Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (571)

Search Parameters:
Keywords = protective epitopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 (registering DOI) - 31 Jul 2025
Viewed by 49
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 310
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

23 pages, 680 KiB  
Review
Immunological Strategies for Enhancing Viral Neutralization and Protection in Antibody-Guided Vaccine Design
by Dimitrina Miteva, Maria Kokudeva, Latchesar Tomov, Hristiana Batselova and Tsvetelina Velikova
Biologics 2025, 5(3), 21; https://doi.org/10.3390/biologics5030021 - 23 Jul 2025
Viewed by 337
Abstract
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of [...] Read more.
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of vaccines against different pathogens, such as influenza A virus, HIV-1 virus, single-celled malaria parasite, respiratory syncytial virus, and SARS-CoV-2. We summarize the available literature guidance, including emerging techniques in immunological vaccine design, to help understand and improve antibody-based immunity. The search strategy we applied is a comprehensive literature review of major databases, with specific search terms related to antibody-mediated vaccine design, viral neutralization, and immune protection. We discuss the how future directions for next-generation vaccine platforms and personalized vaccines based on immunogenetics will help improve vaccine design for increased specificity and potency of antibodies that neutralize pathogens, offering more precise and effective immune responses and, therefore, protection. Full article
(This article belongs to the Special Issue Progress in Antibody-Guided Vaccine Design for Viruses)
Show Figures

Figure 1

22 pages, 498 KiB  
Review
The XEC Variant: Genomic Evolution, Immune Evasion, and Public Health Implications
by Alaa A. A. Aljabali, Kenneth Lundstrom, Altijana Hromić-Jahjefendić, Nawal Abd El-Baky, Debaleena Nawn, Sk. Sarif Hassan, Alberto Rubio-Casillas, Elrashdy M. Redwan and Vladimir N. Uversky
Viruses 2025, 17(7), 985; https://doi.org/10.3390/v17070985 - 15 Jul 2025
Viewed by 746
Abstract
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official [...] Read more.
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official surveillance data from 2023 to early 2025, prioritizing virological, clinical, and immunological reports related to XEC and its parent lineages. Defined by the distinctive spike protein mutations, T22N and Q493E, XEC exhibits modest reductions in neutralization in vitro, although current evidence suggests that mRNA booster vaccines, including those targeting JN.1 and KP.2, retain cross-protective efficacy against symptomatic and severe disease. The XEC strain of SARS-CoV-2 has drawn particular attention due to its increasing prevalence in multiple regions and its potential to displace other Omicron subvariants, although direct evidence of enhanced replicative fitness is currently lacking. Preliminary analyses also indicated that glycosylation changes at the N-terminal domain enhance infectivity and immunological evasion, which is expected to underpin the increasing prevalence of XEC. The XEC variant, while still emerging, is marked by a unique recombination pattern and a set of spike protein mutations (T22N and Q493E) that collectively demonstrate increased immune evasion potential and epidemiological expansion across Europe and North America. Current evidence does not conclusively associate XEC with greater disease severity, although additional research is required to determine its clinical relevance. Key knowledge gaps include the precise role of recombination events in XEC evolution and the duration of cross-protective T-cell responses. New research priorities include genomic surveillance in undersampled regions, updated vaccine formulations against novel spike epitopes, and long-term longitudinal studies to monitor post-acute sequelae. These efforts can be augmented by computational modeling and the One Health approach, which combines human and veterinary sciences. Recent computational findings (GISAID, 2024) point to the potential of XEC for further mutations in under-surveilled reservoirs, enhancing containment challenges and risks. Addressing the potential risks associated with the XEC variant is expected to benefit from interdisciplinary coordination, particularly in regions where genomic surveillance indicates a measurable increase in prevalence. Full article
(This article belongs to the Special Issue Translational Research in Virology)
Show Figures

