Numerical Modelling of Aerospace Propulsion

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Aeronautics".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 112

Special Issue Editor


E-Mail Website
Guest Editor
CFD Team, Mineral Resources, CSIRO (The Commonwealth Scientific and Industrial Research Organisation), Private Bag 10, Clayton South, VIC 3169, Australia
Interests: metallurgy flows; multiphase flows; mixing flows; combustions; explosions

Special Issue Information

Dear Colleagues,

Advancements in computational technology and propellant combustion modeling are making simulations of propulsion systems for aircraft and rockets increasingly feasible. However, large-scale, detailed simulations of propulsion are necessary to provide designers with critical information about the propulsion system components early in the design process within design environments. This Special Issue, titled Numerical Modelling of Aerospace Propulsion, aims to advance numerical modeling for aerospace propulsion systems to reduce the time required to analyze these systems and facilitate more efficient propulsion designs. We are seeking research on numerical algorithms, computational fluid dynamics, efficient computational approaches, and physics-based combustion models for gas, liquid, and solid propellants in modeling propulsion. Works on numerical-aided designs and novel propulsion system designs are also welcome.

Dr. Thien Xuan Dinh
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • propulsion modelling algorithms
  • combustion modelling of gas/liquid/solid propellant
  • computational fluid dynamics for propulsion
  • numerical-aid-design propulsion
  • open-source code for propulsion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 2024 KiB  
Article
A Novel Curve-and-Surface Fitting-Based Extrapolation Method for Sub-Idle Component Characteristics of Aeroengines
by Yibo Cui, Tianhong Zhang, Zhaohui Cen, Younes Al-Younes and Elias Tsoutsanis
Aerospace 2025, 12(6), 538; https://doi.org/10.3390/aerospace12060538 (registering DOI) - 14 Jun 2025
Abstract
The component characteristics of an aeroengine below idle speed are fundamental for start-up process simulations. However, due to experimental limitations, these characteristics must be extrapolated from data above idle speed. Existing extrapolation methods often suffer from insufficient utilization of available data, reliance on [...] Read more.
The component characteristics of an aeroengine below idle speed are fundamental for start-up process simulations. However, due to experimental limitations, these characteristics must be extrapolated from data above idle speed. Existing extrapolation methods often suffer from insufficient utilization of available data, reliance on specific prior conditions, and an inability to capture unique operating modes (e.g., the stirring mode and turbine mode of compressor). To address these limitations, this study proposes a novel curve-and-surface fitting-based extrapolation method. The key innovations include: (1) extrapolating sub-idle characteristics through constrained curve/surface fitting of limited above-idle data, preserving their continuous and smooth nature; (2) transforming discontinuous isentropic efficiency into a continuous specific enthalpy change coefficient (SECC), ensuring physically meaningful extrapolation across all operating modes; (3) applying constraints during fitting to guarantee reasonable and smooth extrapolation results. Validation on a micro-turbojet engine demonstrates that the proposed method requires only conventional performance parameters (corrected flow, pressure/expansion ratio, and isentropic efficiency) above idle speed, yet successfully supports ground-starting simulations under varying inlet conditions. The results confirm that the proposed method not only overcomes the limitations of existing approaches but also demonstrates broader applicability in practical aeroengine simulations. Full article
(This article belongs to the Special Issue Numerical Modelling of Aerospace Propulsion)
Back to TopTop