Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Numerical Model
2.2. Material
- By varying the top particle size to , 6.5, 4, 2, and 0.85 mm. In all modified cases, the relative proportions in mass of intermediate and fine particles were preserved, and the PSDs are shown in Figure 2. In this way, the relative proportion between different size classes is maintained. For example, the ratio between sizes 2 mm and 0.85 mm is equal to 1.2292.
- By creating bimodal monodisperse distributions composed of a single coarse particle surrounded by finer particles at seven different size ratios (e.g., 0.7:10, 0.75:10, 0.9:10, 1:10, 1.5:10, 2:10, and 3:10) to study localized agglomerate formation. The coarse particle size selected is 10 mm. The distribution is composed of a 17.4% 10 mm coarse ore, with the rest composed of fine particles: 9.9% coke, 5.7% flux, and 67% fine ore. Although there is no single industrial standard for particle-size ratios, the selected values were chosen with the aim of representing conditions commonly found in fine-concentrate granulation processes, covering a range of relevant agglomeration scenarios.
2.3. DEM Simulation
3. Results
3.1. Effect of Top Particle Size
3.2. Effect of Particle-Size Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouffard, S.C. Review of agglomeration practice and fundamentals in heap leaching. Miner. Process. Extr. Metall. Rev. 2005, 26, 233–294. [Google Scholar] [CrossRef]
- Robertson, S.; Basson, P.; Brill, S.; van Staden, P.; Petersen, J. Properties governing the flow of solution through crushed ore for heap leaching: Part III—Low-permeability ores. Hydrometallurgy 2024, 224, 106247. [Google Scholar] [CrossRef]
- Guzman, A.; Korsikas, S.S.; Olson, T.; Zepeda P., Y.O. Agglomeration Scale: A Method to Improve Leaching Performance. Min. Metall. Explor. 2024, 41, 501–514. [Google Scholar] [CrossRef]
- Urtubia, R.; Suárez, F. Stochastic representation of the agglomeration process: Implications on the saturation variability in a dynamic heap leach. Hydrometallurgy 2020, 191, 105158. [Google Scholar] [CrossRef]
- Xu, N.; Yu, C.; Gong, S.; Zhao, G.; Lin, D.; Wang, X. Numerical study and multi-objective optimization of flexible screening process of flip-flow screen: A DEM-FEM approach. Adv. Powder Technol. 2022, 33, 103650. [Google Scholar] [CrossRef]
- Xu, N.; Wang, X.; Lin, D.; Zuo, W. Numerical Simulation and Optimization of Screening Process for Vibrating Flip-Flow Screen Based on Discrete Element Method–Finite Element Method–Multi-Body Dynamics Coupling Method. Minerals 2024, 14, 278. [Google Scholar] [CrossRef]
- Gu, R.; Wu, W.; Zhao, S.; Xing, H.; Qin, Z. Simulation and Parameter Optimisation of Edge Effect in Ore Minerals Roll Crushing Process Based on Discrete Element Method. Minerals 2025, 15, 89. [Google Scholar] [CrossRef]
- Fletcher, D.F. The future of computational fluid dynamics (CFD) simulation in the chemical process industries. Chem. Eng. Res. Des. 2022, 187, 299–305. [Google Scholar] [CrossRef]
- Larsson, S.; Rodríguez Prieto, J.M.; Heiskari, H.; Jonsén, P. A Novel Particle-Based Approach for Modeling a Wet Vertical Stirred Media Mill. Minerals 2021, 11, 55. [Google Scholar] [CrossRef]
- Mishra, B.; Thornton, C.; Bhimji, D. A preliminary numerical investigation of agglomeration in a rotary drum. Miner. Eng. 2002, 15, 27–33. [Google Scholar] [CrossRef]
- Liu, P.Y.; Yang, R.Y.; Yu, A.B. Dynamics of wet particles in rotating drums: Effect of liquid surface tension. Phys. Fluids 2011, 23, 013304. [Google Scholar] [CrossRef]
