Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,876)

Search Parameters:
Keywords = product management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4005 KiB  
Article
Analysis of Temporal and Spatial Variations in Cropland Water-Use Efficiency and Influencing Factors in Xinjiang Based on the XGBoost–SHAP Model
by Qiu Zhao, Fan Gao, Bing He, Ying Li, Hairui Li, Yao Xiao and Ruzhang Lin
Agronomy 2025, 15(8), 1902; https://doi.org/10.3390/agronomy15081902 (registering DOI) - 7 Aug 2025
Abstract
In arid regions with limited water resources, improving cropland water-use efficiency (WUEc) is crucial for maintaining crop production. This study aims to investigate how changes in meteorological and vegetation factors affect WUEc in drylands and to identify its primary drivers, which are essential [...] Read more.
In arid regions with limited water resources, improving cropland water-use efficiency (WUEc) is crucial for maintaining crop production. This study aims to investigate how changes in meteorological and vegetation factors affect WUEc in drylands and to identify its primary drivers, which are essential for understanding how cropland ecosystems respond to complex environmental changes. Using remote sensing data, we analyzed the spatiotemporal patterns of WUEc in Xinjiang from 2002 to 2022 by applying STL decomposition, Sen’s slope combined with the Mann–Kendall test, and an XGBoost–SHAP model, quantifying its key controlling factors. The results indicate that from 2002 to 2022, WUEc in Xinjiang showed an overall declining trend. Prior to 2007, WUEc increased at 0.05 gC·m−1·m−2·a−1, after which it fluctuated downward at −0.01 gC·m−1·m−2·a−1. Intra-annual peaks consistently occurred in May and during September–October. Spatially, WUEc exhibited significant heterogeneity, increasing from south to north, with 53.26% of the region showing declines. Temperature (T) and leaf area index (LAI) emerged as the primary meteorological and vegetation drivers, respectively, influencing WUEc change in 45.7% and 17.6% of the area. Both variables were negatively correlated with WUEc, with negative correlations covering 60% of the region for T and 83% for LAI. These findings provide scientific guidance for optimizing crop structure and water-resource management strategies in arid regions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2405 KiB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 (registering DOI) - 7 Aug 2025
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

25 pages, 7934 KiB  
Article
An Improved InTEC Model for Estimating the Carbon Budgets in Eucalyptus Plantations
by Zhipeng Li, Mingxing Zhou, Kunfa Luo, Yunzhong Wu and Dengqiu Li
Remote Sens. 2025, 17(15), 2741; https://doi.org/10.3390/rs17152741 (registering DOI) - 7 Aug 2025
Abstract
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC [...] Read more.
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC (Integrated Terrestrial Ecosystem Carbon) model is a process-based biogeochemical model that simulates carbon dynamics in terrestrial ecosystems by integrating physiological processes, environmental drivers, and management practices. In this study, the InTEC model was enhanced with an optimized eucalyptus module (InTECeuc) and a data assimilation module (InTECDA), and driven by multiple remote sensing products (Net Primary Productivity (NPP) and carbon density) to simulate the carbon budgets of eucalyptus plantations from 2003 to 2023. The results indicated notable improvements in the performance of the InTECeuc model when driven by different datasets: carbon density simulation showed improvements in R2 (0.07–0.56), reductions in MAE (5.99–28.51 Mg C ha−1), reductions in RMSE (8.1–31.85 Mg C ha−1), and improvements in rRMSE (12.37–51.82%), excluding NPPLin. The carbon density-driven InTECeuc model outperformed the NPP-driven model, with improvements in R2 (0.28), MAE (−8.15 Mg C ha−1), RMSE (−9.43 Mg C ha−1), and rRMSE (−15.34%). When the InTECDA model was employed, R2 values for carbon density improved by 0–0.03 (excluding ACDYan), with MAE reductions between 0.17 and 7.22 Mg C ha−1, RMSE reductions between 0.33 and 12.94 Mg C ha−1 and rRMSE improvements ranging from 0.51 to 20.22%. The carbon density-driven InTECDA model enabled the production of high-resolution and accurate carbon budget estimates for eucalyptus plantations from 2003 to 2023, with average NPP, Net Ecosystem Productivity (NEP), and Net Biome Productivity (NBP) values of 17.80, 10.09, and 9.32 Mg C ha−1 yr−1, respectively, offering scientific insights and technical support for the management of eucalyptus plantations in alignment with carbon neutrality targets. Full article
44 pages, 1716 KiB  
Article
Creating Automated Microsoft Bicep Application Infrastructure from GitHub in the Azure Cloud
by Vladislav Manolov, Daniela Gotseva and Nikolay Hinov
Future Internet 2025, 17(8), 359; https://doi.org/10.3390/fi17080359 (registering DOI) - 7 Aug 2025
Abstract
Infrastructure as code (IaC) is essential for modern cloud development, enabling teams to define, deploy, and manage infrastructure in a consistent and repeatable manner. As organizations migrate to Azure, selecting the right approach is crucial for managing complexity, minimizing errors, and supporting DevOps [...] Read more.