Figure 1

16 pages, 2309 KiB  
Article
Immune and Safety Analysis of ultraIPVTM, a Novel UVC-Inactivated Polio Vaccine
by David A. MacLeod, John K. Tobin, Ruth V. Bushnell, Taralyn J. Wiggins, Shyamkumar TS, Ramchander Nadipelly, Steven Lawson, Viju V. Pillai, Gregory J. Tobin and Stephen J. Dollery
Viruses 2025, 17(7), 915; https://doi.org/10.3390/v17070915 - 27 Jun 2025
Viewed by 386
Abstract
The eradication of poliovirus remains a global health priority, with inactivated polio vaccines (IPVs) playing a pivotal role in immunization strategies. Over the past decades, advancements in IPV production have focused on optimizing safety, efficacy, and immunogenicity while addressing vaccine production and logistical [...] Read more.
The eradication of poliovirus remains a global health priority, with inactivated polio vaccines (IPVs) playing a pivotal role in immunization strategies. Over the past decades, advancements in IPV production have focused on optimizing safety, efficacy, and immunogenicity while addressing vaccine production and logistical challenges. This paper discusses a novel IPV candidate, ultraIPVTM, which departs from conventional formalin inactivation and uses a modern ultraviolet C (UVC) inactivation technology that includes a powerful antioxidant that protects virus epitopes from damage during and after irradiation. The potential of UVC inactivation to maintain structural integrity and immunogenicity of viral antigens, while circumventing safety issues with conventional vaccines, could bolster global polio eradication efforts and holds promise for applications to numerous other viral pathogens. Wistar rats were immunized with three dosages of ultraIPVTM, IPOLR, or vehicle alone. Immune responses were analyzed by whole-virus ELISA and antiviral neutralizing responses. Toxicity was analyzed primarily by increases in body weight and cytokine ELISA. Tolerability was analyzed by gross pathological and histological examinations. ultraIPVTM was determined to be immunogenic and non-toxic. No pathological or histological abnormalities related to the vaccine were observed. The data suggest that ultraIPVTM is immunogenic and well-tolerated in rats. Full article
Show Figures

Figure 1

19 pages, 1812 KiB  
Systematic Review
Current Efficacy of Multiepitope Vaccines Against Helminths: A Systematic Review
by Ignacio Trujillo-Rodríguez, Julio López-Abán, Montserrat Alonso-Sardón, Belén Vicente-Santiago, Antonio Muro-Álvarez and Raúl Manzano-Román
Biomolecules 2025, 15(6), 867; https://doi.org/10.3390/biom15060867 - 13 Jun 2025
Viewed by 400
Abstract
Background: Vaccination represents an efficient way to control communicable diseases. Reliable vaccines would reduce the use of anthelmintics drugs and fight against the concern of anthelmintics resistances. Unfortunately, anthelmintic vaccines face many difficulties in their development. One of the most innovative vaccine [...] Read more.
Background: Vaccination represents an efficient way to control communicable diseases. Reliable vaccines would reduce the use of anthelmintics drugs and fight against the concern of anthelmintics resistances. Unfortunately, anthelmintic vaccines face many difficulties in their development. One of the most innovative vaccine models in this field is multiepitope vaccines since, based on advances in immunoinformatics, they facilitate immunization against parasites at different stages of their cycles. Objective: In this study, we evaluate the published efficacy of multiepitope vaccines against helminths. Methods: Independent reviewers conducted a comprehensive search of multiple databases until September 20th 2024, following PRISMA 2020 guidelines. The review included original in vivo protection studies using chimeric vaccines with antigenic epitopes in experimental models. Key information was summarized, tabulated, and analyzed, and risk of bias was assessed using the SYRCLE risk tool. Results: A total of 15 preclinical studies were included. In those immunization experiments, parasite load reductions varied from 12.4% to 100%. Conclusions: Overall, this study shows protections in parasite load or lesion in 50–80% and significant survival rates using experimental vaccines including B- and T-cell epitopes in a wide range of helminthic infections. Given the variability of the experiments and the limited available data, there was not a clear correlation between protections and immune responses. Confirmation trials are needed to corroborate the protection and immunological mechanisms reached not only in this initial valuable study but also with other multiepitope candidates. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

