Inhibitors of Proteases: A Well-Grounded Strategy in Drug Development
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
ACE | Angiotensin-converting enzyme |
CPDO | Chronic Obstructive Pulmonary Disease |
DPP-4 | Dipeptidyl peptidase 4 |
SASR-CoV-2 | Severe Acute Respiratory Syndrome COronaVirus 2 |
COVID-19 | COronaVIrus Disease 19 |
HIV | Human Immunodeficiency Virus |
References
- Noda-Garcia, L.; Liebermeister, W.; Tawfik, D.S. Metabolite-enzyme coevolution: From single enzymes to metabolic pathways and networks. Annu. Rev. Biochem. 2018, 87, 187–216. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Zubair, H.; Anand, S.; Srivastava, S.K.; Singh, S.; Singh, A.P. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities. Cancer Lett. 2020, 473, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Mahe, M.; Rios-Fuller, T.J.; Karolin, A.; Schneider, R.J. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front. Oncol. 2023, 13, 1230934. [Google Scholar] [CrossRef] [PubMed]
- Pancholi, V.; Chhatwal, G.S. Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. 2003, 293, 391–401. [Google Scholar] [CrossRef]
- Reshma, C.V. Microbial enzymes: Therapeutic applications. Microbiol. Res. J. Int. 2019, 27, 1–8. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem. 2008, 283, 30433–30437. [Google Scholar] [CrossRef]
- Rawlings, N.D. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140345. [Google Scholar] [CrossRef]
- Farady, C.J.; Craik, C.S. Mechanisms of macromolecular protease inhibitors. Chembiochem 2010, 11, 2341–2346. [Google Scholar] [CrossRef]
- Schramm, V.L. Transition States and transition state analogue interactions with enzymes. Acc. Chem. Res. 2015, 48, 1032–1039. [Google Scholar] [CrossRef]
- Leung, D.; Abbenante, G.; Fairlie, D.P. Protease inhibitors: Current status and future prospects. J. Med. Chem. 2000, 43, 305–341. [Google Scholar] [CrossRef]
- Kaysser, L. Built to bind: Biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat. Prod. Rep. 2019, 36, 1654–1686. [Google Scholar] [CrossRef]
- Bond, J.S. Proteases: History, discovery, and roles in health and disease. J. Biol. Chem. 2019, 294, 1643–1651. [Google Scholar] [CrossRef]
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 2 July 2025).
- Zheng, W.; Tian, E.; Liu, Z.; Zhou, C.; Yang, P.; Tian, K.; Liao, W.; Li, J.; Ren, C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front. Pharmacol. 2022, 13, 968104. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, G.; Qiao, Z.; Cao, Y.; Song, M. Novel angiotensin-I converting enzyme inhibitory peptides isolated from rice wine lees: Purification, characterization, and structure-activity relationship. Front. Nutr. 2021, 8, 746113. [Google Scholar] [CrossRef]
- Dey, T.; Kalita, J.; Weldon, S.; Taggart, C.C. Proteases and their inhibitors in chronic obstructive pulmonary disease. J. Clin. Med. 2018, 7, 244. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.C.; De, S.; Mishra, P.K. Role of proteases in chronic obstructive pulmonary disease. Front. Pharmacol. 2017, 8, 512. [Google Scholar] [CrossRef] [PubMed]
- Eatemadi, A.; Aiyelabegan, H.T.; Negahdari, B.; Mazlomi, M.A.; Daraee, H.; Daraee, N.; Eatemadi, R.; Sadroddiny, E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother. 2017, 86, 221–231. [Google Scholar] [CrossRef]
- Scarbaci, K.; Troiano, V.; Ettari, R.; Pinto, A.; Micale, N.; Di Giovanni, C.; Cerchia, C.; Schirmeister, T.; Novellino, E.; Lavecchia, A.; et al. Development of novel selective peptidomimetics containing a boronic acid moiety, targeting the 20S proteasome as anticancer agents. ChemMedChem 2014, 9, 1801–1816. [Google Scholar] [CrossRef]
- Yuan, L.; Sheng, L.; He, W.; Zou, C.; Hu, B.; Liu, J.; Ge, W.; Liu, Y.; Wang, J.; Ma, E. Discovery of novel cathepsin inhibitors with potent anti-metastatic effects in breast cancer cells. Bioorg. Chem. 2018, 81, 672–680. [Google Scholar] [CrossRef]
- Sananes, A.; Cohen, I.; Shahar, A.; Hockla, A.; De Vita, E.; Miller, A.K.; Radisky, E.S.; Papo, N. A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering. J. Biol. Chem. 2018, 293, 12663–12680. [Google Scholar] [CrossRef]
- Bayanati, M.; Ismail Mahboubi Rabbani, M.; Sirous Kabiri, S.; Mir, B.; Rezaee, E.; Tabatabai, S.A. Dipeptidyl peptidase-4 inhibitors: A systematic review of structure-activity relationship studies. Iran. J. Pharm. Res. 2024, 23, e151581. [Google Scholar] [CrossRef]
- Hawash, M.; Jaradat, N.; Shekfeh, S.; Abualhasan, M.; Eid, A.M.; Issa, L. Molecular docking, chemo-informatic properties, alpha-amylase, and lipase inhibition studies of benzodioxol derivatives. BMC Chem. 2021, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, H.; Haroon, M.; Akhtar, T.; Woodward, S.; Haq, S.; Alshehri, S.M. Synthesis, anti-diabetic profiling and molecular docking studies of 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones. Future Med. Chem. 2024, 16, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Ottanà, R.; Paoli, P.; Lori, G.; Adornato, I.; Previti, S.; Nass, A.; Wolber, G.; Maccari, R. Design and evaluation of non-carboxylate 5-arylidene-2-thioxo-4-imidazolidinones as novel non-competitive inhibitors of protein tyrosine phosphatase 1B. Bioorg. Chem. 2019, 92, 103211. [Google Scholar] [CrossRef] [PubMed]
- Saheb Sharif-Askari, F.; Ali Hussain Alsayed, H.; Saheb Sharif-Askari, N.; Al Sayed Hussain, A.; Al-Muhsen, S.; Halwani, R. Nirmatrelvir plus ritonavir reduces COVID-19 hospitalization and prevents long COVID in adult outpatients. Sci. Rep. 2024, 14, 25901. [Google Scholar] [CrossRef]
- Weber, I.T.; Wang, Y.F.; Harrison, R.W. HIV protease: Historical perspective and current research. Viruses 2021, 13, 839. [Google Scholar] [CrossRef]
- Chuntakaruk, H.; Hengphasatporn, K.; Shigeta, Y.; Aonbangkhen, C.; Lee, V.S.; Khotavivattana, T.; Rungrotmongkol, T.; Hannongbua, S. FMO-guided design of darunavir analogs as HIV-1 protease inhibitors. Sci. Rep. 2024, 14, 3639. [Google Scholar] [CrossRef]
- Lockbaum, G.J.; Rusere, L.N.; Henes, M.; Kosovrasti, K.; Rao, D.N.; Spielvogel, E.; Lee, S.K.; Nalivaika, E.A.; Swanstrom, R.; Yilmaz, N.K.; et al. HIV-1 protease inhibitors with a P1 phosphonate modification maintain potency against drug-resistant variants by increased interactions with flap residues. Eur. J. Med. Chem. 2023, 257, 115501. [Google Scholar] [CrossRef]
- Kojima, E.; Iimuro, A.; Nakajima, M.; Kinuta, H.; Asada, N.; Sako, Y.; Nakata, Z.; Uemura, K.; Arita, S.; Miki, S.; et al. Pocket-to-lead: Structure-based de novo design of novel non-peptidic HIV-1 protease inhibitors using the ligand binding pocket as a template. J. Med. Chem. 2022, 65, 6157–6170. [Google Scholar] [CrossRef]
- Kaminsky, R.; Maser, P. Global impact of parasitic infections and the importance of parasite control. Front. Parasitol. 2025, 4, 1546195. [Google Scholar] [CrossRef]
- Ettari, R.; Previti, S.; Maiorana, S.; Amendola, G.; Wagner, A.; Cosconati, S.; Schirmeister, T.; Hellmich, U.A.; Zappalà, M. Optimization strategy of novel peptide-based Michael acceptors for the treatment of Human African Trypanosomiasis. J. Med. Chem. 2019, 62, 10617–10629. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.L.; de Oliveira Rezende Junior, C.; Ferreira, R.S.; Espinoza Chavez, R.M.; Ferreira, L.L.G.; Slafer, B.W.; Magalhaes, L.G.; Krogh, R.; Oliva, G.; Cruz, F.C.; et al. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: A structure-based drug design approach. J. Chem. Inf. Model. 2020, 60, 1028–1041. [Google Scholar] [CrossRef]
- Zwicker, J.D.; Smith, D.; Guerra, A.J.; Hitchens, J.R.; Haug, N.; Vander Roest, S.; Lee, P.; Wen, B.; Sun, D.; Wang, L.; et al. Discovery and optimization of triazine nitrile inhibitors of Toxoplasma gondii cathepsin L for the potential treatment of chronic toxoplasmosis in the CNS. ACS Chem. Neurosci. 2020, 11, 2450–2463. [Google Scholar] [CrossRef]
- Stoye, A.; Juillard, A.; Tang, A.H.; Legac, J.; Gut, J.; White, K.L.; Charman, S.A.; Rosenthal, P.J.; Grau, G.E.R.; Hunt, N.H.; et al. Falcipain inhibitors based on the natural product gallinamide a are potent in vitro and in vivo antimalarials. J. Med. Chem. 2019, 62, 5562–5578. [Google Scholar] [CrossRef]
- Fey, P.; Chartomatsidou, R.; Kiefer, W.; Mottram, J.C.; Kersten, C.; Schirmeister, T. New aziridine-based inhibitors of cathepsin L-like cysteine proteases with selectivity for the Leishmania cysteine protease LmCPB2.8. Eur. J. Med. Chem. 2018, 156, 587–597. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stepien-Pysniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria-a review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; Tu, M.M.; Brown, E.D. Important challenges to finding new leads for new antibiotics. Curr. Opin. Microbiol. 2025, 83, 102562. [Google Scholar] [CrossRef] [PubMed]
- Agbowuro, A.A.; Huston, W.M.; Gamble, A.B.; Tyndall, J.D.A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev. 2018, 38, 1295–1331. [Google Scholar] [CrossRef]
- Culp, E.; Wright, G.D. Bacterial proteases, untapped antimicrobial drug targets. J. Antibiot. 2017, 70, 366–377. [Google Scholar] [CrossRef]
- Hamid, M.; Aurangzeb, S.; Rashid, Y.; Shamim, S.; Salar, U.; Azim, M.K.; Khan, K.M.; Bashir, S. Inhibitory potential of triazines and hydrazinyl thiazole substituted chromones against the HslVU protease/chaperone complex, a novel drug target. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8567–8575. [Google Scholar] [CrossRef]
- Burchacka, E.; Pieta, P.; Lupicka-Slowik, A. Recent advances in fungal serine protease inhibitors. Biomed. Pharmacother. 2022, 146, 112523. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Gongora, D.; Geddes-McAlister, J. From naturally-sourced protease inhibitors to new treatments for fungal infections. J. Fungi 2021, 7, 1016. [Google Scholar] [CrossRef] [PubMed]
- Di Chio, C.; Previti, S.; De Luca, F.; Bogacz, M.; Zimmer, C.; Wagner, A.; Schirmeister, T.; Zappalà, M.; Ettari, R. Drug combination studies of the dipeptide nitrile CD24 with curcumin: A new strategy to synergistically inhibit rhodesain of Trypanosoma brucei rhodesiense. Int. J. Mol. Sci. 2022, 23, 14470. [Google Scholar] [CrossRef]
- Jin, H.; Wang, L.; Bernards, R. Rational combinations of targeted cancer therapies: Background, advances and challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234. [Google Scholar] [CrossRef]
- Cacace, E.; Kim, V.; Varik, V.; Knopp, M.; Tietgen, M.; Brauer-Nikonow, A.; Inecik, K.; Mateus, A.; Milanese, A.; Marli, M.T.; et al. Systematic analysis of drug combinations against Gram-positive bacteria. Nat. Microbiol. 2023, 8, 2196–2212. [Google Scholar] [CrossRef]
- Previti, S.; Di Chio, C.; Ettari, R.; Zappalà, M. Dual inhibition of parasitic targets: A valuable strategy to treat malaria and neglected tropical diseases. Curr. Med. Chem. 2022, 29, 2952–2978. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, T.; Dinic, J.; Podolski-Renic, A.; Musso, L.; Buric, S.S.; Dallavalle, S.; Pesic, M. Dual inhibitors as a new challenge for cancer multidrug resistance treatment. Curr. Med. Chem. 2019, 26, 6074–6106. [Google Scholar] [CrossRef]
- Pokrovskaya, V.; Baasov, T. Dual-acting hybrid antibiotics: A promising strategy to combat bacterial resistance. Expert Opin. Drug Discov. 2010, 5, 883–902. [Google Scholar] [CrossRef]
- Previti, S.; Ettari, R.; Calcaterra, E.; Di Maro, S.; Hammerschmidt, S.J.; Muller, C.; Ziebuhr, J.; Schirmeister, T.; Cosconati, S.; Zappalà, M. Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. Eur. J. Med. Chem. 2023, 247, 115021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Previti, S.; Ettari, R. Inhibitors of Proteases: A Well-Grounded Strategy in Drug Development. Molecules 2025, 30, 2909. https://doi.org/10.3390/molecules30142909
Previti S, Ettari R. Inhibitors of Proteases: A Well-Grounded Strategy in Drug Development. Molecules. 2025; 30(14):2909. https://doi.org/10.3390/molecules30142909
Chicago/Turabian StylePreviti, Santo, and Roberta Ettari. 2025. "Inhibitors of Proteases: A Well-Grounded Strategy in Drug Development" Molecules 30, no. 14: 2909. https://doi.org/10.3390/molecules30142909
APA StylePreviti, S., & Ettari, R. (2025). Inhibitors of Proteases: A Well-Grounded Strategy in Drug Development. Molecules, 30(14), 2909. https://doi.org/10.3390/molecules30142909