Infrastructure as code (IaC) is essential for modern cloud development, enabling teams to define, deploy, and manage infrastructure in a consistent and repeatable manner. As organizations migrate to Azure, selecting the right approach is crucial for managing complexity, minimizing errors, and supporting DevOps practices. This paper examines the use of Azure Bicep with GitHub Actions to automate infrastructure deployment for an application in the Azure cloud. It explains how Bicep improves readability, modularity, and integration compared to traditional ARM templates and other automation tools. The solution utilizes a modular Bicep design to deploy resources, including virtual networks, managed identities, container apps, databases, and AI services, with environment-specific parameters for development, QA, and production. GitHub Actions workflows automate the building, deployment, and tearing down of infrastructure, ensuring consistent deployments across environments. Security considerations include managed identities, private networking, and secret management in continuous integration (CI) and continuous delivery (CD) pipelines. This paper provides a detailed architectural overview, workflow analysis, and implementation guidance to help teams adopt a robust, automated approach to Azure infrastructure deployment. By leveraging automation tooling and modern DevOps practices, organizations can streamline delivery and maintain secure, maintainable cloud environments. Full article
(This article belongs to the Special Issue IoT, Edge, and Cloud Computing in Smart Cities, 2nd Edition)
Show Figures

Figure 1

21 pages, 2047 KiB  
Article
Sustainable Management of Fruit By-Products Through Design Thinking: Development of an Innovative Food Product
by Sylwia Sady, Alfred Błaszczyk, Bogdan Pachołek, Anna Muzykiewicz-Szymańska, Anna Nowak, Justyna Syguła-Cholewińska, Tomasz Sawoszczuk, Stanisław Popek, Małgorzata Krzywonos, Agnieszka Piekara and Dominika Jakubowska
Sustainability 2025, 17(15), 7164; https://doi.org/10.3390/su17157164 (registering DOI) - 7 Aug 2025
Abstract
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing [...] Read more.
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing by-products from chokeberry processing, thereby contributing to circularity in food systems. The integration of design thinking with fermentation of chokeberry pomace is presented in this study as an approach to developing value-added food ingredients. Qualitative consumer research (focus group interviews, n = 36) identified preferences and expectations regarding functional foods containing by-products. Conducted by an interdisciplinary team, the project followed five stages, involving both qualitative and quantitative research. Liquid surface fermentation was performed using Aspergillus niger, selected for its proven ability to enhance the antioxidant capacity and polyphenol content of plant matrices. The optimal process was 2-day fermentation under controlled pH conditions with glucose supplementation, which significantly enhanced the quality and nutritional value of the final product. Antioxidant activity (ABTS, FRAP, CUPRAC assays), total polyphenols, anthocyanins, and proanthocyanidins were determined, showing significant increases compared to non-fermented controls. The outcome was the development of a dried, fermented chokeberry pomace product that meets consumer expectations and fulfils sustainability goals through waste reduction and innovative reuse of fruit processing by-products. Full article
(This article belongs to the Special Issue Innovative Technologies in Food Engineering Towards Sustainability)
20 pages, 2212 KiB  
Article
ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis
by José Augusto Castro-Rodríguez, Karla Fernanda Ramírez-González, Francisco Franco-Guerrero, Andrea Sabido-Ramos, Ilce Fernanda Abundio-Sánchez, Rogelio Rodríguez-Sotres, Adela Rodríguez-Romero and Amelia Farrés
Catalysts 2025, 15(8), 757; https://doi.org/10.3390/catal15080757 (registering DOI) - 7 Aug 2025
Abstract
Plastic waste, particularly poly(ethylene terephthalate) (PET), negatively impacts the environment and human health. Biotechnology could become an alternative to managing PET waste if enzymes ensure the recovery of terephthalic acid with efficiencies comparable to those of chemical treatments. Recent research has highlighted the [...] Read more.
