Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,428)

Search Parameters:
Keywords = process forces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3218 KB  
Article
Genomic Signatures of Adaptive Evolution in Taenioides sp. During Northward Invasion
by Kun Huang, Tianwei Liu, An Xu, Jing Yu, Yijing Yang, Jing Liu, Fenghui Li, Denghui Zhu, Li Gong, Liqin Liu and Zhenming Lü
Int. J. Mol. Sci. 2025, 26(19), 9613; https://doi.org/10.3390/ijms26199613 - 1 Oct 2025
Abstract
The success and impact of biological invasions depend on adaptations to novel abiotic and biotic selective pressures. However, the genetic mechanisms underlying adaptations in invasive species are inadequately understood. Taenioides sp. is an invasive worm goby, originally endemic to brackish waters in the [...] Read more.
The success and impact of biological invasions depend on adaptations to novel abiotic and biotic selective pressures. However, the genetic mechanisms underlying adaptations in invasive species are inadequately understood. Taenioides sp. is an invasive worm goby, originally endemic to brackish waters in the estuaries of Southeastern China, and now colonizes multiple inland freshwaters of North China within decades as a byproduct of the East Route of South-to-North Water Transfer (ESNT) project. However, the molecular mechanisms underlying their adaptations to the climate of North China, especially the temperature regime, are unknown. Here, we performed genomic resequencing analysis to assess genetic diversity and population genetic structure, and further investigated the genomic signatures of local adaptation in the invasive population of Taenioides sp. during their northward invasion. We revealed that all invasive populations exhibited no genetic differentiation but low gene flow and an obvious signal of population bottleneck. Yangtze River estuary may serve as the source population, while Gaoyou Lake serves as a potential bridgehead of the invasion. Selective sweep analyses revealed 117 genomic regions, containing 673 candidate genes, under positive selection in populations at the invasive front. Redundancy analysis suggested that local temperature variables, particularly the monthly minimum temperature, represent critical evolutionary forces in driving adaptive divergence. Functional enrichment analyses revealed that multiple biological processes, including metabolism and energy production, substance transmembrane transport, and neural development and synaptic transmission, may play important roles in adaptation to regional temperature conditions. Our findings revealed a scenario of adaptive evolution in teleost species that underpins their regional climate adaptation and successful establishment of invasive populations in a human-facilitated invasion context. Proper management strategies should be established to manage Taenioides sp invasion as soon as possible. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
24 pages, 6313 KB  
Article
Research on the Internal Force Solution for Statically Indeterminate Structures Under a Local Trapezoidal Load
by Pengyun Wei, Shunjun Hong, Lin Li, Junhong Hu and Haizhong Man
Computation 2025, 13(10), 229; https://doi.org/10.3390/computation13100229 - 1 Oct 2025
Abstract
The calculation of internal forces is a critical aspect in the design of statically indeterminate structures. Local trapezoidal loads, as a common loading configuration in practical engineering (e.g., earth pressure, uneven surcharge), make it essential to investigate how to compute the internal forces [...] Read more.
The calculation of internal forces is a critical aspect in the design of statically indeterminate structures. Local trapezoidal loads, as a common loading configuration in practical engineering (e.g., earth pressure, uneven surcharge), make it essential to investigate how to compute the internal forces of statically indeterminate structures under such loads by using the displacement method. The key to displacement-based analysis lies in deriving the fixed-end moment formulas for local trapezoidal loads. Traditional methods, such as the force method, virtual beam method, or integral method, often involve complex computations. Therefore, this study aims to derive a general formula for fixed-end moments in statically indeterminate beams subjected to local trapezoidal loads by using the integral method, providing a more efficient and clear theoretical tool for engineering practice while addressing the limitations of existing educational and applied methodologies. The integral method is employed to derive fixed-end moment expressions for three types of statically indeterminate beams: (1) a beam fixed at both ends, (2) an an-end-fixed another-end-simple-support beam, and (3) a beam fixed at one end and sliding at the other. This approach eliminates the redundant equations of the traditional force method or the indirect transformations of the virtual beam method, directly linking boundary conditions through integral operations on load distributions, thereby significantly simplifying the solving process. Three representative numerical examples validate the correctness and universality of the derived formulas. The results demonstrate that the solutions obtained via the integral method align with software-calculated results, yet the proposed method yields analytical expressions for structural internal forces. Comparative analysis shows that the integral method surpasses traditional approaches (e.g., force method, virtual beam method) in terms of conceptual clarity and computational efficiency, making it particularly suitable for instructional demonstrations and rapid engineering calculations. The proposed integral method provides a systematic analytical framework for the internal force analysis of statically indeterminate structures under local trapezoidal loads, combining mathematical rigor with engineering practicality. The derived formulas can be directly applied to real-world designs, substantially reducing computational complexity. Moreover, this method offers a more intuitive theoretical case for structural mechanics education, enhancing students’ understanding of the mathematical–mechanical relationship between loads and internal forces. The research outcomes hold both theoretical significance and practical engineering value, establishing a solving paradigm for the displacement-based analysis of statically indeterminate structures under complex local trapezoidal loading conditions. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