- Trung Vo, T.; Nezamabadi, S.; Mutabaruka, P.; Delenne, J.Y.; Izard, E.; Pellenq, R.; Radjai, F. Agglomeration of wet particles in dense granular flows. Eur. Phys. J. E 2019, 42, 127. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, C.; Wang, Q.; Li, G.; Zhang, W.; Xue, Z. Numerical study of the dynamic behaviour of iron ore particles during wet granulation process using discrete element method. Powder Technol. 2022, 401, 117296. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; He, S.; Liu, S.; Zhou, Z. Numerical simulation of particle mixing and granulation performance in rotating drums during the iron ore sintering process. Powder Technol. 2023, 429, 118890. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; He, S.; Liu, S.; Zhou, Z. Effect of nuclei particle shape and baffle setting on the drum granulation in iron ore sintering process. Powder Technol. 2024, 433, 119222. [Google Scholar] [CrossRef]
- Oyegbile, B.; Akdogan, G.; Karimi, M. Experimental and CFD Studies of the Hydrodynamics in Wet Agglomeration Process. ChemEngineering 2018, 2, 32. [Google Scholar] [CrossRef]
- Dhawan, N.; Rashidi, S.; Rajamani, R.K. Population Balance Model for Crushed Ore Agglomeration for Heap Leach Operations. KONA Powder Part. J. 2014, 31, 200–213. [Google Scholar] [CrossRef]
- Barrasso, D.; Ramachandran, R. Multi-scale modeling of granulation processes: Bi-directional coupling of PBM with DEM via collision frequencies. Chem. Eng. Res. Des. 2015, 93, 304–317. [Google Scholar] [CrossRef]
- Nakamura, H.; Baba, T.; Ohsaki, S.; Watano, S.; Takehara, K.; Higuchi, T. Numerical simulation of wet granulation using the DEM–PBM coupling method with a deterministically calculated agglomeration kernel. Chem. Eng. J. 2022, 450, 138298. [Google Scholar] [CrossRef]
- Maharjan, R.; Jeong, S.H. High shear seeded granulation: Its preparation mechanism, formulation, process, evaluation, and mathematical simulation. Powder Technol. 2020, 366, 667–688. [Google Scholar] [CrossRef]
- Wan, Z.; Yang, S.; Hu, J.; Wang, H. DEM analysis of flow dynamics of cohesive particles in a rotating drum. Adv. Powder Technol. 2024, 35, 104379. [Google Scholar] [CrossRef]
- Gómez, R.; Castro, R.L.; Casali, A.; Palma, S.; Hekmat, A. A Comminution Model for Secondary Fragmentation Assessment for Block Caving. Rock Mech. Rock Eng. 2017, 50, 3073–3084. [Google Scholar] [CrossRef]
- Moncada, M.; Rojas, C.; Toledo, P.; Rodríguez, C.G.; Betancourt, F. Influence of Particle Shape and Size on Gyratory Crusher Simulations Using the Discrete Element Method. Minerals 2025, 15, 232. [Google Scholar] [CrossRef]
- Toledo M., P.; Moncada M., M.; Ruiz S., C.; Betancourt C., F.; Rodríguez, C.G.; Vicuña, C. A review of the application of the discrete element method in comminution circuits. Powder Technol. 2025, 459, 121027. [Google Scholar] [CrossRef]
- Di Renzo, A.; Di Maio, F.P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 2004, 59, 525–541. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Deresiewicz, H. Elastic Spheres in Contact Under Varying Oblique Forces. J. Appl. Mech. 1953, 20, 327–344. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, H.; Ji, S.; Zhang, X.; Awadalseed, W.; Tang, H. A machine learning model of liquid bridge force and its application in discrete element method. Constr. Build. Mater. 2024, 411, 134174. [Google Scholar] [CrossRef]
- Mikami, T.; Kamiya, H.; Horio, M. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 1998, 53, 1927–1940. [Google Scholar] [CrossRef]
- Nase, S.T.; Vargas, W.L.; Abatan, A.A.; McCarthy, J. Discrete characterization tools for cohesive granular material. Powder Technol. 2001, 116, 214–223. [Google Scholar] [CrossRef]
- Moncada, M.; Betancourt, F.; Rodríguez, C.G.; Toledo, P. Effect of Particle Shape on Parameter Calibration for a Discrete Element Model for Mining Applications. Minerals 2022, 13, 40. [Google Scholar] [CrossRef]
