Simulation and Experimental Study on Abrasive–Tool Interaction in Drag Finishing Edge Preparation
Abstract
1. Introduction
2. Establishment of the Tool Edge Preparation Simulation Model
2.1. Tool Edge Preparation Process
2.2. Establishment of the Simulation Models
2.3. Material Contact Parameters and Contact Model
3. Simulation Research and Analysis
3.1. Effects of Time and Tool Rotational Speed on the Edge Preparation Process
3.1.1. Effects of Time and Tool Rotational Speed on the Motion of the Abrasive
3.1.2. Effects of Time and Tool Rotational Speed on Contact Forces
3.1.3. Effects of Time and Tool Rotational Speed on Cumulative Energy of the Tool
3.1.4. Effects of Time and Tool Rotational Speed on Tool Wear
3.2. Effect of Rotation Direction on Abrasive Particle Motion State
3.2.1. Effects of Rotation Direction on the Motion of the Abrasive
3.2.2. Effects of Rotation Direction on Contact Forces
3.2.3. Effects of Rotation Direction on Cumulative Energy of the Tool
3.2.4. Effects of Rotation Direction on Tool Wear
4. Edge Preparation Experiments and Results
4.1. Experimental Design
4.2. Influence of Time and Tool Rotational Speed on Cutting Edge Radius
4.3. Influence of Rotation Direction on Shape Factor K
5. Conclusions and Prospects
5.1. Conclusions
- Elevated tool rotational speeds intensify abrasive motion. Increasing the speed from 90 to 180 rpm raised the average abrasive velocity from 0.0134 m/s to 0.0279 m/s. Contact forces increase with the tool’s linear velocity. Edge preparation efficiency can be enhanced by increasing the revolution radius or tool rotational speed.
- Tangential cumulative energy exhibits significantly higher growth rates than normal cumulative energy. After 2 s, tangential cumulative energy was 3–5 times greater than normal energy at equivalent tool rotational speeds, indicating that abrasive wear is the dominant material removal mechanism in tool edge preparation by DF. Tool wear increases approximately linearly with time. At 150 rpm, tool wear reached 2.11 × 10−8 mm. A further increase in tool rotational speed results in a plateau in wear volume. Thus, edge preparation efficiency can be maximized by rationally controlling the tool rotational speed.
- Edge radius increases with both tool rotational speed and time: after 30 min of processing, the radius measured 22.5 μm (60 rpm), 28 μm (90 rpm), and 30 μm (120 rpm). Rotation direction modulates shape factor K: clockwise rotation increases K through preferential rake face removal, while counterclockwise rotation decreases K via flank face dominance. This enables precise geometric control for symmetric edge preparation.
- The experimental results are consistent with the trends observed in the simulation. Edge radius increases with time at constant tool rotational speed and with tool rotational speed over fixed durations—consistent with simulated wear trends (tool wear increases with time and tool rotational speed). Similarly, K increases during clockwise rotation and decreases during counterclockwise rotation, consistent with the simulation findings (different rotation directions affect material removal effectiveness on different tool faces). These consistencies demonstrate the model’s predictive capability for parameter-dependent edge geometry evolution.
5.2. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CW | Clockwise |
| CCW | Counterclockwise |
References
- Liu, H.; Yan, Y.; Cui, J.; Geng, Y.; Sun, T.; Luo, X.; Zong, W. Recent advances in design and preparation of micro diamond cutting tools. Int. J. Extrem. Manuf. 2024, 6, 062008. [Google Scholar] [CrossRef]
- Uhlmann, E.; Oberschmidt, D.; Kuche, Y.; Loewenstein, A. Cutting edge preparation of micro milling tools. Procedia CIRP 2014, 14, 349–354. [Google Scholar] [CrossRef]
- Riu-Perdrix, G.; Valencia-Cadena, A.; Llanes, L.; Roa, J.J. Cemented carbide end-mill edge preparation using dry-electropolishing. J. Manuf. Mater. Process. 2023, 8, 28. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, M.; Zhu, Y.; Tian, Y.; Yang, M.; Gong, X.; Xu, W.; An, Y.; Li, J. Experimental investigation of edge preparation for cemented carbide profile cutting tools using flexible abrasive jet polishing. J. Manuf. Process. 2024, 131, 427–439. [Google Scholar] [CrossRef]
- Bergs, T.; Schneider, S.A.M.; Amara, M.; Ganser, P. Preparation of symmetrical and asymmetrical cutting edges on solid cutting tools using brushing tools with filament-integrated diamond grits. Procedia CIRP 2020, 93, 873–878. [Google Scholar] [CrossRef]
- Pérez-Salinas, C.F.; del Olmo, A.; López de Lacalle, L.N. Estimation of Drag Finishing Abrasive Effect for Cutting Edge Preparation in Broaching Tool. Materials 2022, 15, 5135. [Google Scholar] [CrossRef]
- Kumari, C.; Chak, S.K. Experimental studies on material removal behavior in MRAH based finishing technique. Mater. Manuf. Process. 2021, 36, 916–925. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, X.; You, K. Tool Edge Preparation Based on Gas-Solid Two-Phase Abrasive Flow. J. Inst. Eng. India Ser. C. 2023, 104, 219–230. [Google Scholar] [CrossRef]
- Hartig, J.; Kirsch, B.; Aurich, J.C. Analysis of the grinding wheel wear and machining result during cutting edge preparation with elastic bonded grinding wheels. J. Manuf. Process. 2022, 75, 181–202. [Google Scholar] [CrossRef]
- Yadav, R.N. Electro-chemical spark machining-based hybrid machining processes: Research trends and opportunities. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2019, 233, 1037–1061. [Google Scholar] [CrossRef]
- Patoprsty, B.; Vozar, M.; Pokorny, P.; Vopat, T.; Buransky, I.; Zetek, M.; Cajthamlova, S.; Laudat, V. Development of cutting edge radius size of solid carbide mills when drag finishing. In Vehicle and Automotive Engineering 3. VAE 2020. Lecture Notes in Mechanical Engineering; Jármai, K., Voith, K., Eds.; Springer: Singapore, 2021; pp. 95–100. [Google Scholar] [CrossRef]
- Wang, B.; Long, Z.; Zheng, Y.; Song, W.; Zhang, X. Comparative study on different tool edge preparation methods for cemented carbide end mills. Diam. Abras. Eng. 2024, 44, 237–243. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Shao, X.; Zhou, K.; Guo, L.; Wang, J.; Chen, H.; Lyu, B. Study on the effect of dispersed phase particle functional groups on the polishing performance of shear-thickening polishing slurry. Precis. Eng. 2025, 94, 290–302. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Lyu, B.; Lyu, J.; Wang, J.; Chen, H.; Zhao, W.; Yuan, J. Ultra-precision machining process of inner surface considering shear-thickening polishing method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2025, 239, 264–277. [Google Scholar] [CrossRef]
- Wang, X.; Bao, Z.; Wang, J.; Lyu, B.; Wang, J.; Deng, Q.; Zhao, W.; Yuan, J. Optimization Study of Shear-Thickening Polishing Technology in the Passivation Process of Spiral-Fluted Tap Edge Based on Simulation Analysis. Adv. Eng. Mater. 2025, 27, 2402476. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Lv, D. Research on Cutting Edge form Factor of Milling Tool after Drag Finishing Preparation Based on Discrete Element Method. Machines 2024, 12, 236. [Google Scholar] [CrossRef]
- Pokorny, P.; Patoprsty, B.; Vopat, T.; Peterka, J.; Vozar, M.; Simna, V. Cutting edge radius preparation. In Proceedings of the 2nd International Conference on Nanomaterials and Biomaterials (ICNB), Barcelona, Spain, 10–12 December 2018; pp. 212–218. [Google Scholar]
- Lv, D.; Wang, Y.; Yu, X.; Chen, H.; Gao, Y. Analysis of abrasives on cutting edge preparation by drag finishing. Int. J. Adv. Manuf. Technol. 2022, 119, 3583–3594. [Google Scholar] [CrossRef]
- Wang, W.; Saifullah, M.K.; Assmuth, R.; Biermann, D.; Arif, A.F.M.; Veldhuis, S.C. Effect of edge preparation technologies on cutting edge properties and tool performance. Int. J. Adv. Manuf. Technol. 2020, 106, 1823–1838. [Google Scholar] [CrossRef]
- Czarniak, P.; Szymanowski, K.; Gorski, J.; Jarosiewicz, D. Effect of the drag-finishing of cutting blades made of sintered carbides on tool life in particleboard machining. Wood Mater. Sci. Eng. 2024, 19, 868–874. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, J.; Xu, D.D.; Zhou, J.M.; M’Saoubi, R.; Zhuang, K.J. Modeling cutting edge honing process in wet abrasive jet machining. J. Manuf. Process. 2025, 152, 1275–1294. [Google Scholar] [CrossRef]
- Wei, X.; Zhuang, K.; Hu, C.; Zhu, K.; Shi, H. Analytical Prediction of Initial Wear Progress Based on a Sticking-Transition-Sliding Contact Model. Wear 2025, 582–583, 206329. [Google Scholar] [CrossRef]
- Pérez-Salinas, C.; de Lacalle, L.N.L.; Fernández-Lucio, P.; Pereira-Neto, O. Planetary Dragging Cutting Edge Treatment and Edge Rounding Prediction on Carbide Tools. In Proceedings of the XV Ibero-American Congress of Mechanical Engineering (IACME 2022), Seville, Spain, 12–15 September 2022; Vizán Idoipe, A., García Prada, J.C., Eds.; Springer: Cham, Switzerland, 2023; pp. 489–502. [Google Scholar] [CrossRef]
- Urbikain, G.; de Lacalle, L.N.L. Modelling of surface roughness in inclined milling operations with circle-segment end mills. Simul. Model. Pract. Theory 2018, 84, 161–176. [Google Scholar] [CrossRef]
- Uriarte, L.; Azcárate, S.; Herrero, A.; de Lacalle, L.N.L.; Lamikiz, A. Mechanistic modelling of the micro end milling operation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2008, 222, 23–33. [Google Scholar] [CrossRef]
- Del Olmo, A.; De Lacalle, L.L.; De Pissón, G.M.; Pérez-Salinas, C.; Ealo, J.A.; Sastoque, L.; Fernandes, M.H. Tool wear monitoring of high-speed broaching process with carbide tools to reduce production errors. Mech. Syst. Signal Process. 2022, 172, 109003. [Google Scholar] [CrossRef]
- Kwan, C.C.; Mio, H.; Chen, Y.Q.; Ding, Y.L.; Saito, F.; Papadopoulos, D.G.; Bentham, A.C.; Ghadiri, M. Analysis of the milling rate of pharmaceutical powders using the Distinct Element Method (DEM). Chem. Eng. Sci. 2005, 60, 1441–1448. [Google Scholar] [CrossRef]
- Zou, Y.; Wen, D.; Wang, Y.; Xian, M.; Zou, L. Experimental Study and EDEM Numerical Simulation of Ultrasonic Vibration Finishing. Chin. Mech. Eng. 2020, 31, 647–654, 661. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, P.; He, L.; Tao, M. Cutting edge preparation using the discrete element software EDEM. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 2250. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Jiang, Y.; Jiang, H.; Yin, M.; Sun, Z. Wear characteristics of shield cutters in sand-pebble strata based on EDEM. Chin. J. Geotech. Eng. 2024, 46, 2212–2220. (In Chinese) [Google Scholar] [CrossRef]
- Denkena, B.; Biermann, D. Cutting edge geometries. CIRP Ann. Manuf. Technol. 2014, 63, 631–653. [Google Scholar] [CrossRef]


























| Abrasive (SiC) | Milling Cutter | Mechanistic Impact | |
|---|---|---|---|
| Poisson’s ratio | 0.14 | 0.3 | Contact stress distribution. |
| Shear modulus (Pa) | 1.796 × 1011 | 2.346 × 1011 | Contact stiffness and collision force. |
| Density (kg/m3) | 3.2 × 103 | 1.27 × 104 | Particle inertia and impact energy. |
| Static friction coefficient | 0.5 | 0.5 | Sliding vs. plowing behavior. |
| Rolling friction coefficient | 0.01 | 0.01 | Particle rolling resistance. |
| Coefficient of Restitution | 0.75 | 0.5 | Collision rebound and energy loss. |
| Wear constant | 2 × 10−13 | 2 × 10−13 | Direct scaling of wear rate. |
| Tool 1 | Tool 2 | Tool 3 | |
|---|---|---|---|
| Rotation direction and duration | CCK for 2 s | CW for 1 s then CCW for 1 s | CK for 2 s |
| Tool 1 | Tool 2 | Tool 3 | |
|---|---|---|---|
| Rotation direction and duration | CW for 20 min | CW for 20 min then CCW for 10 min | CCW for 20 min |
| Dimension | K > 1 (Greater Rake Face Rounding) | K < 1 (Greater Flank Face Rounding) |
|---|---|---|
| Geometry | Edge rounds toward rake face; local rake angle more negative | Edge rounds toward flank face; rake angle remains sharp |
| Stress distribution | Spreads tensile stress along rake, lowering notch stress and chipping risk | Concentrates stress at the lip, increasing micro-crack/chip risk |
| Cutting force and friction | Slightly higher cutting forces and frictional work | Lower cutting forces and friction |
| Minimum chip thickness | Larger; more prone to plowing at small feeds | Smaller; promotes early chip formation |
| Wear/chipping resistance | Stronger, more impact-resistant edge | Less robust edge; flank wear may accelerate |
| Typical applications | Hard/brittle materials, roughing, interrupted cuts | Ductile materials, fine finishing, low-feed machining |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Yan, Y.; Fu, Y.; Zhou, L.; Wang, X. Simulation and Experimental Study on Abrasive–Tool Interaction in Drag Finishing Edge Preparation. Micromachines 2025, 16, 1113. https://doi.org/10.3390/mi16101113
Yuan J, Yan Y, Fu Y, Zhou L, Wang X. Simulation and Experimental Study on Abrasive–Tool Interaction in Drag Finishing Edge Preparation. Micromachines. 2025; 16(10):1113. https://doi.org/10.3390/mi16101113
Chicago/Turabian StyleYuan, Julong, Yuhong Yan, Youzhi Fu, Li Zhou, and Xu Wang. 2025. "Simulation and Experimental Study on Abrasive–Tool Interaction in Drag Finishing Edge Preparation" Micromachines 16, no. 10: 1113. https://doi.org/10.3390/mi16101113
APA StyleYuan, J., Yan, Y., Fu, Y., Zhou, L., & Wang, X. (2025). Simulation and Experimental Study on Abrasive–Tool Interaction in Drag Finishing Edge Preparation. Micromachines, 16(10), 1113. https://doi.org/10.3390/mi16101113