22 pages, 11951 KB  
Article
A Comprehensive Examination of Key Characteristics Influencing the Micro-Extrusion Process for Pure Copper Cross-Shaped Couplings
by Thu Nguyen Thi, Thuy Mai Thi and Minh-Quan Nguyen
Eng 2025, 6(10), 250; https://doi.org/10.3390/eng6100250 - 1 Oct 2025
Abstract
In the manufacturing of micro-scale components, geometric dimensional accuracy and product quality are critical factors that directly influence both production costs and efficiency. To meet the growing demands in this field, micro-extrusion technology has been developed and extensively applied, particularly in mass and [...] Read more.
In the manufacturing of micro-scale components, geometric dimensional accuracy and product quality are critical factors that directly influence both production costs and efficiency. To meet the growing demands in this field, micro-extrusion technology has been developed and extensively applied, particularly in mass and bulk production. This technology is considered an optimal solution for improving dimensional accuracy, enhancing mechanical properties, increasing production efficiency, and reducing costs compared to traditional methods, while also aligning with the current trends of modern industrial development. This study investigates the influence of temperature and friction on forming force, formability, and product quality during the micro-extrusion process. A combined approach of simulation and experimentation was utilized to form cross-shaped coupling components using pure copper as the material. The results indicate a significant relationship between temperature, friction coefficient, and forming force. Furthermore, 550 °C is identified as the most suitable temperature for hot forming, providing a balance between force reduction and product quality. These insights enhance the predictability and control of the micro-extrusion process and contribute to reducing production defects. Ultimately, the findings support wider implementation of micro-extrusion in the manufacturing of high-accuracy small-scale parts and align with modern trends emphasizing miniaturization, automation, and cost efficiency. Full article
(This article belongs to the Topic Surface Engineering and Micro Additive Manufacturing)
Show Figures

Figure 1

26 pages, 2204 KB  
Article
Angular Motion Stability of Large Fineness Ratio Wrap-Around-Fin Rotating Rockets
by Zheng Yong, Juanmian Lei and Jintao Yin
Aerospace 2025, 12(10), 890; https://doi.org/10.3390/aerospace12100890 - 30 Sep 2025
Abstract
Long-range rotating wrap-around-fin rockets may exhibit non-convergent conical motion at high Mach numbers, causing increased drag, reduced range, and potential flight instability. This study employs the implicit dual time-stepping method to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations for simulating the flow field [...] Read more.
Long-range rotating wrap-around-fin rockets may exhibit non-convergent conical motion at high Mach numbers, causing increased drag, reduced range, and potential flight instability. This study employs the implicit dual time-stepping method to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations for simulating the flow field around a high aspect ratio wrap-around-fin rotating rocket at supersonic speeds. Validation of the numerical method in predicting aerodynamic characteristics at small angles of attack is achieved by comparing numerically obtained side force and yawing moment coefficients with experimental data. Analyzing the rocket’s angular motion process, along with angular motion equations, reveals the necessary conditions for the yawing moment to ensure stability during angular motion. Shape optimization is performed based on aerodynamic coefficient features and flow field structures at various angles of attack and Mach numbers, using the yawing moment stability condition as a guideline. Adjustments to parameters such as tail fin curvature radius, tail fin aspect ratio, and body aspect ratio diminish the impact of asymmetric flow induced by the wrap-around fin on the lateral moment, effectively resolving issues associated with near misses and off-target impacts resulting from dynamic instability at high Mach numbers. Full article
12 pages, 3386 KB  
Article
Effect of Grain Size on Polycrystalline Copper Finish Quality of Ultra-Precision Cutting
by Chuandong Zhang, Xinlei Yue, Kaiyuan You and Wei Wang
Micromachines 2025, 16(10), 1133; https://doi.org/10.3390/mi16101133 - 30 Sep 2025
Abstract
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical [...] Read more.
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical modeling to simulate nanoscale cutting processes in polycrystalline copper with controlled grain structures, coupled with experimental ultra-precision machining validation. Comprehensive analysis of stress distribution, subsurface damage formation, and cutting force evolution reveals that refined grain structures promote more homogeneous plastic deformation, resulting in superior surface finish with reduced roughness and diminished grain boundary step formation. However, the enhanced grain boundary density in fine-grained specimens necessitates increased cutting energy input. These findings establish critical process–structure–property relationships essential for advancing precision manufacturing of copper-based optical systems. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
26 pages, 3111 KB  
Article
Design and Experiment of Bare Seedling Planting Mechanism Based on EDEM-ADAMS Coupling
by Huaye Zhang, Xianliang Wang, Hui Li, Yupeng Shi and Xiangcai Zhang
Agriculture 2025, 15(19), 2063; https://doi.org/10.3390/agriculture15192063 - 30 Sep 2025
Abstract
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor [...] Read more.
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor planting uprightness exist. In this paper, the Hertz–Mindlin with Bonding contact model was used to establish the scallion seedling model. Combined with the Plackett–Burman experiment, steepest ascent experiment, and Box–Behnken experiment, the bonding parameters of scallion seedlings were calibrated. Furthermore, the accuracy of the scallion seedling model parameters was verified through the stress–strain characteristics observed during the actual loading and compression process of the scallion seedlings. The results indicate that the scallion seedling normal/tangential contact stiffness, scallion seedling normal/tangential ultimate stress, and scallion Poisson’s ratio significantly influence the mechanical properties of scallion seedlings. Through optimization experiments, the optimal combination of the above parameters was determined to be 4.84 × 109 N/m, 5.64 × 107 Pa, and 0.38. In this paper, the flexible planting components of scallion seedlings were taken as the research object. Flexible protrusions were added to the planting disc to reduce the damage rate of scallion seedlings, and an EDEM-ADAMS coupling interaction model between the planting components and scallion seedlings was established. Based on this model, optimization and verification were carried out on the key components of the planting components. Orthogonal experiments were conducted with the contact area between scallion seedlings and the disc, rotational speed of the flexible disc, furrow depth, and clamping force on scallion seedlings as experimental factors, and with the uprightness and damage status of scallion seedlings as evaluation criteria. The experimental results showed that when the contact area between scallion seedlings and the disc was 255 mm2, the angular velocity was 0.278 rad/s, and the furrow depth was 102.15 mm, the performance of the scallion planting mechanism was optimal. At this point, the uprightness of the scallion seedlings was 94.80% and the damage rate was 3%. Field experiments were carried out based on the above parameters. The results indicated that the average uprightness of transplanted scallion seedlings was 93.86% and the damage rate was 2.76%, with an error of less than 2% compared with the simulation prediction values. Therefore, the parameter model constructed in this paper is reliable and effective, and the designed and improved transplanting mechanism can realize the upright and low-damage planting of scallion seedlings, providing a reference for the low-damage and high-uprightness transplanting operation of scallions. Full article
(This article belongs to the Section Agricultural Technology)
14 pages, 5130 KB  
Article
Study on the Drying Characteristics of Moist Fine Lignite in a Dense Gas–Solid Separation Fluidized Bed
by Huicheng Lei, Tengfeng Wan, Tingguan Chen, Bingbing Ma, Zongxu Yao, Bao Xu, Qingfei Wang and Xuan Xu
Minerals 2025, 15(10), 1039; https://doi.org/10.3390/min15101039 - 30 Sep 2025
Abstract
Coal serves as a cornerstone and stabilizer for China’s energy security; utilizing it in a clean and efficient manner aligns with the current national energy situation. The moisture content of coal is a crucial factor affecting its calorific value and separation efficiency. Therefore, [...] Read more.
Coal serves as a cornerstone and stabilizer for China’s energy security; utilizing it in a clean and efficient manner aligns with the current national energy situation. The moisture content of coal is a crucial factor affecting its calorific value and separation efficiency. Therefore, enhancing the drying rate while simultaneously reducing the moisture content in coal is essential to improve separation efficiency. This paper primarily investigates the drying and separation characteristics of wet fine coal particles within a gas–solid fluidized bed system. A hot gas–solid fluidized bed was employed to study the particle fluidization behavior, heat–mass transfer, and agglomeration drying properties under varying airflow temperatures. The results indicate that as the airflow temperature increases, the minimum fluidization velocity tends to decrease. Additionally, with an increase in bed height, the particle temperature correspondingly decreases, leading to weakened heat exchange capability in the upper layer of the bed. Faster heating rates facilitate rapid moisture removal while minimizing agglomeration formation. The lower the proportion of moisture and magnetite powder present, the less force is required to break apart particle agglomerates. The coal drying process exhibits distinct stages. Within a temperature range of 75 °C to 100 °C, there is a significant enhancement in drying rate, while issues such as particle fragmentation or pore structure collapse are avoided at elevated temperatures. This research aims to provide foundational insights into effective drying processes for wet coal particles in gas–solid fluidized beds. Full article
Show Figures

Graphical abstract

26 pages, 1076 KB  
Article
NL-COMM: Enabling High-Performing Next-Generation Networks via Advanced Non-Linear Processing
by Chathura Jayawardena, George Ntavazlis Katsaros and Konstantinos Nikitopoulos
Future Internet 2025, 17(10), 447; https://doi.org/10.3390/fi17100447 - 30 Sep 2025
Abstract
Future wireless networks are expected to deliver enhanced spectral efficiency while being energy efficient. MIMO and other non-orthogonal transmission schemes, such as non-orthogonal multiple access (NOMA), offer substantial theoretical spectral efficiency gains. However, these gains have yet to translate into practical deployments, largely [...] Read more.
Future wireless networks are expected to deliver enhanced spectral efficiency while being energy efficient. MIMO and other non-orthogonal transmission schemes, such as non-orthogonal multiple access (NOMA), offer substantial theoretical spectral efficiency gains. However, these gains have yet to translate into practical deployments, largely due to limitations in current signal processing methods. Linear transceiver processing, though widely adopted, fails to fully exploit non-orthogonal transmissions, forcing massive MIMO systems to use a disproportionately large number of RF chains for relatively few streams, increasing power consumption. Non-linear processing can unlock the full potential of non-orthogonal schemes but is hindered by high computational complexity and integration challenges. Moreover, existing message-passing receivers for NOMA depend on specially designed sparse signals, limiting resource allocation flexibility and efficiency. This work presents NL-COMM, an efficient non-linear processing framework that translates the theoretical gains of non-orthogonal transmissions into practical benefits for both the uplink and downlink. NL-COMM delivers over 200% spectral efficiency gains, enables 50% reductions in antennas and RF chains (and thus base station power consumption), and increases concurrently supported users by 450%. In distributed MIMO deployments, the antenna reduction halves fronthaul bandwidth requirements, mitigating a key system bottleneck. Furthermore, NL-COMM offers the flexibility to unlock new NOMA schemes. Finally, we present both hardware and software architectures for NL-COMM that support massively parallel execution, demonstrating how advanced non-linear processing can be realized in practice to meet the demands of next-generation networks. Full article
(This article belongs to the Special Issue Key Enabling Technologies for Beyond 5G Networks—2nd Edition)
Show Figures

Figure 1

25 pages, 6338 KB  
Article
Multi-Scale Model of Mid-Frequency Errors in Semi-Rigid Tool Polishing of Diamond-Turned Electroless Nickel Mirror
by Pengfeng Sheng, Jingjing Xia, Jun Yu, Kun Wang and Zhanshan Wang
J. Manuf. Mater. Process. 2025, 9(10), 325; https://doi.org/10.3390/jmmp9100325 - 30 Sep 2025
Abstract
Semi-rigid tool polishing is widely used in the high-precision manufacturing of electroless nickel surface due to its stable material removal and high efficiency in correcting mid- and high-frequency profile errors. However, predicting mid-frequency errors remains challenging due to the complexity of their underlying [...] Read more.
Semi-rigid tool polishing is widely used in the high-precision manufacturing of electroless nickel surface due to its stable material removal and high efficiency in correcting mid- and high-frequency profile errors. However, predicting mid-frequency errors remains challenging due to the complexity of their underlying sources. In this study, a theoretical model for semi-rigid tool polishing was developed based on multi-scale contact theory, incorporating a bridging model, rough surface contact, and Hertzian contact mechanics. The model accounts for the effects of tool surface roughness, polishing force, and path spacing. A series of experiments on diamond-turned electroless nickel mirrors was conducted to quantitatively evaluate the model’s feasibility and accuracy. The results demonstrate that the model can effectively predict mid-frequency errors, reveal the material removal mechanisms in semi-rigid polishing, and guide the optimization of process parameters. Ultimately, a surface with mid-frequency errors of 0.59 nm Rms (measured over a 1.26 mm × 0.94 mm window) was achieved, closely matching the predicted value of 0.64 nm. Full article
Show Figures

Figure 1

14 pages, 2495 KB  
Article
Research on a Feedthrough Suppression Scheme for MEMS Gyroscopes Based on Mixed-Frequency Excitation Signals
by Xuhui Chen, Zhenzhen Pei, Chenchao Zhu, Jiaye Hu, Hongjie Lei, Yidian Wang and Hongsheng Li
Micromachines 2025, 16(10), 1120; https://doi.org/10.3390/mi16101120 - 30 Sep 2025
Abstract
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the [...] Read more.
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the quadratic relationship between excitation voltage and electrostatic force in capacitive resonators, the resonator is excited with a modulated signal at a non-resonant frequency while sensing vibration signals at the resonant frequency. This approach achieves linear excitation without requiring backend demodulation circuits, effectively separating desired signals from feedthrough interference in the frequency domain. A mixed-frequency excitation-based measurement and control system for MEMS gyroscopes is constructed. The influence of mismatch phenomena under non-ideal conditions on the control system is analyzed with corresponding solutions provided. Simulations and experiments validate the scheme’s effectiveness, demonstrating feedthrough suppression through both amplitude-frequency characteristics and scale factor perspectives. Test results confirm the scheme eliminates the zero introduced by feedthrough interference in the gyroscope’s amplitude-frequency response curve and reduces force-to-rebalanced detection scale factor fluctuations caused by frequency split variations by a factor of 21. Under this scheme, the gyroscope achieves zero-bias stability of 0.3118 °/h and angle random walk of 0.2443 °/h/√Hz. Full article
Show Figures

Figure 1

21 pages, 6905 KB  
Article
Simulation and Experimental Study on Abrasive–Tool Interaction in Drag Finishing Edge Preparation
by Julong Yuan, Yuhong Yan, Youzhi Fu, Li Zhou and Xu Wang
Micromachines 2025, 16(10), 1113; https://doi.org/10.3390/mi16101113 - 29 Sep 2025
Abstract
Tool edge preparation is the process aimed at eliminating edge defects and optimizing the micro-geometric parameters of cutting tools. Drag finishing, the primary engineering method, subjects tools to planetary motion (simultaneous revolution and rotation) within abrasive media to remove burrs and micro-chips, thereby [...] Read more.
Tool edge preparation is the process aimed at eliminating edge defects and optimizing the micro-geometric parameters of cutting tools. Drag finishing, the primary engineering method, subjects tools to planetary motion (simultaneous revolution and rotation) within abrasive media to remove burrs and micro-chips, thereby improving cutting performance and extending tool life. A discrete element method (DEM) model of drag finishing edge preparation was developed to investigate the effects of processing time, tool rotational speed, and rotation direction on abrasive-mediated tool wear behavior. The model was validated through milling cutter edge preparation experiments. Simulation results show that increasing the processing time causes fluctuating changes in average abrasive velocity and contact forces, while cumulative energy and tool wear increase progressively. Elevating tool rotational speed increases average abrasive velocity, contact forces, cumulative energy, and tool wear. Rotation direction significantly impacts tool wear: after 2 s of clockwise (CW) rotation, wear reached 1.45 × 10−8 mm; after 1 s of CW followed by 1 s of counterclockwise (CCW) rotation, wear was 1.25 × 10−8 mm; and after 2 s of CCW rotation, wear decreased to 1.02 × 10−8 mm. Experiments, designed based on simulation trends, confirm that edge radius increases with time and tool rotational speed. After 30 min of processing at 60, 90, and 120 rpm, average edge radius increased to 22.5 μm, 28 μm, and 30 μm, respectively. CW rotation increased the edge shape factor K, while CCW rotation decreased it. The close agreement between experimental and simulation results confirms the model’s effectiveness in predicting the impact of edge preparation parameters on tool geometry. Rotational speed control optimizes edge preparation efficiency, the predominant tangential cumulative energy reveals abrasive wear as the primary material removal mechanism, and rotation direction modulates the shape factor K, enabling symmetric edge preparation. Full article
Show Figures

Figure 1

17 pages, 4749 KB  
Article
Numerical Analyses of Surge Process in a Small-Scale Turbojet Engine by Three-Dimensional Full-Engine Simulation
by Mengyang Wen, Heli Yang, Xuedong Zheng, Weihan Kong, Zechen Ding, Rusheng Li, Lei Jin, Baotong Wang and Xinqian Zheng
Aerospace 2025, 12(10), 878; https://doi.org/10.3390/aerospace12100878 - 29 Sep 2025
Abstract
Surge is a typical aerodynamic instability phenomenon in the compressors of aeroengines. The surge can lead to severe performance degradation and even structural damage to the engine and the air vehicle, making it a longstanding critical concern in the industry. Analyzing and understanding [...] Read more.
Surge is a typical aerodynamic instability phenomenon in the compressors of aeroengines. The surge can lead to severe performance degradation and even structural damage to the engine and the air vehicle, making it a longstanding critical concern in the industry. Analyzing and understanding the surge process contributes to enhancing the aerodynamic stability of designed compressors. Previous research in this field often focuses solely on the compressor itself while neglecting the mutual interaction between the compressor and other components in the entire engine system. This study investigates the compressor surge process within an integrated engine environment using a full-engine three-dimensional Unsteady Reynolds-averaged Navier–Stokes (URANS) simulation method for the entire engine system, validated through variable geometry turbine experiments on a small turbojet engine. The result demonstrates that the integrated three-dimensional simulation approach can capture the primary flow characteristics of the compression system during surge within an integrated engine environment. Under the influence of the variable geometry turbine, the studied small turbojet engine enters a state of mild surge. This paper also investigates the changes in aerodynamic forces during surge and reveals the two-regime surge phenomenon that exists during the engine surge. Full article
(This article belongs to the Special Issue Numerical Modelling of Aerospace Propulsion)
Show Figures

Figure 1

21 pages, 3956 KB  
Article
Optimization of Parameters in Multi-Spot Projection Welding of Thin Aluminized Steel Sheets
by Alexandru Vladut Oprea, Robert Catalin Ciocoiu, George Constantin, Carmen Catalina Rusu and Ionelia Voiculescu
Appl. Sci. 2025, 15(19), 10530; https://doi.org/10.3390/app151910530 - 29 Sep 2025
Abstract
Welding is a technological variant of the electric resistance spot-welding process in which the machined protrusion on the surface is heated and rapidly deformed, and the small molten zone formed at the interface is then forged to form the weld spot. The paper [...] Read more.
Welding is a technological variant of the electric resistance spot-welding process in which the machined protrusion on the surface is heated and rapidly deformed, and the small molten zone formed at the interface is then forged to form the weld spot. The paper analyses the effects of projection welding parameter values for thin, low-carbon aluminized steel sheets. Two sets of 16 welded samples having three or five protrusions were performed and analyzed using the Taguchi method. The microstructural aspects were analyzed in cross sections made through the welded points, highlighting the expulsion or accumulated effects of the Al-Si alloy protective layer and the formation of intermetallic compounds. To estimate the effect of welding parameters, the samples were subjected to tensile strength tests, and the fracture mode was evaluated. It was found that the values of the breaking forces were close for the two types of samples analyzed, for identical values of the welding regime parameters, but the elongation at break was double in the case of samples with five protrusions. The breaking force increased from 10.9 kN for samples with three protrusions to 11.4 kN for samples with five protrusions, for the same values of welding parameters. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

16 pages, 1780 KB  
Article
Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation
by Manuel Moncada, Carlos Henríquez, Patricio Toledo, Cristian G. Rodríguez and Fernando Betancourt
Minerals 2025, 15(10), 1033; https://doi.org/10.3390/min15101033 - 29 Sep 2025
Abstract
Wet agglomeration is essential in heap leaching of minerals, as it improves permeability by forming agglomerates through capillary and viscous forces. The Discrete Element Method (DEM) has been used to model this phenomenon, enabling the detailed tracking of interactions between individual particles. This [...] Read more.
Wet agglomeration is essential in heap leaching of minerals, as it improves permeability by forming agglomerates through capillary and viscous forces. The Discrete Element Method (DEM) has been used to model this phenomenon, enabling the detailed tracking of interactions between individual particles. This study employs DEM to analyze the effect of particle-size distribution (PSD) on agglomerate formation inside a rotating agglomeration drum. The DEM model was validated using geometry and parameters reported in the literature, which are based on experimental studies of agglomeration in rotating drums. Both wide and bimodal PSD cases were simulated. The results demonstrate that DEM simulations of drums with exclusively fine particles are prone to producing poorly defined macrostructures. In contrast, the presence of coarse particles promotes the formation of stable agglomerates with fine particles attached to them. Additionally, decreasing the maximum particle size increases the number of agglomerates and improves the homogeneity of the final PSD. These findings improve our understanding of wet agglomeration dynamics and provide practical criteria for optimizing feed design in mineral-processing applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 5059 KB  
Article
The Fermentation Mechanism of Pea Protein Yogurt and Its Bean Odour Removal Method
by Xiaoyue Zhang, Guozhi Ji, Yan Zhao, Bingyu Chen, Wenhui Li, Zimeng Guo, Shan He, András Koris, Xuchun Zhu, Zhishen Mu and Hongzhi Liu
Foods 2025, 14(19), 3363; https://doi.org/10.3390/foods14193363 - 29 Sep 2025
Abstract
Pea protein yogurt (PPY), as an alternative to traditional dairy yoghurt, has the advantages of being a green raw material, lactose cholesterol-free, and adaptable to the needs of lactose-intolerant people. PPY was prepared by fermenting a mixture of pea protein and water (1:10, [...] Read more.
Pea protein yogurt (PPY), as an alternative to traditional dairy yoghurt, has the advantages of being a green raw material, lactose cholesterol-free, and adaptable to the needs of lactose-intolerant people. PPY was prepared by fermenting a mixture of pea protein and water (1:10, w/v) supplemented with 5% fructose for 10 h after heat sterilisation. During fermentation, lactic acid bacteria metabolise pea protein to produce aldehydes and other aromatic compounds, imparting a unique sweet–sour balance and mellow flavour. However, issues such as weak gel formation and prominent soybean-like off-flavours severely restrict the development and consumer acceptance of PPY. In this study, five fermentation systems were systematically investigated to elucidate the fermentation mechanisms of pea yoghurt and explore effective methods for eliminating undesirable soy flavours. The results indicated that hydrophobic interactions and disulfide bonds are the predominant forces driving gel formation in PPY. Additionally, the protein content increased by 0.81 g/100 g following fermentation. A total of 43 volatile flavour compounds—including aldehydes, alcohols, acids, ketones, and furans—were identified, among which the concentrations of hexanal and 2-pentylfuran, known markers for soybean off-flavour, significantly decreased. Furthermore, high-temperature and high-pressure treatments (121 °C, 3 min) demonstrated superior effectiveness in reducing soybean-like flavours. Although the high-temperature and high-pressure treatment, double-enzyme hydrolysis, and flavour-masking methods operate through distinct mechanisms, their flavour profiles converged, displaying substantial deodorisation effects and synergistic interactions. These findings provide a theoretical basis and processing parameters for flavour modulation in PPY; however, further formulation optimisation is required to enhance its nutritional and textural properties. PPY shows promise as a potential alternative to conventional dairy products in the future. Full article
Show Figures

Graphical abstract

Back to TopTop