Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = protein dough

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 527 KiB  
Article
An Assessment of the Functional Properties of Black Amaranth Flour During Fermentation with Probiotic Lactic Acid Bacteria
by Mamadou Lamarana Souare, Alpha Oumar Sily Diallo, Nicoleta Balan, Mihaela Aida Vasile, Lounceny Traore, Gabriela Elena Bahrim, Mihaela Cotârleț and Caterina Nela Dumitru
Fermentation 2025, 11(7), 414; https://doi.org/10.3390/fermentation11070414 - 18 Jul 2025
Viewed by 498
Abstract
This study aimed to ferment protein-rich amaranth flour with different strains of lactic acid bacteria (LAB) and to analyse the fermented dough’s functional properties. The fermented dough analysis was conducted using titrimetric, spectrophotometric, and chromatographic methods. The antioxidant activity of the fermented doughs [...] Read more.
This study aimed to ferment protein-rich amaranth flour with different strains of lactic acid bacteria (LAB) and to analyse the fermented dough’s functional properties. The fermented dough analysis was conducted using titrimetric, spectrophotometric, and chromatographic methods. The antioxidant activity of the fermented doughs was evaluated using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) methods, finding ABTS radical scavenging values ranging from 26.00 ± 1.05% to 58.92 ± 6.05%, while the DPPH values ranged from 21.29 ± 0.83% to 28.24 ± 5.48%. By RP-HPLC (Reversed Phase-High Performance Liquid Chromatography) characterisation, several phenolic acids and flavonoids were identified and quantified. Among these compounds, epigallocatechin was the most abundant, with the highest concentration recorded at 7789.88 ± 17.0 ng/µL in the control sample. This was followed by a 6942.47 ± 5.632 ng/µL concentration in the dough fermented with Lacticaseibacillus rhamnosus MIUG BL38 strain and 4983.16 ± 7.29 ng/µL in the dough fermented with Lactiplantibacillus pentosus MIUG BL24 strain. These two LAB strains (Lc. rhamnosus MIUG BL38 and Lp. pentosus MIUG BL24), with probiotic properties previously demonstrated, were selected based on their acidification potential, antioxidant activity, and bioactivity for future optimisation studies. Lactic acid fermentation significantly enhances bioactive characteristics of the amaranth flour, enabling the design of diverse gluten-free products with increased functional properties based on the attributes induced by the prebiotic, probiotic and postbiotic contents (tribiotics). Full article
(This article belongs to the Special Issue Antioxidant Activity of Fermented Foods)
Show Figures

Figure 1

19 pages, 5242 KiB  
Article
Polydextrose Addition Improves the Chewiness and Extended Shelf-Life of Chinese Steamed Bread Through the Formation of a Sticky, Elastic Network Structure
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(7), 545; https://doi.org/10.3390/gels11070545 - 14 Jul 2025
Viewed by 342
Abstract
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. [...] Read more.
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. The results revealed that, compared with a control sample, 3–10% of polydextrose addition significantly increased the hardness, adhesiveness, gumminess, and chewiness of steamed bread, but other textural parameters like springiness, cohesiveness, and resilience remained basically the same. Further, in contrast to the control sample, 3–10% polydextrose addition significantly reduced the specific volume and width/height ratio of steamed bread but increased the brightness index, yellowish color, and color difference; improved the internal structure; and maintained the other sensory parameters and total score. Polydextrose addition decreased the peak, trough, final, breakdown, and setback viscosity of the pasting of wheat flour suspension solutions but increased the pasting temperature. Polydextrose additions significantly reduced the enthalpy of gelatinization and the aging rate of flour paste but increased the peak temperature of gelatinization. A Mixolab revealed that, with increases in the amount of added polydextrose, the dough’s development time and heating rate increased, but the proteins weakened, and the peak torque of gelatinization, starch breakdown, and starch setback torque all decreased. Polydextrose additions increased the crystalline regions of starch, the interaction between proteins and starch, and the β-sheet percentage of wheat dough without yeast and of steamed bread. The amorphous regions of starch were increased in dough through adding polydextrose, but they were decreased in steamed bread. Further, 3–10%of polydextrose addition decreased the random coils, α-helixes, and β-turns in dough, but the 3–7% polydextrose addition maintained or increased these conformations in steamed bread, while 10% polydextrose decreased them. In unfermented dough, as a hydrogel, the 5–7% polydextrose addition resulted in the formation of a continuous three-dimensional network structure with certain adhesiveness and elasticity, with increases in the porosity and gas-holding capacity of the product. Moreover, the 10% polydextrose addition further increased the viscosity, freshness, and looseness of the dough, with smaller and more numerous holes and indistinct boundaries between starch granules. These results indicate that the 3–10% polydextrose addition increases the chewiness and freshness of steamed bread by improving the gluten network structure. This study will promote the addition of polydextrose in steamed bread to improve shelf-life and dietary fiber contents. Full article
Show Figures

