the stalks are adsorbed and encapsulated within the long-chain network structure formed by proteins and cellulose. By attaching silicate nanoparticles with certain rigidity from the ash to the relatively stable chair-type structure in cellulose, functional dense-structured carbon microspheres were ultimately prepared. These carbon microspheres could still effectively reduce fluid loss at 200 °C. The permeability recovery value of the cores treated with modified biomass carbon microspheres during flowback reached as high as 88%, which was much higher than that of the biomass itself. With the dense network-like chain structure supplemented by small-molecule aldehydes and silicate ash, the subsequent invasion of drilling fluid was successfully prevented, and a good sealing effect was maintained even under high-temperature and high-pressure conditions. Moreover, since this functional dense-structured carbon microsphere achieved sealing through a physical mechanism, it did not cause damage to the formation, showing a promising application prospect. Full article
Show Figures

Figure 1

16 pages, 2038 KB  
Article
Using Machine Learning to Detect Factors That Affect Homocysteine in Healthy Elderly Taiwanese Men
by Pei-Jhang Chiang, Chih-Wei Tsao, Yu-Cing Jhuo, Ta-Wei Chu, Dee Pei and Shi-Wen Kuo
Biomedicines 2025, 13(8), 1816; https://doi.org/10.3390/biomedicines13081816 - 24 Jul 2025
Viewed by 443
Abstract
Background: Homocysteine (Hcy) is a sulfur-containing amino acid crucial for various physiological processes, with elevated levels linked to cardiovascular and neurological adverse conditions. Various factors contribute to high Hcy, and past studies of impact factors relied on traditional statistical methods. Recently, machine [...] Read more.
Background: Homocysteine (Hcy) is a sulfur-containing amino acid crucial for various physiological processes, with elevated levels linked to cardiovascular and neurological adverse conditions. Various factors contribute to high Hcy, and past studies of impact factors relied on traditional statistical methods. Recently, machine learning (ML) techniques have greatly improved and are now widely applied in medical research. This study used four ML methods to identify key factors influencing Hcy in healthy elderly Taiwanese men, comparing their accuracy using multiple linear regression (MLR). The study seeks to improve Hcy prediction accuracy and provide insights into relevant impact factors. Methods: A total of 468 healthy elderly men were studied in terms of 33 parameters using four ML methods: random forest (RF), stochastic gradient boosting (SGB), eXtreme gradient boosting (XGBoost), and elastic net (EN). MLR served as a benchmark. Model performance was assessed using SMAPE, RAE, RRSE, and RMSE. Results: All ML methods demonstrated lower prediction errors than MLR, indicating higher accuracy. By averaging the importance scores from the four ML models, C-reactive protein (CRP) emerged as the leading impact factor for Hcy, followed by GPT, WBC, LDH, eGFR, and sport volume (SV). Conclusions: Machine learning methods outperformed MLR in predicting Hcy levels in healthy elderly Taiwanese men. CRP was identified as the most crucial factor, followed by GPT/ALT, WBC, LDH, and eGFR. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

Back to TopTop