23 pages, 4254 KiB  
Article
In Silico Designed Multi-Epitope Vaccine Based on the Conserved Fragments in Viral Proteins for Broad-Spectrum Protection Against Porcine Reproductive and Respiratory Syndrome Virus
by Shaukat Ullah, Hikmat Ullah, Kainat Fatima and Tan Lei
Vet. Sci. 2025, 12(6), 577; https://doi.org/10.3390/vetsci12060577 - 12 Jun 2025
Cited by 1 | Viewed by 892
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major viral threat to swine, causing significant economic loss in the global pig farming industry. This virus includes two major genotypes, PRRSV1 and PRRSV2, both characterized by high mutation rates and genetic variability, complicating [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major viral threat to swine, causing significant economic loss in the global pig farming industry. This virus includes two major genotypes, PRRSV1 and PRRSV2, both characterized by high mutation rates and genetic variability, complicating the development of a universally effective vaccine and disease control. To address this challenge, this study utilizes immunoinformatics tools to identify conserved epitopes and design a multi-epitope vaccine candidate against PRRSV based on reverse vaccinology. The complete sequences of PRRSV-encoded proteins were retrieved worldwide, and the conserved fragments were identified through the alignment of polypeptide sequences. Subsequent screening was conducted to screen epitopes for their potential to be safe and to activate B cells, HTLs (helper T cells), and CTLs (cytotoxic T cells). By conjugating the selected epitopes with distinct adjuvant proteins, three vaccine candidates were designed and termed PRRSV-vaccine (PRRSV-V-1, PRRSV-V-2, and PRRSV-V-3, respectively). Furthermore, systematic evaluations of their physicochemical properties, structural stability, binding with pattern recognition receptors, and induction of the host immune system were performed. PRRSV-V-2 had the most promising physicochemical and structural characteristics, strong binding with toll-like receptors (TLR3 and TLR8), and the most vigorous reactions to host immune responses. As the most promising candidate, the recombinant PRRSV plasmid was in silico designed for expression in Escherichia coli. Our study proposed a novel approach to PRRSV vaccine development against PRRSV, offering a promising strategy for controlling the infection across diverse PRRSV strains in swine. Despite providing significant insights into vaccine design through computational methods, the results of this study remain predictive. So, it is open for the experimental validations of the scientific community to ensure its actual immunological properties, especially the safety and efficacy. Full article
Show Figures

Figure 1

29 pages, 8225 KiB  
Article
Evaluation of Peptide-Based Vaccines Against Group A Streptococcus in Staphylococcus aureus-Infected Mice
by Ahmed O. Shalash, Haolan Sun, Yiru Cui, Jingwen Wang, Barb Arnts, Jannah Bauer, Waleed M. Hussein, Zeinab G. Khalil, Mariusz Skwarczynski and Istvan Toth
Vaccines 2025, 13(6), 632; https://doi.org/10.3390/vaccines13060632 - 12 Jun 2025
Viewed by 1072
Abstract
Background: Group A Streptococcus (GAS) is a major human pathogen associated with serious diseases. Evaluating immune responses against GAS vaccines—immunogenicity, quality, and efficacy—is complicated by interference from co-infections, like Staphylococcus aureus (S. aureus). We aimed to evaluate peptide-based GAS vaccines in [...] Read more.
Background: Group A Streptococcus (GAS) is a major human pathogen associated with serious diseases. Evaluating immune responses against GAS vaccines—immunogenicity, quality, and efficacy—is complicated by interference from co-infections, like Staphylococcus aureus (S. aureus). We aimed to evaluate peptide-based GAS vaccines in mice for antisera efficacy against standard and mutant GAS strains and to assess immunological methods under co-infection conditions. Methods: Female C57BL/6 mice were infected with S. aureus and immunized with various M-protein-derived peptide antigens: J8, J8i, J8i-J8i, and the native p145 sequence. Two novel, conserved M-protein-derived antigens (NTD and CTD2) were also evaluated. Enzyme-linked immunosorbent assays (ELISAs) were used to assess immunogenicity and GAS-specific antibody responses. Peptide antigens were either conjugated to or physically mixed with the PADRE T-helper epitope and tested for enhanced antisera immunogenicity and opsonic efficacy. Result: ELISA against the immunizing peptides as coating antigens reflected the immunogenicity, while p145-based ELISA correlated with GAS-specific antibody titres without S. aureus interference for J8-based vaccines. Immunogenicity ranked J8 > J8i ≈ J8i-J8i > p145. NTD and CTD2 antisera demonstrated opsonic activity, indicating protective potential. PADRE–J8 conjugates significantly enhanced antibody magnitude and quality, producing strong opsonic bactericidal responses against both standard and p145-mutant GAS strains. PADRE–J8i was effective only against standard strains. This is the first report to suggest at least two B-cell epitopes within the J8i peptide. Conclusion: These findings support the diagnostic utility of p145, NTD, and CTD2 under co-infection settings, and the vaccine potential of J8, NTD, and CTD2, particularly when conjugated to a T helper for enhanced antigen presentation. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