Figure 1

22 pages, 2530 KiB  
Article
Effects of Gryllus bimaculatus Powder on Physicochemical Properties and Consumer Acceptability of 3D-Printed Gluten-Free Chocolate Cookies Using Survival Analysis
by Woonseo Baik, Dongju Lee and Youngseung Lee
Foods 2025, 14(13), 2291; https://doi.org/10.3390/foods14132291 - 27 Jun 2025
Viewed by 423
Abstract
To mitigate consumer aversion toward edible insects, it is essential to determine the optimal level of insect powder by considering consumer acceptability. In this study, gluten-free (GF) chocolate cookies were manufactured using 3D printing with varying concentrations (0, 3, 6, 9, 12, and [...] Read more.
To mitigate consumer aversion toward edible insects, it is essential to determine the optimal level of insect powder by considering consumer acceptability. In this study, gluten-free (GF) chocolate cookies were manufactured using 3D printing with varying concentrations (0, 3, 6, 9, 12, and 15%) of Gryllus bimaculatus (GB) powder. Physicochemical properties, sensory perception using rate-all-that-apply questions, and consumer acceptability using survival analysis were evaluated. The effects of GB powder concentration on the proximate composition, pH, color attributes, physical properties, 3D printing performance, and post-processing of the cookies were analyzed and discussed. As the concentration of GB powder increased, crude protein, ash, crude fat, a*, and mechanical force increased, while L*, b*, and the pH of both the dough and cookies decreased. Consumer tests showed a negative correlation between GB concentration and consumer acceptability, with cookies containing 3% GB receiving the highest overall liking scores. Principal component analysis and partial least squares regression showed that lower GB levels enhanced positive sensory attributes such as sweetness, chocolate flavor, and moistness, whereas higher levels intensified bitter taste and astringency, contributing to reduced acceptability. According to survival analysis, the GB concentration at which 50% of consumers were predicted to reject the product was estimated at 5.23%, indicating the necessity to limit GB incorporation below this threshold to ensure consumer acceptance. This study provides a comprehensive understanding of the quality characteristics and consumer acceptability of insect-based GF cookies, offering valuable insights for future product development and market applications. Full article
(This article belongs to the Special Issue Innovative Applications of Edible Insects in Food Systems)
Show Figures

Figure 1

20 pages, 2208 KiB  
Article
Physical Characteristics of Durum Wheat Dough and Pasta with Different Carrot Pomace Varieties
by Marian Ilie Luca, Mădălina Ungureanu-Iuga, Ana Batariuc and Silvia Mironeasa
Gels 2025, 11(7), 481; https://doi.org/10.3390/gels11070481 - 22 Jun 2025
Viewed by 382
Abstract
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to [...] Read more.
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to evaluate the rheological, textural, and color properties of durum wheat dough and pasta as affected by different varieties and addition levels of carrot pomace. For this purpose, oscillatory dynamic rheological tests, compression mechanical texture evaluation, cooking behavior observation, and reflectance color measurements were made. The results indicated that carrot pomace has a strengthening effect on the durum wheat dough protein–starch matrix, while the maximum creep compliance decreased with the addition level increase. A delay in starch gelatinization was suggested by the evolution of visco-elastic moduli during heating. Dough hardness and gumminess increased (from 2849.74 for the control to 5080.67 g for 12% Baltimore, and from 1073.73 for the control to 1863.02 g for 12% Niagara, respectively), while springiness and resilience exhibited a reduction trend (from 100.11% for the control to 99.50% for 12% Sirkana, and from 1.23 for the 3% Niagara to 0.87 for 12% Belgrado respectively) as the amount of carrot pomace raised. An increasing tendency of pasta solids loss during cooking and fracturability was observed with carrot pomace addition level increase. Color properties changed significantly depending on carrot pomace variety and addition level, indicating a reduction in lightness from 71.71 for the control to 63.12 for 12% Niagara and intensification of red nuance (0.05 for the control vs. 2.85 for 12% Sirkana). Cooked pasta elasticity, chewiness, gumminess, hardness, and resilience increased, while adhesiveness and stickiness decreased as the level of carrot pomace was higher. These results can represent a starting point for further industrial development of pasta enriched with fiber-rich ingredients like carrot pomace. The study highlights the possibility of using a fiber-rich waste stream (carrot pomace) in a staple product like pasta, providing a basis for clean-label pasta formulations. In addition, the novelty of the study consists in highlighting how compositional differences of different carrot pomace varieties lead to distinct effects on dough rheology, texture, color, and cooking behavior. Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Figure 1