Plastic waste, particularly poly(ethylene terephthalate) (PET), negatively impacts the environment and human health. Biotechnology could become an alternative to managing PET waste if enzymes ensure the recovery of terephthalic acid with efficiencies comparable to those of chemical treatments. Recent research has highlighted the potential of fungal cutinases, such as wild-type ANCUT1 (ANCUT1wt) from Aspergillus nidulans, in achieving PET depolymerization. Fungal cutinases’ structures differ from those of bacterial cutinases, while their PET depolymerization mechanism has not been well studied. Here, a reliable model of the ANCUT1wt was obtained using AlphaFold 2.0. Computational chemistry revealed potential cation-binding sites, which had not been described regarding enzymatic activation in fungal cutinases. Moreover, it allowed the prediction of residues with the ability to interact with a PET trimer that were mutation candidates to engineer the substrate binding cleft, seeking enhancements of PET hydrolysis. Enzyme kinetics revealed that both ANCUT1wt and ANCUT1N73V/L171Q (DM) were activated by MgCl2, increasing the dissociation constant of the substrate and maximal reaction rate. We found that in the presence of MgCl2, DM hydrolyzed different PET samples and released 9.1-fold more products than ANCUT1wt. Scanning Electron Microscopy revealed a different hydrolysis mode of these enzymes, influenced by the polymer’s crystallinity and structure. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

20 pages, 1149 KiB  
Article
Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
by Sartika Indah Amalia Sudiarto, Hong Lim Choi, Anriansyah Renggaman and Arumuganainar Suresh
AgriEngineering 2025, 7(8), 254; https://doi.org/10.3390/agriengineering7080254 (registering DOI) - 7 Aug 2025
Abstract
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) [...] Read more.
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) of WAS and its co-digestion with swine slurry (SS), water lily (Nymphaea spp.), and lotus (Nelumbo nucifera) shoot biomass to enhance methane yield. Batch BMP assays were conducted at substrate-to-inoculum (S/I) ratios of 1.0 and 0.5, with methane production kinetics analyzed using the modified Gompertz model. Mono-digestion of WAS yielded 259.35–460.88 NmL CH4/g VSadded, while co-digestion with SS, water lily, and lotus increased yields by 14.89%, 10.97%, and 16.89%, respectively, surpassing 500 NmL CH4/g VSadded. All co-digestion combinations exhibited synergistic effects (α > 1), enhancing methane production beyond individual substrate contributions. Lower S/I ratios improved methane yields and biodegradability, highlighting the role of inoculum availability. Co-digestion reduced the lag phase limitations of WAS and plant biomass, improving process efficiency. These findings demonstrate that co-digesting WAS with nutrient-rich co-substrates optimizes biogas production, supporting sustainable sludge management and renewable energy recovery in livestock wastewater treatment systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
33 pages, 732 KiB  
Review
Transforming By-Products into Functional Resources: The Potential of Cucurbitaceae Family Seeds in Cosmetics
by Carla Sousa, Carla Guimarães Moutinho, Márcia Carvalho, Carla Matos and Ana Ferreira Vinha
Seeds 2025, 4(3), 36; https://doi.org/10.3390/seeds4030036 (registering DOI) - 7 Aug 2025
Abstract
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical [...] Read more.
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical composition and evaluating their functional value in natural cosmetic development. Although these fruits are widely consumed, industrial processing generates substantial seed by-products that are often discarded. These seeds are rich in polyunsaturated fatty acids, proteins, carbohydrates, and phytochemicals, positioning them as sustainable raw materials for value-added applications. The incorporation of seed-derived extracts into cosmetic formulations offers multiple skin and hair benefits, including antioxidant activity, hydration, and support in managing conditions such as hyperpigmentation, acne, and psoriasis. They also contribute to hair care by improving oil balance, reducing frizz, and enhancing strand nourishment. However, challenges such as environmental instability and low dermal permeability of seed oils have prompted interest in nanoencapsulation technologies to improve delivery, stability, and efficacy. This review summarizes current scientific findings and highlights the potential of Cucurbitaceae seeds as innovative and sustainable ingredients for cosmetic and personal care applications. Full article
14 pages, 3207 KiB  
Article
Grid-Tied PV Power Smoothing Using an Energy Storage System: Gaussian Tuning
by Ahmad I. Alyan, Nasrudin Abd Rahim and Jeyraj Selvaraj
Energies 2025, 18(15), 4206; https://doi.org/10.3390/en18154206 (registering DOI) - 7 Aug 2025
Abstract
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This [...] Read more.
