Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of BFP Vegan Sausages
2.3. Design of Single-Factor and Orthogonal Experiments
2.4. Sensory Evaluation
2.5. Gel Strength Determination
2.6. Texture Profile Analysis (TPA)
2.7. Rheological Properties Determination
2.8. UV-Vis Spectral Analysis
2.9. Scanning Electron Microscopy (SEM)
2.10. Free Sulfhydryl (FS) Groups Determination
2.11. Protein Mass Concentration Determination
2.12. Total Sulfhydryl (TS) Groups and Disulfide Bonds (S-S Bonds) Determination
2.13. Surface Hydrophobicity (SH) Determination
2.14. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Single-Factor Experiment Results
3.2. Analysis of Orthogonal Experiment Results
3.3. Physicochemical Properties Analysis of Key Factors
3.3.1. Analysis of Free Sulfhydryl Groups, Total Sulfhydryl Groups, Disulfide Bonds, and Surface Hydrophobicity
3.3.2. Texture Profile Analysis
3.3.3. Microstructure Analysis
3.3.4. UV-Visible Spectroscopy Analysis
3.3.5. Dynamic Rheological Properties Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BFP | Bangia fusco-purpurea |
CG | Composite gel |
S-S | Disulfide bonds |
FS | Free sulfhydryl |
PBS | Phosphate-buffered saline |
SEM | Scanning electron microscopy |
SH | Surface hydrophobicity |
SPI | Soybean protein isolate |
TPA | Texture profile analysis |
TS | Total sulfhydryl |
References
- Takacs, B.; Stegemann, J.A.; Kalea, A.Z.; Borrion, A. Comparison of environmental impacts of individual meals-Does it really make a difference to choose plants-based meals instead of meat-based ones? J. Clean. Prod. 2022, 379, 134782. [Google Scholar] [CrossRef]
- Gürbüz, B.N.; Pastrana, L.M.; Pereira, R.N.; Cerqueira, M.A. Alternative Protein-Based Meat and Fish Analogs by Conventional and Novel Processing Technologies: A Systematic Review and Bibliometric Analysis. Foods 2025, 14, 498. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.M.; Chao, X.L.; Zheng, Y.J.; Hong, T.; Wu, W.J.; Zhu, Y.B.; Ni, H.; Jiang, Z.D. A polysaccharide from edible red seaweed Bangia fusco-purpurea prevents obesity in high-fat diet-induced C57BL/6 mice. Int. J. Biol. Macromol. 2024, 283, 137545. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.M.; Ouyang, H.; Hong, T.; Guo, X.M.; Wu, W.J.; Zhu, Y.B.; Ni, H.; Jiang, Z.D. Bangia fusco-purpurea polysaccharide with ultra-high pressure assisted extraction alleviates dyslipidemia in high-fat diet induced mice. Int. J. Biol. Macromol. 2025, 290, 138933. [Google Scholar] [CrossRef]
- Zheng, M.M.; Zheng, Y.J.; Zhang, Y.F.; Zhu, Y.B.; Yang, Y.F.; Oda, T.; Ni, H.; Jiang, Z.D. In vitro fermentation of Bangia fusco-purpurea polysaccharide by human gut microbiota and the protective effects of the resultant products on Caco-2 cells from lipopolysaccharide-induced injury. Int. J. Biol. Macromol. 2022, 222, 818–829. [Google Scholar] [CrossRef]
- Wu, J.N.; Chen, X.T.; Lu, H.X.; Su, J.; Lin, Y.Y.; Liu, Z.Y. Analysis and Evaluation of Nutritional Components in Bangia fusco-purpurea. J. Food Sci. Biotechnol. 2019, 38, 131–136. [Google Scholar] [CrossRef]
- Wei, T.; Pan, Q.; He, J.F.; Liu, J.H. Plant-based meat: The influence on texture by protein-polysaccharide interactions and processing techniques. Food Res. Int. 2025, 202, 115673. [Google Scholar] [CrossRef]
- Fan, J.; Yang, Y.; Li, Y.; Qin, X.; Zeng, Z.; Wang, H.; Liu, X. Deacetylation enhances the structure and gelation properties of konjac glucomannan/soy protein isolate cold-set gels. Int. J. Biol. Macromol. 2024, 283, 137459. [Google Scholar] [CrossRef]
- Lian, W.T.; Hu, Q.L.; Qu, M.; Sun, B.Y.; Liu, L.L.; Zhu, Y.; Xia, X.Y.; Huang, Y.Y.; Zhu, X.Q. Impact of insoluble dietary fiber and CaCl2 on structural properties of soybean protein isolate-wheat gluten composite gel. Foods 2023, 12, 1890. [Google Scholar] [CrossRef]
- Wang, S.S.; Chen, S.; Ding, L.D.; Zhang, Y.; He, J.X.; Li, B. Impact of konjac glucomannan with different molecular weight on retrogradation properties of pea starch. Gels 2022, 8, 651. [Google Scholar] [CrossRef]
- Wu, J.N.; Pan, N.; Chen, X.T.; Shan, D.B.; Shi, H.F.; Qiu, Y.S.; Liu, Z.Y.; Su, Y.C.; Weng, J.F. Comparative evaluation of physical characteristics and volatile flavor components of Bangia fusco-purpurea subjected to hot air drying and vacuum freeze-drying. Curr. Res. Food Sci. 2023, 7, 100624. [Google Scholar] [CrossRef]
- Liao, M.H.; Jin, R.T.; Ren, H.W.; Shang, J.Q.; Kang, J.X.; Xin, Q.Y.; Liu, N.; Li, M. Orthogonal experimental design for the optimization of four additives in a model liquid infant formula to improve its thermal stability. LWT 2022, 163, 113495. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, J.; Ma, H.; Yagoub, A.E.A.; Yu, X.; Owusu, J.; Ma, H.; Qin, X. Antioxidant peptides from corn gluten meal: Orthogonal experimental design evaluation. Food Chem. 2015, 187, 270–278. [Google Scholar] [CrossRef]
- Carhuancho-Colca, K.P.; Silva-Paz, R.J.; Elías-Peñafiel, C.; Salvá-Ruiz, B.K.; Encina-Zelada, C.R. Comparison of vegetarian Sausages: Proximal Composition, Instrumental Texture, Rapid Descriptive Sensory Method and Overall Consumer Liking. Foods 2024, 13, 1733. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Lv, Y.Y.; Yin, Y.M.; Zhao, H.L.; Li, X.P.; Yi, S.M.; Li, J.R. Improvement of the gel properties and flavor adsorption capacity of fish myosin upon yeast β-glucan incorporation. Food Chem. 2022, 397, 133766. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liang, Y.; Zhang, S.Y.; Yan, X.F.; Wang, J.Y.; Liu, M.; He, B.S.; Zhang, X.; Wang, J.S. Cooking mediated wheat gluten aggregation behavior: Physicochemical properties and component changes. Food Hydrocoll. 2023, 144, 108957. [Google Scholar] [CrossRef]
- Xing, H.R.; Liu, X.G.; Hu, Y.F.; Hu, K.L.; Chen, J.R. Effect of Lycium barbarum polysaccharides on heat-induced gelation of soy protein isolate. Food Hydrocoll. 2024, 147, 108957. [Google Scholar] [CrossRef]
- Zhang, H.M.; Xiong, Y.T.; Bakry, A.M.; Xiong, S.B.; Yin, T.; Zhang, B.J.; Huang, J.J.; Liu, Z.; Huang, Q. Effect of Yeast β-glucan on Gel Properties, Spatial Structure and Sensory Characteristics of silver carp Surimi. Food Hydrocoll. 2019, 88, 256–264. [Google Scholar] [CrossRef]
- Ma, X.; Yang, M.; He, Y.; Zhai, C.T.; Li, C.L. A review on the production, structure, bioactivities and applications of Tremella polysaccharides. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211000541. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Bandral, J.D.; Gani, A.; Shams, R. Food Hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. Int. J. Biol. Macromol. 2020, 165, 554–567. [Google Scholar] [CrossRef]
- Cropotova, J.; Tylewicz, U.; Cocci, E.; Romani, S.; Dalla Rosa, M. A novel fluorescence microscopy approach to estimate quality loss of stored fruit fillings as A result of browning. Food Chem. 2016, 194, 175–183. [Google Scholar] [CrossRef]
- Schopf, M.; Wehrli, M.C.; Becker, T.; Jekle, M.; Scherf, K.A. Fundamental characterization of wheat gluten. Eur. Food Res. Technol. 2021, 247, 985–997. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, D.D.; Li, M.; Wen, X.; Ni, Y. The interactions of soy protein and wheat gluten for the development of meat-like fibrous structure. Molecules 2023, 28, 7431. [Google Scholar] [CrossRef] [PubMed]
- Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Li, P.S.; Sun, Z.; Ma, M.H.; Jin, Y.G.; Sheng, L. Effect of microwave-assisted phosphorylation modification on the structural and foaming properties of egg white powder. LWT 2018, 97, 151–156. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H. Enhancing tilapia fish myosin solubility using proline in low ionic strength solution. Food Chem. 2020, 320, 126665. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Liu, C.H.; Lang, H.Y.; Hu, Z.D.; Wang, X.Y.; Yang, Z.R.; Wang, Z.J.; Guo, Z.W.; Jiang, L.Z. Effects of microwave on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Food Chem. X 2023, 19, 100861. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Wu, Y.Y.; Duan, W.S.; Zhang, Y.F.; Geng, F.; Song, H.B.; Huang, Q.; An, F.P. Mechanism of Effect of Heating Temperature on Functional Characteristics of Thick Egg White. LWT 2022, 154, 112807. [Google Scholar] [CrossRef]
- Li, J.M.; Nie, S.P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016, 53, 46–61. [Google Scholar] [CrossRef]
- Zou, Q.; Liu, Y.D.; Luo, L.L.; Chen, Y.Y.; Zheng, Y.H.; Ran, G.L.; Liu, D.Y. Screening of optimal konjac glucomannan-protein composite gel formulations to mimic the texture and appearance of tripe. Gels 2024, 10, 528. [Google Scholar] [CrossRef]
- Barbosa, M.C.; Silva, G.L.; Viana, E.B.M.; Bonomo, R.C.F.; Rodrigues, L.B.; Veloso, C.M. Effect of protein addition in properties of gels produced with jackfruit (Artocarpus integrifolia) seed starch: Rheological and texture properties. J. Food Sci. Technol. 2023, 60, 2916–2926. [Google Scholar] [CrossRef]
- Li, K.; Wang, L.M.; Cui, B.B.; Chen, B.; Zhao, D.B.; Bai, Y.H. Effect of vegetable oils on the thermal gel properties of PSE-like chicken breast meat protein isolate-based emulsion gels. Food Chem. 2024, 447, 138904. [Google Scholar] [CrossRef]
- Zou, Q.; Zheng, Y.H.; Liu, Y.D.; Luo, L.H.; Chen, Y.Y.; Ran, G.L.; Liu, D.Y. Preparation of cassia bean gum/soy protein isolate composite matrix emulsion gel and its effect on the stability of meat sausage. Gels 2024, 10, 643. [Google Scholar] [CrossRef]
- Abbas, M.S.; Xia, L.Z.; Li, Q.; Lu, Y.F.; Liu, S.K.; Lin, L.; Lu, J.F. Enhancing the quality of low-salt silver carp (Hypophthalmichthys molitrix) surimi gel using psyllium husk powder: An orthogonal experimental approach. Gels 2024, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, N.; Chen, X.; Wu, Z.A.; Zhong, W.Y.; Yu, D.Y.; Zhang, H.W. Effects of moderate electric field on the structural properties and aggregation characteristics of soybean protein isolate. Food Hydrocoll. 2022, 133, 107911. [Google Scholar] [CrossRef]
- Wang, F.Q.; Gu, X.L.; Lü, M.S.; Huang, Y.Y.; Zhu, Y.; Sun, Y.; Zhu, X.Q. Structural analysis and study of gel properties of thermally induced soybean isolate-potato protein gel system. Foods 2022, 11, 3562. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Huang, Y.Y.; Zhu, X.Q.; Guo, R.Q.; Wang, Z.H.; Lei, W.H.; Xia, X.Y. Investigation of the Effect and Mechanism of nanocellulose on Soy Protein Isolate– Konjac glucomannan Composite Hydrogel System. Int. J. Biol. Macromol. 2024, 254, 127943. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.X.; Wen, P.P.; Xu, J.G.; Xu, H.Q.; Cui, G.Y.; Wang, J. Effect of high-intensity ultrasound pretreatment on the properties of the transglutaminase (TGase)-induced β-conglycinin (7S) gel. Foods 2023, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.T.; Long, W.M.; Zhang, T.H.; Dong, Z.Y.; Yan, J.X. Application of xanthan gum and konjac Gum to Improve the Texture, Rheological Properties and microstructure of Oviductus Ranae gel. Int. J. Biol. Macromol. 2022, 222, 2709–2718. [Google Scholar] [CrossRef]
No. | BFP | CG | Gluten | Water |
---|---|---|---|---|
1 | 5.0 | 48 | 18 | 300 |
2 | 7.5 | 54 | 24 | 330 |
3 | 10.0 | 60 | 30 | 360 |
4 | 12.5 | 66 | 36 | 390 |
5 | 15.0 | 72 | 42 | 420 |
6 | - | 78 | - | - |
No. | Factors (Component/SPI Mass Ratio, %) | |||
---|---|---|---|---|
A (BFP) | B | C (CG) | D (Gluten) | |
1 | 1 (6) | 2 | 1 (56) | 1 (35) |
2 | 1 | 1 | 2 (52) | 2 (33) |
3 | 1 | 3 | 3 (54) | 3 (37) |
4 | 2 (4) | 2 | 2 | 3 |
5 | 2 | 1 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 (5) | 2 | 3 | 2 |
8 | 3 | 1 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
Color (1–2) | Hardness, Elasticity (4.5–6) | Morphology (0.5–2) |
---|---|---|
Red, uniform color (1.5–2) | Suitable hardness, toughness, and elasticity (5.5–6) | No pores observed in cross-section (1.5–2) |
Deep red, uniform color (1–1.5) | Slight hardness, toughness, and elasticity (5–5.5) | Few pores in the cross-section (1–1.5) |
Dark brown, dull surface (0.5–1) | Too hard or too soft (4.5–5) | Numerous pores in cross-section (0.5–1) |
Indicators (i) | Factors (j) | Gel Strength (g·cm) | Sensory Score | ||||
---|---|---|---|---|---|---|---|
A (BFP) | B | C (CG) | D (Gluten) | ||||
1 | 1 | 2 | 1 | 1 | 187.99 ± 16.42 | 7.90 ± 0.17 | |
2 | 1 | 1 | 2 | 2 | 204.09 ± 23.54 | 8.10 ± 0.31 | |
3 | 1 | 3 | 3 | 3 | 275.41 ± 17.57 | 8.40 ± 0.34 | |
4 | 2 | 2 | 2 | 3 | 284.76 ± 19.92 | 9.00 ± 0.30 | |
5 | 2 | 1 | 3 | 1 | 154.50 ± 8.88 | 8.20 ± 0.23 | |
6 | 2 | 3 | 1 | 2 | 247.03 ± 18.30 | 8.80 ± 0.20 | |
7 | 3 | 2 | 3 | 2 | 217.61 ± 27.75 | 8.60 ± 0.15 | |
8 | 3 | 1 | 1 | 3 | 361.15 ± 25.20 | 9.30 ± 0.29 | |
9 | 3 | 3 | 2 | 1 | 201.20 ± 32.98 | 8.10 ± 0.32 | |
Gel strength (g·cm) | k1j | 222.50 | 230.53 | 265.39 | 181.20 | ||
k2j | 229.14 | 239.88 | 230.43 | 222.91 | |||
k3j | 259.99 | 241.22 | 215.81 | 307.52 | |||
R | 37.49 | 10.69 | 49.58 | 126.32 | |||
Best level | A3 | B3 | C1 | D3 | |||
Sensory score | k1j | 8.13 | 8.50 | 8.67 | 8.07 | ||
k2j | 8.67 | 8.53 | 8.40 | 8.50 | |||
k3j | 8.67 | 8.43 | 8.40 | 8.90 | |||
R | 0.53 | 0.10 | 0.27 | 0.83 | |||
Best level | A3 | B2 | C1 | D3 |
Factors | Sum of Squares of Deviations | Degrees of Freedom | F-Ratio | F-Critical Value | Significance | |
---|---|---|---|---|---|---|
Gel strength | A | 2401.54 | 2 | 11.81 | 19.00 | |
B | 203.41 | 2 | 1.00 | 19.00 | ||
C | 3894.45 | 2 | 19.14 | 19.00 | * | |
D | 24,855.15 | 2 | 122.19 | 19.00 | * | |
Error | 203.41 | 2 | ||||
Sensory score | A | 0.57 | 2 | 35.56 | 19.00 | * |
B | 0.02 | 2 | 1.00 | 19.00 | ||
C | 0.14 | 2 | 8.88 | 19.00 | ||
D | 1.04 | 2 | 65.13 | 19.00 | * | |
Error | 0.02 | 2 |
CG Content/% | FS (mol/g) | TS (mol/g) | S-S Bonds (mol/g) | SH (µg) |
---|---|---|---|---|
52 | 28.42 ± 0.21 b | 242.63 ± 0.45 b | 107.10 ± 0.33 b | 24.78 ± 0.42 c |
54 | 43.26 ± 0.19 a | 171.06 ± 0.61 c | 63.90 ± 0.39 c | 37.15 ± 0.67 b |
56 | 21.03 ± 0.04 c | 264.92 ± 1.38 a | 121.95 ± 0.58 a | 42.88 ± 0.66 a |
Gluten Content/% | FS (mol/g) | TS (mol/g) | S-S Bonds (mol/g) | SH (µg) |
---|---|---|---|---|
33 | 35.83 ± 0.45 a | 117.33 ± 0.49 c | 40.75 ± 0.49 c | 42.70 ± 0.57 b |
35 | 22.44 ± 0.68 b | 174.14 ± 1.44 b | 75.85 ± 0.84 b | 46.70 ± 0.45 a |
37 | 21.03 ± 0.25 c | 263.71 ± 0.49 a | 121.34 ± 0.30 a | 42.85 ± 0.69 b |
CG Content/% | Gel Strength (g·cm) | Springiness | Cohesiveness | Resilience | Chewiness |
---|---|---|---|---|---|
52 | 295.13 ± 9.45 b | 0.49 ± 0.01 a | 0.43 ± 0.01 a | 0.13 ± 0.00 a | 1219.12 ± 196.24 a |
54 | 337.87 ± 32.43 a | 0.49 ± 0.00 a | 0.44 ± 0.01 a | 0.14 ± 0.00 a | 954.93 ± 74.65 b |
56 | 340.40 ± 21.95 a | 0.43 ± 0.01 b | 0.40 ± 0.05 b | 0.12 ± 0.00 b | 1205.25 ± 80.24 a |
Gluten Content/% | Gel Strength (g·cm) | Springiness | Cohesiveness | Resilience | Chewiness |
---|---|---|---|---|---|
33 | 256.98 ± 8.42 b | 0.50 ± 0.01 c | 0.44 ± 0.00 b | 0.13 ± 0.00 b | 837.92 ± 82.09 c |
35 | 278.52 ± 30.30 ab | 0.54 ± 0.02 b | 0.44 ± 0.01 b | 0.13 ± 0.00 b | 954.11 ± 73.12 b |
37 | 327.88 ± 29.84 a | 0.56 ± 0.00 a | 0.44 ± 0.00 a | 0.15 ± 0.00 a | 1308.61 ± 29.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhuo, S.; Pan, N.; Su, Y.; Liu, Z.; Wu, J. Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism. Foods 2025, 14, 3014. https://doi.org/10.3390/foods14173014
Chen X, Zhuo S, Pan N, Su Y, Liu Z, Wu J. Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism. Foods. 2025; 14(17):3014. https://doi.org/10.3390/foods14173014
Chicago/Turabian StyleChen, Xiaoting, Shiqing Zhuo, Nan Pan, Yongchang Su, Zhiyu Liu, and Jingna Wu. 2025. "Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism" Foods 14, no. 17: 3014. https://doi.org/10.3390/foods14173014
APA StyleChen, X., Zhuo, S., Pan, N., Su, Y., Liu, Z., & Wu, J. (2025). Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism. Foods, 14(17), 3014. https://doi.org/10.3390/foods14173014