21 pages, 879 KiB  
Article
The Potential of Ancient Sicilian Tetraploid Wheat in High-Quality Pasta Production: Rheological, Technological, Biochemical, and Sensory Insights
by Rosalia Sanfilippo, Nicolina Timpanaro, Michele Canale, Salvatore Moscaritolo, Margherita Amenta, Maria Allegra, Martina Papa and Alfio Spina
Foods 2025, 14(12), 2050; https://doi.org/10.3390/foods14122050 - 11 Jun 2025
Viewed by 458
Abstract
This study evaluated the potential of three ancient Sicilian tetraploid wheat genotypes—‘Margherito’, ‘Perciasacchi’, and ‘Russello’—for organic pasta production, compared to the national variety ‘Cappelli’. Significant variations in particle size distribution were found, with ‘Russello’ exhibiting the highest proportion of fine particles and the [...] Read more.
This study evaluated the potential of three ancient Sicilian tetraploid wheat genotypes—‘Margherito’, ‘Perciasacchi’, and ‘Russello’—for organic pasta production, compared to the national variety ‘Cappelli’. Significant variations in particle size distribution were found, with ‘Russello’ exhibiting the highest proportion of fine particles and the greatest protein content (14.30% d.m.). ‘Perciasacchi’ displayed the highest gluten index (81.26%). ‘Margherito’ and ‘Cappelli’ had the highest antioxidant activity, with ‘Margherito’ showing elevated levels of lutein and total carotenoids. Rheological analysis revealed differences in dough properties. ‘Perciasacchi’ exhibited the highest dough stability and P/L ratio (6.57), whereas ‘Russello’ showed the lowest values for both. Additionally, ‘Russello’ had lower consistency (12 B.U.), reduced gel stability, and limited water retention in the visco-amylographic analysis. Pasta quality was evaluated based on cooking time, water absorption, and texture. Cooking time ranged from 10 to 12 min, with ‘Russello’ and ‘Margherito’ showing lower water absorption. Texture analysis indicated that ‘Margherito’ pasta was the least firm, while ‘Russello’ showed the greatest loss of consistency when overcooked. From a sensory perspective, ‘Russello’ had lower firmness, but a stronger semolina flavor and surface roughness. ‘Cappelli’ had the most intense cooked pasta odor, while ‘Perciasacchi’ was the hardest and least sticky, though less flavorful. The results support the use of ancient tetraploid wheat genotypes as valuable resources for sustainable, high-quality pasta production. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 2458 KiB  
Article
Biomes Affect Baking Properties and Quality Parameters of Different Wheat Genotypes
by Larissa Alves Rodrigues, Lázaro da Costa Corrêa Cañizares, Silvia Leticia Rivero Meza, Newiton da Silva Timm, Igor Pirez Valério, Alison Lovegrove, Paulo Carteri Coradi and Maurício de Oliveira
Sustainability 2025, 17(12), 5236; https://doi.org/10.3390/su17125236 - 6 Jun 2025
Viewed by 479
Abstract
Wheat (Triticum aestivum L.) is predominantly cultivated in the Atlantic Forest biome. However, the recent expansion of agricultural frontiers in Brazil has led to its introduction into the Savannah biome. The commercial and technological quality parameters of wheat are determined by the [...] Read more.
Wheat (Triticum aestivum L.) is predominantly cultivated in the Atlantic Forest biome. However, the recent expansion of agricultural frontiers in Brazil has led to its introduction into the Savannah biome. The commercial and technological quality parameters of wheat are determined by the interaction between genotype and growing environment. In this context, the objective of this study was to evaluate the effects of six wheat genotypes cultivated in five distinct environments, three located in the Atlantic Forest biome and two in the Savannah biome. The results demonstrated that environmental conditions significantly influenced protein and starch contents, which in turn affected hectoliter weight and falling number. On the other hand, genotypic variation had a marked effect on thousand-grain weight, colorimetric parameters (L* and b*), water and sodium retention capacities, dough tenacity and extensibility, as well as gluten strength. Wheat genotypes cultivated in the Savannah biome exhibited superior baking performance and technological quality, characterized by elevated starch content, enhanced gluten strength (with the exception of the genotype Feroz), and greater dough tenacity (except for the genotype Guardião), when compared to those cultivated in the Atlantic Forest biome. These results highlight the potential for identifying more sustainable cultivation environments, considering the different biomes, for the production of wheat with superior nutritional and technological quality, promoting the efficient use of natural and economic resources throughout the production cycle. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

21 pages, 9234 KiB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Viewed by 543
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

21 pages, 1763 KiB  
Article
Gluten-Free Sourdough Based on Quinoa and Sorghum: Characterization and Applications in Breadmaking
by Anca Lupu, Iuliana Banu, Leontina Grigore-Gurgu, Ina Vasilean and Iuliana Aprodu
Appl. Sci. 2025, 15(10), 5468; https://doi.org/10.3390/app15105468 - 13 May 2025
Viewed by 669
Abstract
Gluten-free flour blends, consisting of quinoa and sorghum flours, were used in the present study to prepare sourdough samples, which were characterized in terms of physical–chemical properties, the thermo-mechanical behavior of dough and bread making performance. The quinoa–sorghum flour blends (100:0, 75:25, 50:50) [...] Read more.
Gluten-free flour blends, consisting of quinoa and sorghum flours, were used in the present study to prepare sourdough samples, which were characterized in terms of physical–chemical properties, the thermo-mechanical behavior of dough and bread making performance. The quinoa–sorghum flour blends (100:0, 75:25, 50:50) were fermented using two different starter cultures, consisting of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum (SC1), and Lactobacillus acidophilus, Bifidobacterium lactis and Streptococcus thermophilus (SC2). After 20 h of fermentation at 30 °C, the acidity of the sourdoughs prepared with SC1 and SC2 was significantly higher in respect to the corresponding spontaneously fermented sample. The use of the starter culture for sourdough fermentation resulted in sourdoughs with higher glycerol and lactic acid contents, and lower ethanol and acetic acid. The empirical rheological measurements indicated that the behavior of the proteins and starch within the complex dough matrix, during mixing and heating, is influenced by both sorghum level and starter culture type. The use of the sourdough allowed the preparation of gluten-free breads with good texture and high contents of bioactive compounds. In conclusion, sourdough fermentation can be successfully used for boosting the quality of the gluten-free bread products. Full article
Show Figures

Figure 1

19 pages, 1485 KiB  
Article
Polydextrose Reduces the Hardness of Cooked Chinese Sea Rice Through Intermolecular Interactions
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(5), 353; https://doi.org/10.3390/gels11050353 - 11 May 2025
Viewed by 436
Abstract
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) [...] Read more.
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) milled from a 3-year-stored paddy and compared their cooking properties, their cooked rice texture, the pasting and thermal properties of their flours, the thermo-mechanical characteristics of their flour dough, and the microstructure of their cooked rice grains with a newly harvested japonica rice cv. Nanjing 5 (NJ5). With an increase in polydextrose addition, a General Linear Model (GLM) analysis showed that the cooking times of two japonica rice varieties was significantly (p < 0.05) reduced, and their gruel solid loss increased. Adding polydextrose significantly reduced the hardness, springiness, gumminess, and chewiness of cooked rice and increased the cohesiveness and resilience. By increasing polydextrose addition in rice flours, the peak, breakdown, and setback viscosities of pasting were significantly decreased, but the pasting temperature and peak time increased. Adding polydextrose reduced the gelatinization enthalpy and increased gelatinization peak temperature of the rice flour and significantly decreased the ageing of the retrograded rice flour paste stored at 4 °C when measured at 21 days. A Mixolab test showed that the stability time of the rice flour dough increased, and the protein weakening, gelatinization peak torque, and starch breakdown, as well as the starch setback and the speeds of heating, gelatinization, and enzymatic degradation all decreased. The addition of 5–10% polydextrose significantly reduced the amorphous and crystalline regions of starch and relative percent of β-sheet in cooked rice grains, with an increase in the relative percent of α-helix, random coil, and β-turn. Observing the microstructure, we confirmed that polydextrose addition facilitated the formation of a soft and evenly swollen honeycomb structure of the cooked rice. These results suggest that polydextrose might decrease the cooked rice hardness and improve the eating quality of sea rice through intermolecular interactions. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

13 pages, 892 KiB  
Article
Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems
by Zhiwei Zhao, Qi Li, Fan Xia, Peng Zhang, Shuiyuan Hao, Shijun Sun, Chao Cui and Yongping Zhang
Agriculture 2025, 15(10), 1038; https://doi.org/10.3390/agriculture15101038 - 11 May 2025
Viewed by 527
Abstract
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the [...] Read more.
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the impact of regulated deficit irrigation strategies on spring wheat production, with the dual objectives of enhancing water conservation and optimizing yield–quality synergies. Through a two-year field experiment (2020~2021), four irrigation regimes were implemented: rain-fed control (W0), single irrigation at the tillering–jointing stage (W1), dual irrigation at the tillering–jointing and heading–flowering stages (W2), and triple irrigation incorporating the grain-filling stage (W3). A comprehensive analysis revealed that an incremental irrigation frequency progressively enhanced plant morphological traits (height, upper three-leaf area), population dynamics (leaf area index, dry matter accumulation), and physiological performance (flag leaf SPAD, net photosynthetic rate), all peaking under the W2 and W3 treatments. While yield components and total water consumption exhibited linear increases with irrigation inputs, grain yield demonstrated a parabolic response, reaching maxima under W2 (29.3% increase over W0) and W3 (29.1%), whereas water use efficiency (WUE) displayed a distinct inverse trend, with W2 achieving the optimal balance (4.6% reduction vs. W0). The grain quality parameters exhibited divergent responses: the starch content increased proportionally with irrigation, while protein-associated indices (wet gluten, sedimentation value) and dough rheological properties (stability time, extensibility) peaked under W2. Notably, protein content and its subcomponents followed a unimodal pattern, with the W0, W1, and W2 treatments surpassing W3 by 3.4, 11.6, and 11.3%, respectively. Strong correlations emerged between protein composition and processing quality, while regression modeling identified an optimal water consumption threshold (3250~3500 m3 ha−1) that concurrently maximized grain yield, protein output, and WUE. The W2 regime achieved the synchronization of water conservation, yield preservation, and quality enhancement through strategic irrigation timing during critical growth phases. These findings establish a scientifically validated framework for sustainable, intensive wheat production in arid irrigation districts, resolving the tripartite challenge of water scarcity mitigation, food security assurance, and processing quality optimization through precision water management. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
Functionalities of Octenyl Succinic Anhydride Wheat Starch and Its Effect on the Quality of Model Dough and Noodles
by Hongxue Ma, Liai Yang, Dunhe Zhang, Huijing Chen and Jianquan Kan
Foods 2025, 14(10), 1688; https://doi.org/10.3390/foods14101688 - 10 May 2025
Viewed by 578
Abstract
Chemically modified starch is a widely used food additive for tailoring the quality of wheat flour products. However, the effects of octenyl succinic anhydride (OSA)-modified wheat starch with varying degrees of substitution on the quality of dough and noodles remain unclear. In this [...] Read more.
Chemically modified starch is a widely used food additive for tailoring the quality of wheat flour products. However, the effects of octenyl succinic anhydride (OSA)-modified wheat starch with varying degrees of substitution on the quality of dough and noodles remain unclear. In this study, we prepared two types of OSA-modified wheat starch with different degrees of substitution and incorporated them as additives into a wheat starch–gluten protein model flour system to evaluate their impact on dough processing characteristics. Fourier transform infrared (FTIR) spectroscopy results revealed the introduction of ester carbonyl (C=O) and carboxylate (RCOO−) functional groups into the starch structure. X-ray diffraction (XRD) analysis demonstrated that OSA modification reduced the relative crystallinity of starch and disrupted the long-range structural order of the native starch. Scanning electron microscopy (SEM) observations indicated that the surface of OSA-modified wheat starch granules became rougher. OSA modification enhanced the solubility, water absorption capacity, and apparent viscosity but lowered the gelatinization temperature of starch, making starch more prone to gelatinization. Furthermore, the incorporation of OSA-modified wheat starch significantly altered the gelatinization behavior and dynamic rheological properties of wheat dough, whilst the noodle with the addition of OSA-modified starch (DS = 0.019) reduced the cooking time by 29.0% compared to the control group noodle and improved its water absorption rate. This study provides a theoretical foundation for the application of OSA-modified wheat starch as a food additive in wheat-based foods. Full article
Show Figures

Figure 1

26 pages, 6366 KiB  
Article
Use of Bilberry and Blackcurrant Pomace Powders as Functional Ingredients in Cookies
by Violeta Nour, Ana Maria Blejan and Georgiana Gabriela Codină
Appl. Sci. 2025, 15(10), 5247; https://doi.org/10.3390/app15105247 - 8 May 2025
Cited by 1 | Viewed by 581
Abstract
The purpose of the present study was to evaluate the effects of partially replacing wheat flour with bilberry (BIPP) and blackcurrant (BCPP) pomace powders at 2.5%, 5%, and 10% levels on dough texture and rheology and on the proximate composition, color, titratable acidity, [...] Read more.
The purpose of the present study was to evaluate the effects of partially replacing wheat flour with bilberry (BIPP) and blackcurrant (BCPP) pomace powders at 2.5%, 5%, and 10% levels on dough texture and rheology and on the proximate composition, color, titratable acidity, pH, spread ratio, total phenolic content, DPPH radical scavenging activity, and textural and sensory properties of cookies. BIPP showed higher protein, fiber, and water absorption capacity while also showing lower fat and titratable acidity as compared with BCPP. The incorporation of BIPP and BCPP in cookies resulted in lower protein and higher fat, fiber, and mineral contents. Dough hardness, consistency, and stiffness increased while the hardness, cohesiveness, and chewiness of the cookies were found to decrease with the increase in pomace levels. A seven-fold increase in the total phenolic content of the cookies was recorded at a 10% replacement level of wheat flour with BIPP, reaching 214.73 mg GAE/100 g, while only a three-fold increase was found for 10% BCPP (90.18 mg GAE/100 g). The enrichment with BIPP and BCPP improved the sensory properties, with the 10% addition level presenting the highest acceptance. The results indicate that bilberry and blackcurrant pomace could be utilized as a sustainable source of fiber and bioactive compounds for adding nutritional, technological, and sensory benefits to the cookies. Full article
(This article belongs to the Special Issue Unconventional Raw Materials for Food Products, 2nd Edition)
Show Figures

Figure 1

14 pages, 2668 KiB  
Article
Effects of LMW-GS Allelic Variations at the Glu-A3 Locus on Fresh Wet Noodle and Frozen Cooked Noodle Quality
by Xiaohong Chen, Hongwei Zhou, Yufei Zou, Jinfu Ban, Huizhi Zhang, Xiaoke Zhang, Boli Guo and Yingquan Zhang
Foods 2025, 14(9), 1546; https://doi.org/10.3390/foods14091546 - 28 Apr 2025
Viewed by 372
Abstract
Low molecular weight glutenin subunits (LMW-GSs) in wheat are critical functional proteins that regulate the processing quality of flour-based products. This study utilized two sets of near-isogenic lines (NILs) derived from the wheat cultivars Zhoumai 22 and Zhoumai 23 to investigate the effects [...] Read more.
Low molecular weight glutenin subunits (LMW-GSs) in wheat are critical functional proteins that regulate the processing quality of flour-based products. This study utilized two sets of near-isogenic lines (NILs) derived from the wheat cultivars Zhoumai 22 and Zhoumai 23 to investigate the effects of allelic variations at the Glu-A3 locus—specifically Glu-A3a, Glu-A3b, Glu-A3c, Glu-A3d, Glu-A3e, Glu-A3f, and Glu-A3g—on protein content, gluten properties, dough farinograph properties, cooking properties of fresh wet noodles (FWNs), and textural properties of FWNs and frozen cooked noodles (FZNs). The results demonstrated that Glu-A3f exhibited superior grain protein content. Glu-A3e negatively impacted the gluten index, and Glu-A3g showed favorable dry gluten content. Glu-A3b displayed enhanced dough mixing tolerance. Importantly, Glu-A3b was associated with improved hardness in FWNs, while Glu-A3g contributed to higher hardness and chewiness in FZNs. These findings provide critical insights for breeding elite wheat cultivars tailored for noodle production and optimizing specialty flour development. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 3504 KiB  
Article
Comparative Proteome and Weighted Gene Co-Expression Network Analyses Uncover the Mechanism of Wheat Grain Protein Accumulation in Response to Nitrogen Fertilizer Application
by Beiming Xu, Yuku Jia, Jianchao Feng, Yang Yang, Geng Ma, Yanfei Zhang, Yingxin Xie and Dongyun Ma
Foods 2025, 14(9), 1481; https://doi.org/10.3390/foods14091481 - 24 Apr 2025
Viewed by 431
Abstract
This study uses proteomic technology to identify differentially expressed proteins (DEPs) under varying nitrogen fertilizer levels. Additionally, it utilizes weighted gene co-expression network analysis (WGCNA) based on expression data of DEP-coding genes to explore the mechanism by which nitrogen promotes grain protein accumulation. [...] Read more.
This study uses proteomic technology to identify differentially expressed proteins (DEPs) under varying nitrogen fertilizer levels. Additionally, it utilizes weighted gene co-expression network analysis (WGCNA) based on expression data of DEP-coding genes to explore the mechanism by which nitrogen promotes grain protein accumulation. The results indicate that high-nitrogen treatment leads to an increased grain protein content, wet gluten content, stability time, and energy area. In addition, the β-sheet content of the protein secondary structure increased, while the irregular curl content decreased. A total of 285 DEPs were identified under different nitrogen levels, with 172 upregulated proteins in grains under high-nitrogen treatment including storage proteins (8.14%) and proteins involved in nitrogen metabolism (8.72%), defense/stress (11.04%), regulation (26.16%), and transport (5.23%). This suggests that both storage proteins and certain metabolic proteins contribute to dough network formation. WGCNA revealed a strong correlation between the blue module and grain samples, and Gene Ontology analysis indicated that most genes were enriched in response to abscisic acid (ABA) in the “biological process” category. Furthermore, 18 core genes were identified, with most containing ABA response elements, light response elements, and motifs related to storage protein regulation in their promoter regions. Expression analysis of 10 genes and their predicted transcription factors during the grain-filling stage demonstrated higher expression levels under high-nitrogen conditions. This study provides valuable insights into the promotion of grain protein accumulation and dough quality by nitrogen fertilizer application. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

13 pages, 2306 KiB  
Article
Fortification of Chinese Steamed Bread Through Broken Ganoderma lucidum Spore Powder Incorporation: Effects on Physicochemical and Quality Properties
by Jia Chen, Deyu Cheng, Siyi Luo, Yilan Hu, Chun Liu, Xingfeng Guo, Xiuzhu Yu, Lingyan Zhang and Jihong Wu
Foods 2025, 14(8), 1433; https://doi.org/10.3390/foods14081433 - 21 Apr 2025
Viewed by 709
Abstract
Broken Ganoderma lucidum spore powder (BGLSP) is abundant in nutrients and bioactive compounds, rendering it a suitable functional raw material for food applications. This study examined the impact of incorporating BGLSP (ranging from 0.5% to 10%) on the physicochemical properties of flour blends, [...] Read more.
Broken Ganoderma lucidum spore powder (BGLSP) is abundant in nutrients and bioactive compounds, rendering it a suitable functional raw material for food applications. This study examined the impact of incorporating BGLSP (ranging from 0.5% to 10%) on the physicochemical properties of flour blends, dough, and the quality of Chinese steamed bread (CSB). The results indicated that with increasing BGLSP content, the a* value, onset temperature, peak temperature, water absorption, development time, and dough stability all exhibited an upward trend in the flour blends and dough, while the L* value and protein network weakening decreased. When compared to the control sample, the inclusion of 10% BGLSP resulted in a reduction in the spread ratio, specific volume, cohesiveness, and springiness of CSB, while simultaneously increasing its hardness, chewiness, and gumminess. The observed odor variations among samples were primarily ascribed to the proportions of aldehydes and ketones. Notably, sensory evaluation demonstrated that the flavor attributes of BGLSP-enhanced samples were superior to those of the control sample. In conclusion, the incorporation of BGLSP at concentrations ranging from 0.5% to 1% is deemed optimal for CSB, offering novel insights into the application of BGLSP within the food industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop