Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,847)

Search Parameters:
Keywords = protease inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1319 KiB  
Article
Protease Enzyme Inhibitor Cream for the Prevention of Diaper Dermatitis After Gastrointestinal Surgery in Children: Lessons Learned from a Randomized Controlled Trial
by Demi Huijgen, Irene K. Schokker-van Linschoten, Hendt P. Versteegh, Johanneke G. H. Ruseler-van Embden, Leo M. C. van Lieshout, Jon D. Laman and Cornelius E. J. Sloots
Children 2025, 12(8), 1028; https://doi.org/10.3390/children12081028 - 5 Aug 2025
Viewed by 84
Abstract
Background: Diaper dermatitis (DD) frequently occurs following pediatric gastrointestinal surgery and may lead to severe morbidity despite preventive measures. This study aims to evaluate the effectiveness of potato-derived protease enzyme inhibitor cream (PPEIC) in preventing DD after gastrointestinal surgery in children. Methods [...] Read more.
Background: Diaper dermatitis (DD) frequently occurs following pediatric gastrointestinal surgery and may lead to severe morbidity despite preventive measures. This study aims to evaluate the effectiveness of potato-derived protease enzyme inhibitor cream (PPEIC) in preventing DD after gastrointestinal surgery in children. Methods: In this double-blinded, single-center RCT, 30 patients under three years of age undergoing gastrointestinal surgery were randomized 1:1 to prevention using PPEIC or Panthenol cream (PC). The creams were applied after each diaper change for four weeks postoperatively. At two and four weeks, two observers evaluated photographs of the perianal region for the presence and severity of DD. The primary outcome was the severity of DD four weeks after surgery. Results: From November 2020 to March 2023, 30 patients were included. Two patients withdrew directly after randomization, resulting in 13 PPEIC and 15 PC patients. In total, nineteen patients (73.1%) developed DD—eight (66.7%) in the PPEIC group and 11 (78.6%) in the PC group (p = 0.665)—of whom twelve (63.2%) suffered severe DD. All DD cases developed within the first two weeks, resulting in half of the patients discontinuing the preventive cream before the four-week endpoint. Conclusions: This study highlights the significant issue of DD after gastrointestinal surgery, which affects 73.1% of diapered children despite prevention with PPEIC or PC. Although the study was unable to identify a superior preventive method, it offers valuable insights and goals for future research. Full article
(This article belongs to the Section Pediatric Surgery)
Show Figures

Figure 1

20 pages, 6058 KiB  
Article
The GPI-Anchored Aspartyl Proteases Encoded by the YPS1 and YPS7 Genes of Candidozyma auris and Their Role Under Stress Conditions
by Alvaro Vidal-Montiel, Daniel Clark-Flores, Eulogio Valentín-Gómez, Juan Pedro Luna-Arias, Erika Rosales-Cruz, César Hernández-Rodríguez, Lourdes Villa-Tanaca and Margarita Juárez-Montiel
J. Fungi 2025, 11(8), 573; https://doi.org/10.3390/jof11080573 - 1 Aug 2025
Viewed by 281
Abstract
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in [...] Read more.
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in the genomes of C. auris CJ97 and 20-1498, from clades III and IV, respectively. The C. auris YPS1 gene is orthologous to the SAP9 of C. albicans. The YPS7 gene is orthologous to YPS7 in C. glabrata and S. cerevisiae, so that they may share similar roles. An in silico analysis suggested an interaction between pepstatin and the catalytic domain of Yps1 and Yps7. Although this inhibitor, when combined with caffeine, had a subtle effect on the growth of C. auris, it induced alterations in the cell wall. CauYPS1 and CauYPS7 expression increased under nutrient starvation and NaCl, and at 42 °C. The transcriptome of the 20-1498 strain suggests that autophagy may play a role in thermal stress, probably degrading deleterious proteins or maintaining cell wall and vacuolar homeostasis. Therefore, CauYps1 and CauYps7 may play a role in the cell wall integrity of C. auris in stress conditions, and they could be a target of new antifungal or antivirulence agents. Full article
Show Figures

Graphical abstract

21 pages, 3935 KiB  
Article
The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes
by Silvia Pomella, Lucrezia D’Archivio, Matteo Cassandri, Francesca Antonella Aiello, Ombretta Melaiu, Francesco Marampon, Rossella Rota and Giovanni Barillari
Cancers 2025, 17(15), 2519; https://doi.org/10.3390/cancers17152519 - 30 Jul 2025
Viewed by 169
Abstract
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the [...] Read more.
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the effects that IL-1 beta, IL-6, and IL-8, inflammatory cytokines expressed in specimens from OPMDs and OSCCs, have on NOKs and OSCC cells. Methods: AKT activation and EMT induction were assessed along with cellular invasiveness. Results: IL-1 beta, IL-6, and IL-8 induced EMT in NOKs, ex novo conferring them invasive capacity. The same cytokines exacerbated the constitutive EMT and invasiveness of OSCC cells. Since these phenomena were accompanied by AKT activation, we tested whether they could be influenced by RTV, a long-used anti-HIV drug that was previously found to block the activation of human AKT and exert antitumor effects. We observed that therapeutic amounts of RTV counteract all the above-mentioned tumorigenic activities of ILs. Finally, consistent with the key role that AKT and EMT play in OSCC radio-resistance, RTV increased OSCC cells’ sensitivity to therapeutic doses of ionizing radiation. Conclusions: These preliminary in vitro findings encourage the use of RTV to prevent the malignant evolution of OPMDs, reduce the risk of OSCC metastasis, and improve the outcomes of anti-OSCC radiotherapy. Full article
Show Figures

Figure 1

15 pages, 280 KiB  
Article
Evaluation of Bone Mineral Density and Related Factors in Romanian HIV-Positive Patients Undergoing Antiretroviral Therapy
by Ioana-Melinda Luput-Andrica, Adelina-Raluca Marinescu, Talida Georgiana Cut, Alexandra Herlo, Lucian-Flavius Herlo, Andra-Elena Saizu, Ruxandra Laza, Anca Lustrea, Andreea-Cristina Floruncut, Adina Chisalita, Narcisa Nicolescu, Cristian Iulian Oancea, Diana Manolescu, Romanita Jumanca, Daniela-Ica Rosoha and Voichita Elena Lazureanu
Microorganisms 2025, 13(8), 1768; https://doi.org/10.3390/microorganisms13081768 - 29 Jul 2025
Viewed by 250
Abstract
Human Immunodeficiency Virus (HIV) infection remains a major global health issue, with effective antiretroviral therapy (ART) extending life expectancy but also increasing age-related issues like osteopenia and osteoporosis. This cross-sectional study examines bone mineral density (BMD) and related risk factors in Romanian HIV-positive [...] Read more.
Human Immunodeficiency Virus (HIV) infection remains a major global health issue, with effective antiretroviral therapy (ART) extending life expectancy but also increasing age-related issues like osteopenia and osteoporosis. This cross-sectional study examines bone mineral density (BMD) and related risk factors in Romanian HIV-positive patients, emphasizing regional and therapy influences. The patients varying in HIV infection duration underwent DXA scanning to measure BMD in the lumbar spine, femoral neck, and total femur. A high prevalence of low BMD, especially in the lumbar spine, was identified along with significant associations between reduced BMD and factors such as smoking, alcohol use, vitamin D deficiency and serum phosphorus levels. ART like Protease Inhibitors and Nucleoside Reverse Transcriptase Inhibitors were linked to increased bone loss, emphasizing the multifactorial nature of osteoporosis in HIV-infected individuals and underscore the importance of regular BMD assessments, lifestyle adjustments, and careful management of antiretroviral therapy to minimize fracture risk and enhance overall health and quality of life. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 408
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

27 pages, 4307 KiB  
Review
Subtype-Specific HIV-1 Protease and the Role of Hinge and Flap Dynamics in Drug Resistance: A Subtype C Narrative
by Dean Sherry, Zaahida Sheik Ismail, Tshele Mokhantso and Yasien Sayed
Viruses 2025, 17(8), 1044; https://doi.org/10.3390/v17081044 - 26 Jul 2025
Viewed by 607
Abstract
The HIV-1 aspartic protease is an effective target for the treatment of HIV/AIDS. Current therapy utilizes a selection of nine protease inhibitors (PIs) in combination with other classes of antiretroviral drugs. Although PIs were originally developed based on the knowledge of the HIV-1 [...] Read more.
The HIV-1 aspartic protease is an effective target for the treatment of HIV/AIDS. Current therapy utilizes a selection of nine protease inhibitors (PIs) in combination with other classes of antiretroviral drugs. Although PIs were originally developed based on the knowledge of the HIV-1 subtype B protease, the existence of other HIV-1 subtypes and the effects of drug resistance on currently available PIs have become a major challenge in the treatment of HIV/AIDS. Specifically, the HIV-1 subtype C accounts for more than half of the global HIV infections. Considering the importance and relevance of the subtype C virus, in this timely review we discuss the effect of polymorphisms in the HIV-1 subtype C protease on drug resistance, flap flexibility, and hinge region dynamics. We discuss novel paradigms of protease inhibition that attempt to overcome the limitations of currently available inhibitors which fall short considering genetic diversity and resistance mutations. Full article
(This article belongs to the Special Issue HIV Protease)
Show Figures

Figure 1

23 pages, 3587 KiB  
Article
Anti-Trypanosoma cruzi Potential of New Pyrazole-Imidazoline Derivatives
by Edinaldo Castro de Oliveira, Leonardo da Silva Lara, Lorraine Martins Rocha Orlando, Sarah da Costa Lanera, Thamyris Perez de Souza, Nathalia da Silva Figueiredo, Vitoria Barbosa Paes, Ana Carolina Mazzochi, Pedro Henrique Myra Fernandes, Maurício Silva dos Santos and Mirian Claudia de Souza Pereira
Molecules 2025, 30(15), 3082; https://doi.org/10.3390/molecules30153082 - 23 Jul 2025
Viewed by 399
Abstract
Chagas disease, caused by Trypanosoma cruzi, poses a significant public health challenge due to its widespread prevalence, limited therapeutic options, and adverse effects associated with available medications. In this study, we developed 13 novel pyrazole-imidazoline derivatives, inspired by a previously identified cysteine [...] Read more.
Chagas disease, caused by Trypanosoma cruzi, poses a significant public health challenge due to its widespread prevalence, limited therapeutic options, and adverse effects associated with available medications. In this study, we developed 13 novel pyrazole-imidazoline derivatives, inspired by a previously identified cysteine protease inhibitor, and evaluated their antiparasitic activity. Our in silico analyses predicted favorable physicochemical profiles and promising oral bioavailability for these derivatives. Upon phenotypic screening, we observed that these new derivatives exhibited low cytotoxicity (CC50 > 100 µM) and marked efficacy against intracellular amastigotes. Derivative 1k showed high activity (IC50 = 3.3 ± 0.2 µM), selectivity (SI = 73.9), and potency (pIC50 = 5.4). In a 3D cardiac microtissue model, 1k significantly reduced parasite load, matching the efficacy of benznidazole (Bz) even at lower concentrations. Both 1k and Bz effectively prevented parasite recrudescence; however, neither resulted in parasite sterility under the experimental conditions employed. The combination of 1k–Bz yielded an additive interaction, highlighting its potential for in vivo combination therapy. While structural changes abolished cysteine protease inhibition, incorporating a CF3 substituent at the para position and excluding the amino group enhanced antiparasitic activity. These findings reinforce the promise of the pyrazole-imidazoline scaffold and support further structural optimizations to develop innovative candidates for treating Chagas disease. Full article
(This article belongs to the Special Issue Heterocyclic Compounds for Drug Design and Drug Discovery)
Show Figures

Graphical abstract

17 pages, 1229 KiB  
Review
The Role of PAR2 in MASLD Progression and HCC Development
by Pietro Guerra, Patrizia Pontisso and Andrea Martini
Int. J. Mol. Sci. 2025, 26(15), 7076; https://doi.org/10.3390/ijms26157076 - 23 Jul 2025
Viewed by 228
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently become the leading cause of chronic liver disease and can progress to hepatocellular carcinoma (HCC) through multiple pathogenic mechanisms. Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor activated by proteases such as trypsin, tryptase or [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently become the leading cause of chronic liver disease and can progress to hepatocellular carcinoma (HCC) through multiple pathogenic mechanisms. Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor activated by proteases such as trypsin, tryptase or coagulation factors VII and Xa. Recent studies have shown that PAR2 expression is increased in the liver of patients with MASLD or liver fibrosis. Its activation is linked to metabolic dysfunction through several pathways, including SREBP1c activation, AMPK inhibition and Akt-induced insulin resistance. Inhibition of PAR2 has been effective in reducing MASLD progression in different animal models. Notably, PAR2 blockade has also been effective in more advanced stages of the disease by dampening chronic inflammation and fibrogenesis through the inhibition of hepatic stellate cell activation and of TGF-β and SerpinB3 production. PAR2 also plays a role in cancer development, promoting tumour proliferation, angiogenesis and expression of immune checkpoint inhibitors (like PD-L1, CD47 and CD24). Due to its multifaceted involvement in liver disease, PAR2 is emerging as a key therapeutic target in this clinical context. This review aims to summarise current knowledge on PAR2′s role in MASLD and its potential as a therapeutic target. Full article
(This article belongs to the Special Issue Obesity and Cancer Risk: Molecular Mechanisms and Perspectives)
Show Figures

Figure 1

18 pages, 2437 KiB  
Article
Seed-Specific Silencing of Abundantly Expressed Soybean Bowman–Birk Protease Inhibitor Genes by RNAi Lowers Trypsin and Chymotrypsin Inhibitor Activities and Enhances Protein Digestibility
by Wonseok Kim, Sunhyung Kim and Hari B. Krishnan
Int. J. Mol. Sci. 2025, 26(14), 6943; https://doi.org/10.3390/ijms26146943 - 19 Jul 2025
Viewed by 292
Abstract
Soybean meal (SBM) is extensively used as a predominant protein source in animal feed. However, raw soybean cannot be directly utilized in animal feed, due to the presence of the Kunitz trypsin inhibitor (KTi) and the Bowman–Birk protease inhibitor (BBi). These antinutritional factors [...] Read more.
Soybean meal (SBM) is extensively used as a predominant protein source in animal feed. However, raw soybean cannot be directly utilized in animal feed, due to the presence of the Kunitz trypsin inhibitor (KTi) and the Bowman–Birk protease inhibitor (BBi). These antinutritional factors inhibit the digestive enzymes in animals, trypsin and chymotrypsin, resulting in poor animal performance. To inactivate the activity of protease inhibitors, SBM is subjected to heat processing, a procedure that can negatively impact the soybean protein quality. Thus, it would be beneficial to develop soybean varieties with little or no trypsin inhibitors. In this study, we report on the creation of experimental soybean lines with significantly reduced levels of Bowman–Birk protease inhibitors. RNA interference (RNAi) technology was employed to generate several transgenic soybean lines. Some of these BBi knockdown soybean lines showed significantly lower amounts of both trypsin and chymotrypsin inhibitor activities. Western blot analysis revealed the complete absence of BBi in selected RNAi-derived lines. RNA sequencing (RNAseq) analysis demonstrated a drastic reduction in the seed-specific expression of BBi genes in the transgenic soybean lines during seed development. Confocal fluorescence immunolabeling studies showed that the accumulation of BBi was drastically diminished in BBi knockdown lines compared to wild-type soybeans. The absence of BBi in the transgenic soybean did not alter the overall protein, oil, and sulfur amino acid content of the seeds compared to wild-type soybeans. The seed protein from the BBi knockdown lines were more rapidly hydrolyzed by trypsin and chymotrypsin compared to the wild type, indicating that the absence of BBi enhances protein digestibility. Our study suggests that these BBi knockdown lines could be a valuable resource in order for plant breeders to incorporate this trait into commercial soybean cultivars, potentially enabling the use of raw soybeans in animal feed. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

27 pages, 3370 KiB  
Review
Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo and Emma Mani-López
Microbiol. Res. 2025, 16(7), 161; https://doi.org/10.3390/microbiolres16070161 - 17 Jul 2025
Viewed by 623
Abstract
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It [...] Read more.
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It explores implications for individuals with gluten-related disorders, including celiac disease, non-celiac gluten sensitivity and intolerance, as well as irritable bowel syndrome (IBS). In addition, LAB sourdough effect on fermentable oligo-, di-, monosaccharides and polyols (FODMAPs), amylase-trypsin inhibitors (ATIs), and phytate are revised. Selected homo- and heterofermentative LAB are capable of degrading gluten proteins, especially the polypeptides derived from the action of native cereal proteases. Mixed cultures of LAB degrade gluten peptides more effectively than monocultures. However, LAB sourdough is not sufficient to remove the toxic peptides to the minimal level (<20 ppm). This goal is achieved only if sourdough is combined with fungal proteases during sourdough fermentation. LAB sourdough directly contributes to lower FODMAPs but not ATIs and phytate. Phytate is reduced by the endogenous cereal phytases activated at acidic pHs (pH < 5.0), conditions generated during sourdough fermentation. ATIs are also lowered by endogenous cereal proteases instead of LAB proteases/peptidases. Despite LAB sourdough not fully degrading the gluten or directly reducing the ATIs and phytate, it participates through peptidases activity and acidic pH that trigger the action of endogenous cereal proteases and phytases. Full article
Show Figures

Figure 1

24 pages, 2292 KiB  
Article
Integrating Molecular Dynamics, Molecular Docking, and Machine Learning for Predicting SARS-CoV-2 Papain-like Protease Binders
by Ann Varghese, Jie Liu, Tucker A. Patterson and Huixiao Hong
Molecules 2025, 30(14), 2985; https://doi.org/10.3390/molecules30142985 - 16 Jul 2025
Viewed by 588
Abstract
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune [...] Read more.
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune evasion, making it an attractive yet underexplored target for drug repurposing. In this study, we combined machine learning, molecular dynamics, and molecular docking to identify potential PLpro inhibitors in existing drugs. We performed long-timescale molecular dynamics simulations on PLpro–ligand complexes at two known binding sites, followed by structural clustering to capture representative structures. These were used for molecular docking, including a training set of 127 compounds and a library of 1107 FDA-approved drugs. A random forest model, trained on the docking scores of the representative conformations, yielded 76.4% accuracy via leave-one-out cross-validation. Applying the model to the drug library and filtering results based on prediction confidence and the applicability domain, we identified five drugs as promising candidates for repurposing for COVID-19 treatment. Our findings demonstrate the power of integrating computational modeling with machine learning to accelerate drug repurposing against emerging viral targets. Full article
Show Figures

Figure 1

22 pages, 670 KiB  
Review
Pharmacokinetic Adaptations in Pregnancy: Implications for Optimizing Antiretroviral Therapy in HIV-Positive Women
by Natalia Briceño-Patiño, María Camila Prieto, Paula Manrique, Carlos-Alberto Calderon-Ospina and Leonardo Gómez
Pharmaceutics 2025, 17(7), 913; https://doi.org/10.3390/pharmaceutics17070913 - 15 Jul 2025
Viewed by 462
Abstract
Pregnancy introduces significant physiological changes that alter the pharmacokinetics (PK) of antiretroviral therapy (ART), impacting its safety and efficacy in HIV-positive women. Optimizing ART during pregnancy is critical to maintaining maternal virological suppression and preventing mother-to-child transmission (MTCT) of HIV. This review evaluates [...] Read more.
Pregnancy introduces significant physiological changes that alter the pharmacokinetics (PK) of antiretroviral therapy (ART), impacting its safety and efficacy in HIV-positive women. Optimizing ART during pregnancy is critical to maintaining maternal virological suppression and preventing mother-to-child transmission (MTCT) of HIV. This review evaluates the impact of pregnancy-induced PK changes on ART and proposes strategies for tailored regimens to improve outcomes. A comprehensive review of published literature was conducted, focusing on PK adaptations during pregnancy and their implications for different ART classes, including protease inhibitors (PIs), integrase strand transfer inhibitors (INSTIs), and nucleoside reverse transcriptase inhibitors (NRTIs). Key studies were analyzed to assess drug exposure, efficacy, and safety. Pregnancy significantly alters the PK of antiretrovirals, with increased hepatic metabolism, renal clearance, and changes in plasma protein binding leading to reduced drug exposure. For example, drugs like lopinavir and atazanavir require dose adjustments, while dolutegravir maintains efficacy despite reduced plasma levels. Integrase inhibitors demonstrate favorable virological suppression, although cobicistat-boosted regimens show subtherapeutic levels. Tailored approaches, such as therapeutic drug monitoring (TDM), optimize ART efficacy while minimizing toxicity. Pregnancy-specific PK changes necessitate evidence-based ART adjustments to ensure virological suppression and reduce MTCT risk. Incorporating TDM, leveraging pharmacogenomic insights, and prioritizing maternal and neonatal safety are critical for personalized ART management. Further research into long-acting formulations and global guideline harmonization is needed to address disparities in care and improve outcomes for HIV-positive pregnant women. Full article
(This article belongs to the Special Issue Pharmacokinetics of Drugs in Pregnancy and Lactation)
Show Figures

Figure 1

17 pages, 1667 KiB  
Article
C-Terminal Analogues of Camostat Retain TMPRSS2 Protease Inhibition: New Synthetic Directions for Antiviral Repurposing of Guanidinium-Based Drugs in Respiratory Infections
by Bill T. Ferrara, Elinor P. Thompson, Giovanni N. Roviello and Thomas F. Gale
Int. J. Mol. Sci. 2025, 26(14), 6761; https://doi.org/10.3390/ijms26146761 - 15 Jul 2025
Viewed by 350
Abstract
The recent global coronavirus pandemic highlighted the ever-present threat of respiratory virus outbreaks and the consequent need for ongoing research into antiviral therapy. To this end, structural analogues of the guanidinium-based drug camostat mesylate have been synthesised to probe their potential inhibition of [...] Read more.
The recent global coronavirus pandemic highlighted the ever-present threat of respiratory virus outbreaks and the consequent need for ongoing research into antiviral therapy. To this end, structural analogues of the guanidinium-based drug camostat mesylate have been synthesised to probe their potential inhibition of Transmembrane Serine Protease 2 (TMPRSS2), a human protease that is essential for infection by many respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Our in vitro fluorescence-based protease assays and supporting computational docking studies suggest that C-terminal camostat analogues retain TMPRSS2 inhibition potencies (IC50 = 1–3 nM, BE = −6.6 to −7.0 kcal/mol) that match or exceed that of the parent drug. Analogues 1c and 1d emerge as lead candidates in this regard, thereby validating the rationale behind C-terminal structural modifications and highlighting these derivatives as promising scaffolds for the future development of targeted antiviral therapeutics. Replacement of camostat’s ester functionality with peptide linkages largely preserves non-covalent binding but disrupts in vitro protease inhibition, findings consistent with the parent drug’s known role as an acylating suicide inhibitor. Docking studies confirm that the replacement of aromatic residues with flexible, equivalent-length alkyl chains is detrimental to drug binding. These function and binding data offer new directions for the synthesis of further analogues of camostat and of other guanidinium-based protease inhibitors that have yet to be refined via structure–activity relationship studies. Further investigation will support tailoring this class of drugs for repurposing in antiviral therapy. Full article
(This article belongs to the Special Issue Novel Antivirals against Respiratory Viruses)
Show Figures

Figure 1

5 pages, 182 KiB  
Editorial
Inhibitors of Proteases: A Well-Grounded Strategy in Drug Development
by Santo Previti and Roberta Ettari
Molecules 2025, 30(14), 2909; https://doi.org/10.3390/molecules30142909 - 10 Jul 2025
Viewed by 316
Abstract
Enzymes are biocatalysts that are widespread in living organisms [...] Full article
16 pages, 3372 KiB  
Article
Soybean Trypsin Inhibitor Possesses Potency Against SARS-CoV-2 Infection by Blocking the Host Cell Surface Receptors ACE2, TMPRSS2, and CD147
by Wen-Liang Wu, Jaung-Geng Lin, Wen-Ping Jiang, Hsi-Pin Hung, Atsushi Inose and Guan-Jhong Huang
Int. J. Mol. Sci. 2025, 26(14), 6583; https://doi.org/10.3390/ijms26146583 - 9 Jul 2025
Viewed by 391
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that helps the body regulate blood pressure and endocrine secretions. Transmembrane serine protease 2 (TMPRSS2) is a cell surface protein expressed mainly by endothelial cells of the respiratory and digestive tract, which participates in the [...] Read more.
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that helps the body regulate blood pressure and endocrine secretions. Transmembrane serine protease 2 (TMPRSS2) is a cell surface protein expressed mainly by endothelial cells of the respiratory and digestive tract, which participates in the cleavage of protein peptide bonds with serine as the active site. These two proteins have been studied to be highly associated with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soybean trypsin inhibitor (SBTI) has special bioactivities such as anticarcinogenic and anti-inflammatory functions, which can be widely used in functional foods or drugs. Our study involved in vitro and in vivo experiments to elucidate the effect of SBTI on SARS-CoV-2 host invasion. First, it was confirmed that being under 250 μg/mL of SBTI was not toxic to HepG2, HEK293T, and Calu-3 cells. The animal study administered SBTI to mice once daily for 14 days. In the lungs, liver, and kidneys, the histopathologic findings of the SBTI group were not different from those of the control group, but the expression of ACE2, TMPRSS2, and CD147 was reduced. Thus, our findings suggest that the inhibition of ACE2, TMPRSS,2 and CD147 proteins by SBTI shows promise in potentially inhibiting SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue New Advances in Bioactive Compounds in Health and Disease)
Show Figures

Graphical abstract

Back to TopTop