- Adesina, P.; O’Sullivan, C.; Wang, T. DEM study on the effect of particle shape on the shear behaviour of granular materials. Comput. Part. Mech. 2023, 11, 447–466. [Google Scholar] [CrossRef]
- Costa, F.d.A.; Barrios, G.K.P.; Fidalgo, A.P.; Tino, A.A.A.; Tavares, L.M. Modeling Shapes of Coarse Particles for DEM Simulations Using Polyhedral Meta-Particles. Minerals 2025, 15, 103. [Google Scholar] [CrossRef]
- Deshpande, R.; Mahiques, E.; Wirtz, S.; Scherer, V. Resolving particle shape in DEM simulations from tabulated geometry information. Powder Technol. 2022, 407, 117700. [Google Scholar] [CrossRef]
- Rumpf, H. The Strength of Granules and Agglomerates. In Agglomeration; Interscience: New York, NY, USA, 1962; pp. 379–418. [Google Scholar]
- Iveson, S.M.; Litster, J.D.; Hapgood, K.; Ennis, B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 2001, 117, 3–39. [Google Scholar] [CrossRef]
- Mitarai, N.; Nori, F. Wet granular materials. Adv. Phys. 2006, 55, 1–45. [Google Scholar] [CrossRef]
- Nosrati, A.; Addai-Mensah, J.; Robinson, D.J. Drum agglomeration behavior of nickel laterite ore: Effect of process variables. Hydrometallurgy 2012, 125–126, 90–99. [Google Scholar] [CrossRef]
- Adam, M.; Addai-Mensah, J.; Begelhole, J.; Asamoah, R.K.; Skinner, W. The Influence of Drum Operating Parameters on Granulation and Product Attributes. Minerals 2025, 15, 224. [Google Scholar] [CrossRef]
- Chang, Z.; Niu, S.; Shen, Z.; Zou, L.; Wang, H. Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications. Int. J. Miner. Metall. Mater. 2023, 30, 1244–1260. [Google Scholar] [CrossRef]
- Scheffler, O.C.; Coetzee, C.J. Discrete Element Modelling of a Bulk Cohesive Material Discharging from a Conveyor Belt onto an Impact Plate. Minerals 2023, 13, 1501. [Google Scholar] [CrossRef]
Variable | Particle Type | ||
---|---|---|---|
Iron Ore | Coke | Flux | |
Material density (kg/m3) | 4750 | 1100 | 2800 |
Young’s modulus (MPa), E | 24.2 | 5.37 | 24.2 |
Restitution coefficient, e | 0.5 | 0.5 | 0.5 |
Static friction coefficient (pp; pw) 1 | 0.5; 0.4 | 0.5; 0.4 | 0.5; 0.4 |
Dynamic friction coefficient (pp; pw) 1 | 0.5; 0.4 | 0.5; 0.4 | 0.5; 0.4 |
Rolling friction coefficient, | 0.3 | 0.3 | 0.3 |
Contact angle (°), | 30 | 30 | 30 |
Minimum separation distance ratio, | 0.01 | 0.01 | 0.01 |
Variable | Value |
---|---|
Viscosity (Pa·s) | 0.001 |
Density (kg/m3) | 1000 |
Surface tension (N/m) | 0.072 |
Parameter | Value | |||||
---|---|---|---|---|---|---|
(mm) | 0.85 | 2 | 4 | 6.5 | 10 | 10 |
Particle size (mm) | 0.85 | 1.94 | 3.94 | 6.11 | 7.12 | 9.45 |
Coordination number, | 10.82 | 41.92 | 136.21 | 461.05 | 340.50 | 635.05 |
(1/mm2) | 0.4768 | 0.3545 | 0.2940 | 0.2903 | 0.2895 | 0.2263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moncada, M.; Henríquez, C.; Toledo, P.; Rodríguez, C.G.; Betancourt, F. Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation. Minerals 2025, 15, 1033. https://doi.org/10.3390/min15101033
Moncada M, Henríquez C, Toledo P, Rodríguez CG, Betancourt F. Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation. Minerals. 2025; 15(10):1033. https://doi.org/10.3390/min15101033
Chicago/Turabian StyleMoncada, Manuel, Carlos Henríquez, Patricio Toledo, Cristian G. Rodríguez, and Fernando Betancourt. 2025. "Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation" Minerals 15, no. 10: 1033. https://doi.org/10.3390/min15101033
APA StyleMoncada, M., Henríquez, C., Toledo, P., Rodríguez, C. G., & Betancourt, F. (2025). Study of Wet Agglomeration in Rotating Drums by the Discrete Element Method: Effect of Particle-Size Distribution on Agglomerate Formation. Minerals, 15(10), 1033. https://doi.org/10.3390/min15101033