Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,020)

Search Parameters:
Keywords = protected crops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 2592 KiB  
Review
Applied Microbiology for Sustainable Agricultural Development
by Barbara Sawicka, Piotr Barbaś, Viola Vambol, Dominika Skiba, Piotr Pszczółkowski, Parwiz Niazi and Bernadetta Bienia
Appl. Microbiol. 2025, 5(3), 78; https://doi.org/10.3390/applmicrobiol5030078 (registering DOI) - 1 Aug 2025
Abstract
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and [...] Read more.
Background: Developments in biology, genetics, soil science, plant breeding, engineering, and agricultural microbiology are driving advances in soil microbiology and microbial biotechnology. Material and methods: The literature for this review was collected by searching leading scientific databases such as Embase, Medline/PubMed, Scopus, and Web of Science. Results: Recent advances in soil microbiology and biotechnology are discussed, emphasizing the role of microorganisms in sustainable agriculture. It has been shown that soil and plant microbiomes significantly contribute to improving soil fertility and plant and soil health. Microbes promote plant growth through various mechanisms, including potassium, phosphorus, and zinc solubilization, biological nitrogen fixation, production of ammonia, HCN, siderophores, and other secondary metabolites with antagonistic effects. The diversity of microbiomes related to crops, plant protection, and the environment is analyzed, as well as their role in improving food quality, especially under stress conditions. Particular attention was paid to the diversity of microbiomes and their mechanisms supporting plant growth and soil fertility. Conclusions: The key role of soil microorganisms in sustainable agriculture was highlighted. They can support the production of natural substances used as plant protection products, as well as biopesticides, bioregulators, or biofertilizers. Microbial biotechnology also offers potential in the production of sustainable chemicals, such as biofuels or biodegradable plastics (PHA) from plant sugars, and in the production of pharmaceuticals, including antibiotics, hormones, or enzymes. Full article
15 pages, 8138 KiB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 (registering DOI) - 1 Aug 2025
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

13 pages, 1092 KiB  
Article
Exogenous Application of Nano-Silicon and Melatonin Ameliorates Salinity Injury in Coix Seedlings
by Beibei Qi, Junkai Liu, Ruixue Zheng, Jiada Huang and Chao Wu
Agronomy 2025, 15(8), 1862; https://doi.org/10.3390/agronomy15081862 (registering DOI) - 31 Jul 2025
Abstract
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous [...] Read more.
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous treatments have been demonstrated to enhance plant resilience against various biotic and abiotic stresses, the potential of nano-silicon (NaSi), melatonin (MT), and their combined application in mitigating salinity-induced damage, particularly in relation to the medicinal properties of this medicinal and edible crop, remains poorly understood. This study investigated the effects of exogenous NaSi and MT application on Coix under salinity stress using two varieties with contrasting salinity tolerances. The plants were subjected to salinity stress and treated with NaSi, MT, or a combination of both. The results revealed that salinity stress significantly impaired the agronomic traits, physiological performance, and accumulation of medicinal compounds of Coix. Exogenous MT application effectively alleviated salinity-induced damage to agronomic and physiological parameters, exhibiting superior protective effects compared to NaSi treatment. Strikingly, the combined application of MT and NaSi demonstrated synergistic effects, leading to substantial improvements in growth and physiological indices. However, the medicinal components were only marginally affected by exogenous treatments under both control and salinity-stressed conditions. Further clarification of the molecular mechanisms underlying salinity stress responses and exogenous substance-induced effects is critical to achieving a comprehensive understanding of these protective mechanisms. Full article
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

25 pages, 4145 KiB  
Article
Advancing Early Blight Detection in Potato Leaves Through ZeroShot Learning
by Muhammad Shoaib Farooq, Ayesha Kamran, Syed Atir Raza, Muhammad Farooq Wasiq, Bilal Hassan and Nitsa J. Herzog
J. Imaging 2025, 11(8), 256; https://doi.org/10.3390/jimaging11080256 (registering DOI) - 31 Jul 2025
Abstract
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. [...] Read more.
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. This paper introduces a novel deep learning framework called ZeroShot CNN, which integrates convolutional neural networks (CNNs) and ZeroShot Learning (ZSL) for the efficient classification of seen and unseen disease classes. The model utilizes convolutional layers for feature extraction and employs semantic embedding techniques to identify previously untrained classes. Implemented on the Kaggle potato disease dataset, ZeroShot CNN achieved 98.50% accuracy for seen categories and 99.91% accuracy for unseen categories, outperforming conventional methods. The hybrid approach demonstrated superior generalization, providing a scalable, real-time solution for detecting agricultural diseases. The success of this solution validates the potential in harnessing deep learning and ZeroShot inference to transform plant pathology and crop protection practices. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

20 pages, 7212 KiB  
Review
Phacelia tanacetifolia Benth. as a Multifunctional Plant: Support for Pollinators and Sustainable Agricultural Practices
by Piotr Jarosław Żarczyński, Ewa Mackiewicz-Walec, Sławomir Józef Krzebietke, Stanisław Sienkiewicz and Katarzyna Żarczyńska
Agronomy 2025, 15(8), 1843; https://doi.org/10.3390/agronomy15081843 - 30 Jul 2025
Abstract
Phacelia tanacetifolia Benth. is a species of annual plant that has been gaining importance in recent years. Initially, it was treated as an ornamental plant and valuable only to bees. Over the years, this species has become more widely known, and many more [...] Read more.
Phacelia tanacetifolia Benth. is a species of annual plant that has been gaining importance in recent years. Initially, it was treated as an ornamental plant and valuable only to bees. Over the years, this species has become more widely known, and many more of its advantages have been discovered. The aim of this study was to learn about the contemporary economic importance of Phacelia tanacetifolia Benth. The extraordinary, rapid increase in the plant’s biomass means that it is valued as a fodder plant and at the same time is included in the group of leaders among catch crops. It is characterized by low requirements for soil quality. The main advantage of this plant is its high resistance to drought and frost. A great advantage of this plant is its high drought resistance. It is recommended for sowing both in monoculture and in mixtures with other species. In the light of current standards and assumptions, it fits perfectly into the framework of sustainable development. It is a valuable link in the biodiversity chain, as well as support for a number of ecosystem services such as CO2 sequestration, retention of nutrients in the soil or protection of its structure. Phacelia is seen as having great potential as a plant that provides food for a number of pollinators. The latest research also focuses on assessing the possibility of using it for energy purposes (biogas). Efforts are being made to introduce phacelia on a wider scale to eliminate crop monocultures and significantly strengthen biodiversity in a given area. Phacelia plays an important role in various agronomic systems and effectively supports the protection of the natural environment. The contribution of this species to the development of ecosystem services to date is undeniable. It should be assumed that this plant will continue to significantly support a number of activities for sustainable development. Full article
Show Figures

Figure 1

22 pages, 3472 KiB  
Review
Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle
by Tahmina Akter, Hajra Maqsood, Nicholas Castilla, Wenyuan Song and Sixue Chen
Int. J. Mol. Sci. 2025, 26(15), 7318; https://doi.org/10.3390/ijms26157318 - 29 Jul 2025
Viewed by 258
Abstract
Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the [...] Read more.
Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the interactions among plants, their pathogens and various environmental factors in the disease triangle. This review aims to highlight recent advancements in the application of systems biology to enhance understanding of the plant disease triangle within the context of microbiome rising to become the 4th dimension. Recent progress in microbiome research utilizing model plant species has begun to illuminate the roles of specific microorganisms and the mechanisms of plant–microbial interactions. We will examine (1) microbiome-mediated functions related to plant growth and protection, (2) advancements in systems biology, (3) current -omics methodologies and new approaches, and (4) challenges and future perspectives regarding the exploitation of plant defense mechanisms via microbiomes. It is posited that systems biology approaches such as single-cell RNA sequencing and mass spectrometry-based multi-omics can decode plant defense mechanisms. Progress in this significant area of plant biology has the potential to inform rational crop engineering and breeding strategies aimed at enhancing disease resistance without compromising other pathways that affect crop yield. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions: 3rd Edition)
Show Figures

Graphical abstract

12 pages, 1515 KiB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 264
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

23 pages, 3342 KiB  
Article
Zoning of “Protected Designation of Origin La Mancha Saffron” According to the Quality of the Flower
by Jorge F. Escobar-Talavera, María Esther Martínez-Navarro, Sandra Bravo, Gonzalo L. Alonso and Rosario Sánchez-Gómez
Agronomy 2025, 15(8), 1819; https://doi.org/10.3390/agronomy15081819 - 27 Jul 2025
Viewed by 223
Abstract
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop [...] Read more.
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop an agroecological zoning of saffron crop areas within the Protected Designation of Origin (PDO) La Mancha region (Castilla-La Mancha, Spain) by integrating the floral metabolite content with climatic and soil variables. To achieve this, a total of 173 samples were collected during the 2022 and 2023 harvests and analyzed via RP-HPLC-DAD to determine crocins, picrocrocin, kaempferols, and anthocyanins. Two new indices, Cropi (crocins + picrocrocin) and Kaeman (kaempferols + anthocyanins), were defined to classify flowers into four quality categories (A–D). High-quality classifications (A and B) were consistently associated with plots grouped in the meteorological stations of Ontur, El Sanchón, and Bolaños, indicating favorable edaphoclimatic conditions and climatic parameters, such as moderate temperatures and reduced humidity, for metabolite biosynthesis. In contrast, plots included in the meteorological stations of Tarazona and Pedernoso were mostly assigned to lower categories (C and D). Spatial analysis using thematic maps revealed that areas with an intermediate carbonate content, less calcareous soils, and higher organic matter levels were linked to higher flower quality. These findings highlight the influence of soil characteristics and climate, with distinct seasonal contrasts, that positively influence metabolite synthesis and flower quality. Full article
Show Figures

Figure 1

25 pages, 4277 KiB  
Article
C2H2 Zinc Finger Proteins GIS2 and ZFP8 Regulate Trichome Development via Hormone Signaling in Arabidopsis
by Muhammad Umair Yasin, Lili Sun, Chunyan Yang, Bohan Liu and Yinbo Gan
Int. J. Mol. Sci. 2025, 26(15), 7265; https://doi.org/10.3390/ijms26157265 - 27 Jul 2025
Viewed by 181
Abstract
Trichomes are specialized epidermal structures that protect plants from environmental stresses, regulated by transcription factors integrating hormonal and environmental cues. This study investigates the roles of two C2H2 zinc finger proteins, GIS2 and ZFP8, in regulating trichome patterning in Arabidopsis thaliana. [...] Read more.
Trichomes are specialized epidermal structures that protect plants from environmental stresses, regulated by transcription factors integrating hormonal and environmental cues. This study investigates the roles of two C2H2 zinc finger proteins, GIS2 and ZFP8, in regulating trichome patterning in Arabidopsis thaliana. Using dexamethasone-inducible overexpression lines, transcriptomic profiling, and chromatin immunoprecipitation, we identified 142 GIS2- and 138 ZFP8-associated candidate genes involved in sterol metabolism, senescence, and stress responses. GIS2 positively and directly regulated the expression of SQE5, linked to sterol biosynthesis and drought tolerance, and repressed SEN1, a senescence marker associated with abscisic acid and phosphate signaling. ZFP8 modulated stress-related target genes, including PR-4 and SPL15, with partial functional overlap between GIS family members. Spatially, GIS2 functions in inflorescence trichomes via integrating gibberellin-cytokinin pathways, while ZFP8 influences leaf trichomes through cytokinin and abscisic acid signal. Gibberellin treatment stabilized GIS2 protein and induced SQE5 expression, whereas SEN1 repression was gibberellin-independent. Chromatin immunoprecipitation and DEX-CHX experiment confirmed GIS2 binding to SQE5 and SEN1 promoters at conserved C2H2 motifs. These findings highlight hormone-mediated transcriptional regulation of trichome development by GIS2 and ZFP8, offering mechanistic insight into signal integration. The results provide a foundation for future crop improvement strategies targeting trichome-associated stress resilience. Full article
Show Figures

Figure 1

25 pages, 1668 KiB  
Article
The Impact of Climate Change on the Sustainability of PGI Legume Cultivation: A Case Study from Spain
by Betty Carlini, Javier Velázquez, Derya Gülçin, Víctor Rincón, Cristina Lucini and Kerim Çiçek
Agriculture 2025, 15(15), 1628; https://doi.org/10.3390/agriculture15151628 - 27 Jul 2025
Viewed by 148
Abstract
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing [...] Read more.
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing generalized linear mixed models (GLMMs). Specifically, it aimed to (1) investigate the effects of significant climatic stressors, including higher nighttime temperatures and extended drought periods, on crop viability, (2) analyze future scenarios based on Representative Concentration Pathways (RCP 4.5 and RCP 8.5), and (3) recommend adaptive measures to mitigate threats. Six spatial GLMMs were developed, incorporating variables such as extreme temperatures, precipitation, and the drought duration. Under present-day conditions (1971–2000), all the models exhibited strong predictive performances (AUC: 0.840–0.887), with warm nights (tasminNa20) consistently showing a negative effect on suitability (coefficients: −0.58 to −1.16). Suitability projections under future climate scenarios revealed considerable variation among the developed models. Under RCP 4.5, Far Future, Model 1 projected a 7.9% increase in the mean suitability, while under RCP 8.5, Far Future, the same model showed a 78% decline. Models using extreme cold, drought, or precipitation as climatic stressors (e.g., Models 2–4) revealed the most significant suitability losses under RCP 8.5, with the reductions exceeding 90%. In contrast, comprising variables less affected by severe fluctuations, Model 6 showed relative stability in most of the developed scenarios. The model also produced the highest mean suitability (0.130 ± 0.207) in an extreme projective scenario. The results highlight that high night temperatures and prolonged drought periods are the most limiting factors for FA cultivation. ecological niche models (ENMs) performed well, with a mean AUC value of 0.991 (SD = 0.006) and a mean TSS of 0.963 (SD = 0.024). According to the modeling results, among the variables affecting the current distribution of Protected Geographical Indication-registered AF, prspellb1 (max consecutive dry days) had the highest effect of 28.3%. Applying advanced statistical analyses, this study provides important insights for policymakers and farmers, contributing to the long-term sustainability of PGI agroecosystems in a warming world. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

29 pages, 5163 KiB  
Article
Effect of Exogenous Melatonin Supply on Potato Plants Grown In Vitro
by Andrea Kun-Nemes, Dóra Farkas, Emese Szilágyi-Tolnai, Mónika Éva Fazekas, Melinda Paholcsek, László Stündl, Piroska Bíróné Molnár, Zoltán Cziáky, Judit Dobránszki and Judit Gálné Remenyik
Antioxidants 2025, 14(8), 917; https://doi.org/10.3390/antiox14080917 - 25 Jul 2025
Viewed by 709
Abstract
Plant growth regulators of natural origin are becoming increasingly important in crop production to protect plants against various abiotic stresses and often to modulate plant pathological processes. These compounds offer the potential to enhance plant health exogenously by protecting plants against oxidative stress. [...] Read more.
Plant growth regulators of natural origin are becoming increasingly important in crop production to protect plants against various abiotic stresses and often to modulate plant pathological processes. These compounds offer the potential to enhance plant health exogenously by protecting plants against oxidative stress. Melatonin has been studied previously; however, the role of exogenous melatonin in abiotic stress tolerance and the underlying mechanisms are still less understood. In this study, potato plants were grown in vitro to study the effects of exogenous melatonin and ultrasound treatment (latter as an abiotic stress). The measured parameters included morphological data and the concentrations of melatonin and its degradation products, indole-3-acetic acid and salicylic acid, at 0 h, 24 h, 1 week, and 4 weeks after treatment. In addition, the expression levels of the genes responsible for the production of enzymes involved in melatonin synthesis were traced by RT-qPCR analysis. Melatonin added to the culture medium was taken up by the in vitro plantlets, and it participated both in the plant stress reaction and stress mitigation when an abiotic stress reaction was triggered by ultrasound. Among the degradation products, we detected N-acetyl-5-methoxykynuramine, 6-hydroxymelatonin, and 5-methoxytryptamine by UHPLC-MS. Among the enzymes involved in the synthesis of melatonin and indole-3-acetic acid, the expression levels of COMT, SNAT, TSB, TAA, ASMT, TPH, AANAT, ASMT, and TSA were measured and no pattern was observed in response to the treatments. Full article
Show Figures

Figure 1

12 pages, 1608 KiB  
Brief Report
Combining Grass-Legume Mixtures with Soil Amendments Boost Aboveground Productivity on Engineering Spoil Through Selection and Compensation Effects
by Zhiquan Zhang, Faming Ye, Hanghang Tuo, Yibo Wang, Wei Li, Yongtai Zeng and Hao Li
Diversity 2025, 17(8), 513; https://doi.org/10.3390/d17080513 - 25 Jul 2025
Viewed by 149
Abstract
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to [...] Read more.
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to facilitate ecological restoration. We have conducted continuous ecological experiments for two years using the following experimental treatments, covering indigenous soil, adding organic fertilizer, and applying compound fertilizer and organic fertilizer, with six types of sowing established under each soil treatment: monoculture and pairwise mixed cropping utilizing Elymus dahuricus (EDA), Dactylis glomerata (DGL), and Medicago sativa (MSA). Through the analysis of variance and the calculation of effect factors, our results indicated that compound fertilizer and organic fertilizer adding significantly improved vegetation cover and increased aboveground biomass, and the highest productivity was observed in the mixed sowing treatment of EDA and MSA. The effect coefficient model analysis further showed that the combination of EDA and MSA resulted in the highest selection and compensation effects on aboveground productivity. Two potential mechanisms drive enhanced productivity in mixed grasslands: the strengthening of the selection effect via increased legume nitrogen fixation, and the enhancement of the compensation effect through niche differentiation among species. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Graphical abstract

18 pages, 4008 KiB  
Article
Carboxymethyl Chitosan Cinnamaldehyde Coated SilverNanocomposites for Antifungal Seed Priming in Wheat: A Dual-Action Approach Toward Sustainable Crop Protection
by María Mondéjar-López, María Paz García-Simarro, Lourdes Gómez-Gómez, Oussama Ahrazem and Enrique Niza
Polymers 2025, 17(15), 2031; https://doi.org/10.3390/polym17152031 - 25 Jul 2025
Viewed by 201
Abstract
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde [...] Read more.
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde absorption peaks; ATR-FTIR spectra confirmed polymer–terpene bonding; and TEM analysis evidenced uniform nanoparticle morphology. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic size upon coating (from 59.46 ± 12.63 nm to 110.17 ± 4.74 nm), while maintaining low polydispersity (PDI: 0.29 to 0.27) and stable surface charge (zeta potential ~ −30 mV), suggesting colloidal stability and homogeneous polymer encapsulation. Antifungal activity was evaluated against Fusarium oxysporum, Penicillium citrinum, Aspergillus niger, and Aspergillus brasiliensis. The minimum inhibitory concentration (MIC) against F. oxysporum was significantly reduced to 83 μg/mL with AgNP–CMC=CIN, compared to 708 μg/mL for uncoated AgNPs, and was comparable to the reference fungicide tebuconazole (52 μg/mL). Seed priming with AgNP–CMC=CIN led to improved germination (85%) and markedly reduced fungal colonization, while maintaining a favorable phytotoxicity profile. These findings highlight the potential of polysaccharide-terpene-functionalized biogenic AgNPs as a sustainable alternative to conventional fungicides, supporting their application in precision agriculture and integrated crop protection strategies. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia
by Gopika Bhasi, Gemma Zerna and Travis Beddoe
Insects 2025, 16(8), 764; https://doi.org/10.3390/insects16080764 - 25 Jul 2025
Viewed by 354
Abstract
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include [...] Read more.
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include bacteria, fungi, mites, and pests. With the increasing demand for pollination and the movement of bee colonies, monitoring these threats is essential. It has been demonstrated that honey constitutes an easily accessible source of environmental DNA. Environmental DNA in honey comes from all organisms that either directly or indirectly aid in its production and those within the hive environments. In this study, we extracted eDNA from 135 honey samples and tested for the presence of DNA for seven key honey bee pathogens and pests—Paenibacillus larvae, Melissococcus plutonius (bacterial pathogens), Nosema apis, Nosema ceranae (microsporidian fungi), Ascosphaera apis (fungal pathogen), Aethina tumida, and Galleria mellonella (arthropod pests) by using end-point singleplex and multiplex PCR assays. N. ceranae emerged as the most prevalent pathogen, present in 57% of the samples. This was followed by the pests A. tumida (40%) and G. mellonella (37%), and the pathogens P. larvae (21%), N. apis (19%), and M. plutonius (18%). A. apis was detected in a smaller proportion of the samples, with a prevalence of 5%. Additionally, 19% of the samples tested negative for all pathogens and pests analysed. The data outlines essential information about the prevalence of significant arthropod, fungal, and bacterial pathogens and pests affecting honey bees in Australia, which is crucial for protecting the nation’s beekeeping industry. Full article
(This article belongs to the Special Issue Recent Advances in Bee Parasite, Pathogen, and Predator Interactions)
Show Figures

Figure 1

Back to TopTop