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This paper confirms this pattern by using the bell curve as a reference; however, climate variations can significantly alter this pattern. Therefore, this study aimed to smooth the power supplied to the grid by a PV system. The proposed controller manages the charge and discharge processes of the energy storage system (ESS) to ensure a smooth Gaussian bell curve output. It adjusts the parameters of this curve to closely match the generated energy, absorbing or supplying fluctuations to maintain the desired profile. This system also aims to provide accurate predictions of the power that should be supplied to the grid by the PV system, based on the capabilities of the ESS and the overall system performance. Although experimental results were not included in this analysis, the system was implemented in SIMULINK using real-world data. The controller utilizes a hybrid ESS comprising a vanadium redox battery (VRB) and supercapacitors (SCs). The design and operation of the controller, including curve tuning and ESS charge–discharge management, are detailed. The simulation results demonstrate excellent performance and are thoroughly discussed. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 4027 KiB  
Article
Parameter Sensitivity Analysis and Irrigation Regime Optimization for Jujube Trees in Arid Regions Using the WOFOST Model
by Shihao Sun, Yingjie Ma, Pengrui Ai, Ming Hong and Zhenghu Ma
Agriculture 2025, 15(15), 1705; https://doi.org/10.3390/agriculture15151705 (registering DOI) - 7 Aug 2025
Abstract
In arid regions, water scarcity and soil potassium destruction are major constraints on the sustainable development of the jujube industry. In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but [...] Read more.
In arid regions, water scarcity and soil potassium destruction are major constraints on the sustainable development of the jujube industry. In this regard, the use of crop models can compensate for time-consuming and costly field trials to screen for better irrigation regimes, but their predictive accuracy is often compromised by parameter uncertainty. To address this issue, we utilized data from a three-year (2022–2024) field trial (with irrigation at 50%, 75%, and 100% of evapotranspiration and potassium applications of 120, 180, and 240 kg/ha) to simulate the growth process of jujube trees in arid regions using the WOFOST model. In this study, parameter sensitivity analyses were conducted to determine that photosynthetic capacity maximization (Amax), the potassium nutrition index (Kstatus), the water stress factor (SWF), the water–potassium photosynthetic coefficient of synergy (α), and potassium partitioning weight coefficients (βi) were the important parameters affecting the simulated growth process of the crop. Path analysis using segmented structural equations also showed that water stress factor (SWF) and potassium nutrition index (Kstatus) indirectly controlled yield by significantly affecting photosynthesis (path coefficients: 0.72 and 0.75, respectively). The ability of the crop model to simulate the growth process and yield of jujube trees was improved by the introduction of water and potassium parameters (R2 = 0.94–0.96, NRMSE = 4.1–12.2%). The subsequent multi-objective optimization of yield and crop water productivity of dates under different combinations of water and potassium treatments under a bi-objective optimization model based on the NSGA-II algorithm showed that the optimal strategy was irrigation at 80% ETc combined with 300 kg/ha of potassium application. This management model ensures yield and maximizes crop water use efficiency (CWP), thus providing a scientific and efficient irrigation and fertilization regime for jujube trees in arid zones. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

16 pages, 1621 KiB  
Article
Integration of Data Analytics and Data Mining for Machine Failure Mitigation and Decision Support in Metal–Mechanical Industry
by Sidnei Alves de Araujo, Silas Luiz Bomfim, Dimitria T. Boukouvalas, Sergio Ricardo Lourenço, Ugo Ibusuki and Geraldo Cardoso de Oliveira Neto
Logistics 2025, 9(3), 109; https://doi.org/10.3390/logistics9030109 (registering DOI) - 7 Aug 2025
Abstract
Background: The growing complexity of production processes in the metal–mechanical industry demands ever more effective strategies for managing machine and equipment maintenance, as unexpected failures can incur high operational costs and compromise productivity by interrupting workflows and delaying deliveries. However, few studies [...] Read more.
Background: The growing complexity of production processes in the metal–mechanical industry demands ever more effective strategies for managing machine and equipment maintenance, as unexpected failures can incur high operational costs and compromise productivity by interrupting workflows and delaying deliveries. However, few studies have combined end-to-end data analytics and data mining methods to proactively predict and mitigate such failures. This study aims to develop and validate a comprehensive framework combining data analytics and data mining to prevent machine failures and support decision-making in a metal–mechanical manufacturing environment. Methods: First, exploratory data analytics were performed on the sensor and logistics data to identify significant relationships and trends between variables. Next, a preprocessing pipeline including data cleaning, data transformation, feature selection, and resampling was applied. Finally, a decision tree model was trained to identify conditions prone to failures, enabling not only predictions but also the explicit representation of knowledge in the form of decision rules. Results: The outstanding performance of the decision tree (82.1% accuracy and a Kappa index of 78.5%), which was modeled from preprocessed data and the insights produced by data analytics, demonstrates its ability to generate reliable rules for predicting failures to support decision-making. The implementation of the proposed framework enables the optimization of predictive maintenance strategies, effectively reducing unplanned downtimes and enhancing the reliability of production processes in the metal–mechanical industry. Full article
14 pages, 514 KiB  
Case Report
Thallium Exposure Secondary to Commercial Kale Chip Consumption: California Case Highlights Opportunities for Improved Surveillance and Toxicological Understanding
by Asha Choudhury, Jefferson Fowles, Russell Bartlett, Mark D. Miller, Timur Durrani, Robert Harrison and Tracy Barreau
Int. J. Environ. Res. Public Health 2025, 22(8), 1235; https://doi.org/10.3390/ijerph22081235 (registering DOI) - 7 Aug 2025
Abstract
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels [...] Read more.
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels noted among a mother (peak 5.6 µg/g creatinine; adult reference: ≤0.4 µg/g creatinine) and her three young children (peak 10.5 µg/g creatinine; child reference: ≤0.8 µg/g creatinine). Objectives: This case report identifies questions raised after a public health investigation linked a household’s thallium exposure to a commercially available food product. We provide an overview of the public health investigation. We then explore concerns, such as gaps in toxicological data and limited surveillance of thallium in the food supply, which make management of individual and population exposure risks challenging. Methods: We highlight findings from a cross-agency investigation, including a household exposure survey, sampling of possible environmental and dietary exposures (ICP-MS analysis measured thallium in kale chips at 1.98 mg/kg and 2.15 mg/kg), and monitoring of symptoms and urine thallium levels after the source was removed. We use regulatory and research findings to describe the challenges and opportunities in characterizing the scale of thallium in our food supply and effects of dietary exposures on health. Discussion: Thallium can bioaccumulate in our food system, particularly in brassica vegetables like kale. Thallium concentration in foods can also be affected by manufacturing processes, such as dehydration. We have limited surveillance data nationally regarding this metal in our food supply. Dietary reviews internationally show increased thallium intake in toddlers. Limited information is available about low-dose or chronic exposures, particularly among children, although emerging evidence shows that there might be risks associated at lower levels than previously thought. Improved toxicological studies are needed to guide reference doses and food safety standards. Promising action towards enhanced monitoring of thallium is being pursued by food safety agencies internationally, and research is underway to deepen our understanding of thallium toxicity. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

28 pages, 19171 KiB  
Article
Spatiotemporal Evolution of Precipitation Concentration in the Yangtze River Basin (1960–2019): Associations with Extreme Heavy Precipitation and Validation Using GPM IMERG
by Tao Jin, Yuliang Zhou, Ping Zhou, Ziling Zheng, Rongxing Zhou, Yanqi Wei, Yuliang Zhang and Juliang Jin
Remote Sens. 2025, 17(15), 2732; https://doi.org/10.3390/rs17152732 - 7 Aug 2025
Abstract
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain [...] Read more.