21 pages, 6551 KiB  
Article
Protective Efficacy of an mRNA Vaccine Against HP-PRRSV Challenge in Piglets
by Jiaqi Liu, Shiting Ni, Yaning Lv, Ze Tong, Pingxuan Liu, Xin Zong, Guosheng Chen, Yan Zeng, Chenchen Wang and Chen Tan
Microorganisms 2025, 13(6), 1332; https://doi.org/10.3390/microorganisms13061332 - 7 Jun 2025
Viewed by 629
Abstract
The global pork production sector continues to experience substantial financial burdens attributable to porcine reproductive and respiratory syndrome virus (PRRSV) infections. Despite the current epidemiological landscape in which NADC30-like strains predominate alongside cocirculating diverse PRRSV subtypes, highly pathogenic PRRSV (HP-PRRSV) remains a persistent [...] Read more.
The global pork production sector continues to experience substantial financial burdens attributable to porcine reproductive and respiratory syndrome virus (PRRSV) infections. Despite the current epidemiological landscape in which NADC30-like strains predominate alongside cocirculating diverse PRRSV subtypes, highly pathogenic PRRSV (HP-PRRSV) remains a persistent threat. Furthermore, currently available commercial PRRS vaccine formulations exhibit restricted heterologous protection efficacy. The development of novel mRNA-based vaccines represents a promising strategy for PRRS mitigation protocols. In response to these epidemiological challenges, an HP-PRRSV strain (Lineage 8), designated as JX021, was isolated and characterized in this study. Pathogenicity experiments confirmed that JX021 induces severe clinical symptoms in piglets. Moreover, by combining immunoinformatics and literature-guided approaches, critical antigenic epitopes on HP-PRRSV (represented by the JXA1 strain) structural proteins were identified, enabling the design and synthesis of a multiepitope mRNA vaccine. The survival of piglets immunized with the mRNA vaccine was higher than that of the inactivated vaccine immunization group and the PBS group. Compared with the inactivated vaccine group, the mRNA vaccine group presented reductions in viremia and lung lesions. These findings provide new insights into the design and development of further PRRS vaccine research. Full article
(This article belongs to the Special Issue Advances in Veterinary Microbiology)
Show Figures

Figure 1

15 pages, 23341 KiB  
Article
Discovery of Synergistic Broadly Neutralizing Antibodies Targeting Non-Dominant Epitopes on SARS-CoV-2 RBD and NTD
by Hualong Feng, Zuowei Wang, Ling Li, Yunjian Li, Maosheng Lu, Xixian Chen, Lin Hu, Yi Sun, Ruiping Du, Rongrong Qin, Xuanyi Chen, Liwei Jiang and Teng Zuo
Vaccines 2025, 13(6), 592; https://doi.org/10.3390/vaccines13060592 - 30 May 2025
Viewed by 639
Abstract
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal [...] Read more.
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal antibodies (mAbs) were isolated from a donor who experienced a BA.5 or BF.7 breakthrough infection after three doses of inactivated vaccines. Their binding and neutralizing capacities were measured with ELISA and a pseudovirus-based neutralization assay, respectively. Their epitopes were mapped by competition ELISA and site-directed mutation. Results: Among a total of 67 spike-specific mAbs cloned from the donor, four mAbs (KXD643, KXD652, KXD681, and KXD686) can neutralize all tested SARS-CoV-2 variants from wild-type to KP.3. Moreover, KXD643, KXD652, and KXD681 belong to a clonotype encoded by IGHV5-51 and IGKV1-13 and recognize the cryptic and conserved RBD-8 epitope on the receptor-binding domain (RBD). In contrast, KXD686 is encoded by IGHV1-69 and IGKV3-20 and targets a conserved epitope (NTD Site iv) outside the antigenic supersite (NTD Site i) of the N-terminal domain (NTD). Notably, antibody cocktails containing these two groups of mAbs can neutralize SARS-CoV-2 more potently due to synergistic effects. In addition, bispecific antibodies derived from KXD643 and KXD686 demonstrate further improved neutralizing potency compared to antibody cocktails. Conclusions: These four mAbs can be developed as candidates of pan-SARS-CoV-2 antibody therapeutics through further antibody engineering. On the other hand, vaccines designed to simultaneously elicit neutralizing antibodies towards RBD-8 and NTD Site iv have the potential to provide pan-SARS-CoV-2 protection. Full article
Show Figures

Figure 1

19 pages, 4558 KiB  
Article
Immunogenicity Evaluation of Epitope-Based Vaccine on Target of RNAIII-Activating Protein (TRAP) of Staphylococcus Aureus
by Simiao Yu, Di Yao, Xintong Wang, Wei Yu, Yuhua Wei, Wei Liu, Liquan Yu, Jinzhu Ma, Chunyu Tong, Jing Chen, Yongzhong Yu, Baifen Song and Yudong Cui
Biology 2025, 14(6), 616; https://doi.org/10.3390/biology14060616 - 27 May 2025
Viewed by 628
Abstract
Staphylococcus aureus is a leading cause of severe infections in humans and animals, and the emergence of multidrug-resistant strains highlights the need to develop effective vaccines to prevent such diseases. Epitope-based vaccines use short antigen-derived peptides corresponding to immune epitopes, which are administered [...] Read more.
Staphylococcus aureus is a leading cause of severe infections in humans and animals, and the emergence of multidrug-resistant strains highlights the need to develop effective vaccines to prevent such diseases. Epitope-based vaccines use short antigen-derived peptides corresponding to immune epitopes, which are administered to trigger protective humoral and cellular immune responses. In this study, in silico MHC affinity measurement methods were used to predict possible binding regions, and five 20-mer synthetic TRAP peptides (TRAPP) were synthesized. Epitope-based vaccines, named PT and PTR, incorporating the identified CD4+ T and B cell epitopes, were constructed. Peptides TRAP20–39 and TRAP94–113 elicited significant peptide-stimulated T-cell proliferation responses in vivo. Additionally, high levels of IFN-γ and IL-17A, along with moderate levels of IL-4, were detected in ex vivo stimulated CD4+ T cells isolated from rTRAP- and TRAPP-immunized mice, suggesting that these peptides are classified as Th1 and Th17 epitopes. Immunization with PT or PTR induces robust humoral and cellular immune responses. Moreover, the epitope-based vaccine, PT, exhibited a stronger protective immune response than the intact TRAP in a murine systemic S. aureus infection model. Based on the results presented herein, an epitope-based vaccine is a promising and potentially more effective candidate. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

35 pages, 4814 KiB  
Article
FcRn-Driven Nanoengineered Mucosal Vaccine with Multi-Epitope Fusion Induces Robust Dual Immunity and Long-Term Protection Against Brucella
by Tingting Tian, Yuejie Zhu, Kaiyu Shang, Huidong Shi, Ruixue Xu, Mingzhe Li, Fuling Pu, Junyu Kuang, Jianbing Ding and Fengbo Zhang
Vaccines 2025, 13(6), 567; https://doi.org/10.3390/vaccines13060567 - 26 May 2025
Viewed by 635
Abstract
Background: Brucellosis poses a significant public health challenge, necessitating effective vaccine development. Current vaccines have limitations such as safety concerns and inadequate mucosal immunity. This study aims to develop an FcRn-targeted mucosal Brucella vaccine by fusing the human Fc domain with Brucella’s [...] Read more.
Background: Brucellosis poses a significant public health challenge, necessitating effective vaccine development. Current vaccines have limitations such as safety concerns and inadequate mucosal immunity. This study aims to develop an FcRn-targeted mucosal Brucella vaccine by fusing the human Fc domain with Brucella’s multi-epitope protein (MEV), proposing a novel approach for human brucellosis prevention. Methods: The study developed a recombinant antigen (h-tFc-MEV) through computational analyses to validate antigenicity, structural stability, solubility, and allergenic potential. Molecular simulations confirmed FcRn binding. The vaccine was delivered orally via chitosan nanoparticles in murine models. Immunization was compared to MEV-only immunization. Post-challenge assessments were conducted to evaluate protection against Brucella colonization. Mechanistic studies investigated dendritic cell activation and antigen presentation. Results: Computational analyses showed that the antigen had favorable properties without allergenic potential. Molecular simulations demonstrated robust FcRn binding. In murine models, oral delivery elicited enhanced systemic immunity with elevated serum IgG titers and amplified CD4+/CD8+ T-cell ratios compared to MEV-only immunization. Mucosal immunity was evidenced by significant IgA upregulation across multiple tracts. Long-term immune memory persisted for six months. Post-challenge assessments revealed markedly reduced Brucella colonization in visceral organs. Mechanistic studies identified FcRn-mediated dendritic cell activation through enhanced MHC-II expression and antigen presentation efficiency. Conclusions: The FcRn-targeted strategy establishes concurrent mucosal and systemic protective immunity against Brucella infection. This novel vaccine candidate shows potential for effective human brucellosis prevention, offering a promising approach to address the limitations of current vaccines. Full article
(This article belongs to the Special Issue Animal Infectious Diseases and Vaccinology in One Health)
Show Figures

Graphical abstract

24 pages, 2758 KiB  
Article
A Modified Variant of Fasciola hepatica FhSAP-2 (mFhSAP-2) as a Recombinant Vaccine Candidate Induces High-Avidity IgG2c Antibodies and Enhances T Cell Activation in C57BL/6 Mice
by Riseilly Ramos-Nieves, Albersy Armina-Rodriguez, Maria Del Mar Figueroa-Gispert, Ghalib Figueroa-Quiñones, Carlimar Ocasio-Malavé and Ana M. Espino
Vaccines 2025, 13(5), 545; https://doi.org/10.3390/vaccines13050545 - 20 May 2025
Viewed by 587
Abstract
Background/Objectives: In the past, FhSAP-2, an 11.5 kDa recombinant protein belonging to the Fasciola hepatica saposin-like/NK-lysin family, has been shown to induce over 60% partial protection in immunized rabbits and mice when challenged with F. hepatica metacercariae. However, despite FhSAP-2 being a promising [...] Read more.
Background/Objectives: In the past, FhSAP-2, an 11.5 kDa recombinant protein belonging to the Fasciola hepatica saposin-like/NK-lysin family, has been shown to induce over 60% partial protection in immunized rabbits and mice when challenged with F. hepatica metacercariae. However, despite FhSAP-2 being a promising vaccine candidate, its hydrophobic nature has made its purification a challenging process. The present study aimed to determine whether a modified 9.8 kDa variant of protein (mFhSAP-2), lacking a string of 16 hydrophobic amino acids at the amino terminus and a dominant Th1 epitope, could retain its immunogenic and Th1-inducing properties. Methods: RAW264.7 cells were stimulated with mFhSAP-2, and TNFα levels were determined. C57BL/6 mice were immunized with mFhSAP-2 alone or emulsified with Montanide ISA50. Total anti-mFhSAP-2 IgG subtypes, along with their avidity and titers, were measured using ELISA. The T cell proliferation index and levels of CD4+/CD8+ and IFNγ/IL-4 ratios were determined. Results: In vitro, mFhSAP-2 induced dose-dependent TNFα production in RAW264.7 cells. In vivo, mice immunized with mFhSAP-2 or mFhSAP-2+ISA50 developed high-avidity IgG2a and IgG2c antibodies at levels that were significantly higher than IgG1 antibody levels. However, the mFhSAP-2+ISA50 formulation induced higher and more homogenous antibody titers than mFhSAP-2, suggesting that an adjuvant may be required to enhance mFhSAP-2 immunogenicity. Immunization with mFhSAP-2+ISA50 also induced significantly higher activated CD4+/CD8+ T cell ratios and IFNγ/IL-4 ratios compared to naïve mice. Conclusions: Our results demonstrate that mFhSAP-2 retained its immunogenicity and Th1-polarizing properties, which were enhanced by the Montanide ISA50 adjuvant. The present study highlights the feasibility of inducing Th1-associated immune responses in mice using mFhSAP-2 as an antigen. Further studies are required to assess the potential application of the mFhSAP-2+ISA50 formulation as a vaccine against F. hepatica in natural hosts such as cattle and sheep, which could contribute to improved control and aid in the prevention and eradication of F. hepatica infection. Full article
Show Figures

Graphical abstract

25 pages, 2921 KiB  
Review
The Design and Prospects of Influenza Virus Vaccines Based on Conserved Epitopes and Adjuvant Optimization
by Meng-Qian Zhang, Jin-Wei Bu, Zhi-Gang Wang and Shu-Lin Liu
Targets 2025, 3(2), 16; https://doi.org/10.3390/targets3020016 - 19 May 2025
Viewed by 985
Abstract
Influenza viruses pose a significant threat to human health, and vaccination remains the most cost-effective and efficient strategy for controlling outbreaks. This review first introduces the molecular characteristics of influenza A virus (IAV) and examines how conserved epitopes contribute to overcoming its high [...] Read more.
Influenza viruses pose a significant threat to human health, and vaccination remains the most cost-effective and efficient strategy for controlling outbreaks. This review first introduces the molecular characteristics of influenza A virus (IAV) and examines how conserved epitopes contribute to overcoming its high variability, laying the foundation for broadly protective vaccine design. Different vaccine platforms are then categorized and analyzed through representative examples to highlight their research significance and application potential. The discussion further extends to the role of adjuvants in modulating immune responses, with a focus on how their optimization enhances vaccine efficacy. We explore future directions in vaccine design, highlighting the synergistic potential of conserved epitope targeting and adjuvant improvement in advancing the next generation of influenza vaccines. Full article
(This article belongs to the Special Issue Recent Progress in Bioimaging and Targeted Therapy)
Show Figures

Figure 1

23 pages, 1033 KiB  
Review
Memory T Cells in Respiratory Virus Infections: Protective Potential and Persistent Vulnerabilities
by Henry Sutanto, Febrian Ramadhan Pradana, Galih Januar Adytia, Bagus Aditya Ansharullah, Alief Waitupu, Bramantono Bramantono and Deasy Fetarayani
Med. Sci. 2025, 13(2), 48; https://doi.org/10.3390/medsci13020048 - 29 Apr 2025
Viewed by 1244
Abstract
Respiratory virus infections, such as those caused by influenza viruses, respiratory syncytial virus (RSV), and coronaviruses, pose a significant global health burden. While the immune system’s adaptive components, including memory T cells, are critical for recognizing and combating these pathogens, recurrent infections and [...] Read more.
Respiratory virus infections, such as those caused by influenza viruses, respiratory syncytial virus (RSV), and coronaviruses, pose a significant global health burden. While the immune system’s adaptive components, including memory T cells, are critical for recognizing and combating these pathogens, recurrent infections and variable disease outcomes persist. Memory T cells are a key element of long-term immunity, capable of responding swiftly upon re-exposure to pathogens. They play diverse roles, including cross-reactivity to conserved viral epitopes and modulation of inflammatory responses. However, the protective efficacy of these cells is influenced by several factors, including viral evolution, host age, and immune system dynamics. This review explores the dichotomy of memory T cells in respiratory virus infections: their potential to confer robust protection and the limitations that allow for breakthrough infections. Understanding the underlying mechanisms governing the formation, maintenance, and functional deployment of memory T cells in respiratory mucosa is critical for improving immunological interventions. We highlight recent advances in vaccine strategies aimed at bolstering T cell-mediated immunity and discuss the challenges posed by viral immune evasion. Addressing these gaps in knowledge is pivotal for designing effective therapeutics and vaccines to mitigate the global burden of respiratory viruses. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
Show Figures

Figure 1

Back to TopTop