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain poorly understood in complex basins like the Yangtze River Basin. This study analyzes these aspects using ground station data from 1960 to 2019 and conducts a comparison using the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) satellite product. We calculated three indices—Daily Precipitation Concentration Index (PCID), Monthly Precipitation Concentration Index (PCIM), and Seasonal Precipitation Concentration Index (SPCI)—to quantify rainfall unevenness, selected for their ability to capture multi-scale variability and associations with extremes. Key methods include Mann–Kendall trend tests for detecting changes, Hurst exponents for persistence, Pettitt detection for abrupt shifts, random forest modeling to assess atmospheric teleconnections, and hot spot analysis for spatial clustering. Results show a significant basin-wide decrease in PCID, driven by increased frequency of small-to-moderate rainfall events, with strong spatial synchrony to extreme heavy precipitation indices. PCIM is most strongly associated with El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). GPM IMERG captures PCIM patterns well but underestimates PCID trends and magnitudes, highlighting limitations in daily-scale resolution. These findings provide a benchmark for satellite product improvement and support adaptive strategies for extreme precipitation risks in changing climates. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

34 pages, 3764 KiB  
Review
Research Progress and Applications of Artificial Intelligence in Agricultural Equipment
by Yong Zhu, Shida Zhang, Shengnan Tang and Qiang Gao
Agriculture 2025, 15(15), 1703; https://doi.org/10.3390/agriculture15151703 - 7 Aug 2025
Abstract
With the growth of the global population and the increasing scarcity of arable land, traditional agricultural production is confronted with multiple challenges, such as efficiency improvement, precision operation, and sustainable development. The progressive advancement of artificial intelligence (AI) technology has created a transformative [...] Read more.
With the growth of the global population and the increasing scarcity of arable land, traditional agricultural production is confronted with multiple challenges, such as efficiency improvement, precision operation, and sustainable development. The progressive advancement of artificial intelligence (AI) technology has created a transformative opportunity for the intelligent upgrade of agricultural equipment. This article systematically presents recent progress in computer vision, machine learning (ML), and intelligent sensing. The key innovations are highlighted in areas such as object detection and recognition (e.g., a K-nearest neighbor (KNN) achieved 98% accuracy in distinguishing vibration signals across operation stages); autonomous navigation and path planning (e.g., a deep reinforcement learning (DRL)-optimized task planner for multi-arm harvesting robots reduced execution time by 10.7%); state perception (e.g., a multilayer perceptron (MLP) yielded 96.9% accuracy in plug seedling health classification); and precision control (e.g., an intelligent multi-module coordinated control system achieved a transplanting efficiency of 5000 plants/h). The findings reveal a deep integration of AI models with multimodal perception technologies, significantly improving the operational efficiency, resource utilization, and environmental adaptability of agricultural equipment. This integration is catalyzing the transition toward intelligent, automated, and sustainable agricultural systems. Nevertheless, intelligent agricultural equipment still faces technical challenges regarding data sample acquisition, adaptation to complex field environments, and the coordination between algorithms and hardware. Looking ahead, the convergence of digital twin (DT) technology, edge computing, and big data-driven collaborative optimization is expected to become the core of next-generation intelligent agricultural systems. These technologies have the potential to overcome current limitations in perception and decision-making, ultimately enabling intelligent management and autonomous decision-making across the entire agricultural production chain. This article aims to provide a comprehensive foundation for advancing agricultural modernization and supporting green, sustainable development. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

36 pages, 8429 KiB  
Review
Design and Fabrication of Customizable Urban Furniture Through 3D Printing Processes
by Antreas Kantaros, Theodore Ganetsos, Zoe Kanetaki, Constantinos Stergiou, Evangelos Pallis and Michail Papoutsidakis
Processes 2025, 13(8), 2492; https://doi.org/10.3390/pr13082492 - 7 Aug 2025
Abstract
Continuous progress in the sector of additive manufacturing has drastically aided the design and fabrication of urban furniture, offering high levels of customization and adaptability. This work looks into the potential of 3D printing to transform urban public spaces by allowing for the [...] Read more.
Continuous progress in the sector of additive manufacturing has drastically aided the design and fabrication of urban furniture, offering high levels of customization and adaptability. This work looks into the potential of 3D printing to transform urban public spaces by allowing for the creation of functional, aesthetically pleasing, and user-centered furniture solutions. Through additive manufacturing processes, urban furniture can be tailored to meet the unique needs of diverse communities, allowing for the extended usage of sustainable materials, modular designs, and smart technologies. The flexibility of 3D printing also promotes the fabrication of complex, intricate designs that would be difficult or cost-prohibitive using traditional methods. Additionally, 3D-printed furniture can be optimized for specific environmental conditions, providing solutions that enhance accessibility, improve comfort, and promote inclusivity. The various advantages of 3D-printed urban furniture are examined, including reduced material waste and the ability to rapidly prototype and iterate designs alongside the potential for on-demand, local production. By embedding sensors and IoT devices, 3D-printed furniture can also contribute to the development of smart cities, providing real-time data for urban management and improving the overall user experience. As cities continue to encourage and adopt sustainable and innovative solutions, 3D printing is believed to play a crucial role in future urban infrastructure planning. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop