Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,949)

Search Parameters:
Keywords = pro-inflammatory responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1676 KB  
Article
Eight Weeks of Aerobic Exercise Training Improves Fitness, Metabolic Health, Inflammation, and Intestinal Barrier Integrity in Overweight and Obese Women of Different Age Groups
by Tae-Hyung Lee, Hyung-Il Lee, Hee-Tae Roh and Su-Youn Cho
Life 2025, 15(11), 1752; https://doi.org/10.3390/life15111752 - 14 Nov 2025
Abstract
This study investigated the effects of eight weeks of aerobic exercise training on body composition, lipid profiles, organokines (leptin, irisin), inflammatory biomarkers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6]), and intestinal barrier permeability markers (zonulin, lipopolysaccharide-binding protein [LBP]) in overweight and obese women of [...] Read more.
This study investigated the effects of eight weeks of aerobic exercise training on body composition, lipid profiles, organokines (leptin, irisin), inflammatory biomarkers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6]), and intestinal barrier permeability markers (zonulin, lipopolysaccharide-binding protein [LBP]) in overweight and obese women of different age groups. We hypothesized that aerobic exercise would improve cardiorespiratory fitness, body composition, lipid metabolism, and reduce pro-inflammatory responses and intestinal permeability, and that these effects would differ between age groups. A total of 32 participants with a body mass index (BMI) ≥ 23 kg/m2 were randomly assigned to one of four groups (n = 8 per group): young exercise (YE), young control (YC), middle-aged exercise (ME), and middle-aged control (MC). The intervention consisted of treadmill running for 50 min per session, four times per week, at an intensity corresponding to 65% of the target heart rate (THR), calculated using the Karvonen formula, for a duration of eight weeks. Body composition variables included body weight, BMI, body fat mass (BFM), percentage body fat (PBF), lean body mass (LBM), and maximal oxygen uptake (VO2max). Blood samples were analyzed for lipid profiles (total cholesterol [TC], triglycerides [TG], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C]), organokines, inflammatory markers, and intestinal barrier integrity biomarkers. After the intervention, the YE and ME groups exhibited significant reductions (p < 0.05) in body weight, BMI, BFM, PBF, TC, TG, LDL-C, leptin, hs-CRP, IL-6, zonulin, and LBP. In contrast, LBM and VO2max significantly increased (p < 0.05) in both exercise groups. No significant changes were observed in irisin concentrations or HDL-C levels (p > 0.05). These results suggest that aerobic exercise training, irrespective of age, is effective in improving cardiorespiratory fitness, body composition, and lipid metabolism, while simultaneously reducing systemic inflammation and is associated with favorable changes in circulating biomarkers of intestinal barrier function in overweight and obese women. Full article
(This article belongs to the Special Issue Explore Innovative Exercise-Based Interventions for Chronic Diseases)
Show Figures

Figure 1

16 pages, 5717 KB  
Article
Targeting the Galectin Axis in Osteoarthritis: Chondroprotective Effects of Dietary and Pharmacological Phytochemicals
by Katharina M. Pichler, Selina Kottinger, Bettina Rodriguez Molina, Jürgen Alphonsus, Sebastian Schmidt, Reinhard Windhager, Herbert Kaltner, Mario Rothbauer and Stefan Toegel
Molecules 2025, 30(22), 4391; https://doi.org/10.3390/molecules30224391 - 13 Nov 2025
Abstract
Background/Objectives: Galectins contribute to the pathogenesis of osteoarthritis (OA) by amplifying inflammatory and catabolic signaling, yet targeted therapeutic approaches remain limited. Three Dimensional (3D) models offer a promising platform to study human OA pathophysiology and evaluate novel interventions. Methods: We established 3D pellet [...] Read more.
Background/Objectives: Galectins contribute to the pathogenesis of osteoarthritis (OA) by amplifying inflammatory and catabolic signaling, yet targeted therapeutic approaches remain limited. Three Dimensional (3D) models offer a promising platform to study human OA pathophysiology and evaluate novel interventions. Methods: We established 3D pellet cultures derived from human OA chondrocytes to investigate galectin-induced extracellular matrix (ECM) remodeling and the chondroprotective potential of phytochemicals. OA pellets were stimulated with individual galectins (Gal-1, -3, -4, -8) or a Gal-1/-3/-8 mixture, followed by co-treatment with Brazilin, Diacerein, Quercetin, Resveratrol, or Avocado-Soybean Unsaponifiables (ASU). Morphological, histological, biochemical, and gene expression analyses were performed to assess tissue integrity and molecular responses. Results: Galectin treatment induced pronounced pellet shrinkage, matrix depletion, and upregulation of matrix-degrading enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4), while suppressing matrix synthesis markers (COL2A1, COL1A1), highlighting their cooperative catabolic effects. Co-treatment with phytochemicals conferred differential protection: Brazilin and Diacerein most consistently preserved pellet size, reduced matrix-degrading gene expression, and attenuated pro-MMP-13 secretion. Resveratrol restored histological matrix density but failed to suppress pro-MMP-13 secretion. Notably, no phytochemical fully restored COL2A1 expression under galectin-induced stress. Conclusions: Our study identifies Brazilin, Diacerein, and Resveratrol as promising modulators of galectin-driven cartilage degeneration and demonstrates the translational potential of patient-derived chondrogenic pellets as a human-relevant platform for preclinical drug evaluation in OA. The 3D culture effectively recapitulates key aspects of OA pathophysiology and offers a robust system to advance therapeutic discovery targeting ECM remodeling. Full article
Show Figures

Figure 1

37 pages, 2059 KB  
Review
Regulation of Human Stem Cells by Functional Food Components: How Vitamins, Minerals and Phytochemicals Influence Mesenchymal Stem Cells’ Fate and Function
by Marta Kot, Patrycja Bronowicka-Adamska and Malgorzata Tyszka-Czochara
Nutrients 2025, 17(22), 3548; https://doi.org/10.3390/nu17223548 - 13 Nov 2025
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into specialized cell types, which play an important role in maintaining homeostasis and tissue regeneration in humans. The effectiveness of MSCs depends largely on their immunomodulatory properties and ability to regenerate [...] Read more.
Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into specialized cell types, which play an important role in maintaining homeostasis and tissue regeneration in humans. The effectiveness of MSCs depends largely on their immunomodulatory properties and ability to regenerate damaged tissues. Biological activity of MSCs is modulated by environmental factors, including dietary components such as vitamins, minerals, and phytochemicals which influence their proliferation, aging, inflammatory response and resistance to oxidative stress. The article aims to highlight the importance of micronutrients and phytochemicals in modulating the MSCs’ performance and therapeutic potential, with a focus on the role of bioactive food components in regulating metabolism, regenerative efficacy and protective mechanisms of stem cells. Vitamins and trace elements are essential for antioxidant protection by eliminating reactive oxygen species, maintaining mitochondrial function and preserving cell viability under stressful conditions. Micronutrients and phytochemicals can modulate the immunomodulatory activity of MSCs by altering the cytokine secretion profile, reducing pro-inflammatory mediators while enhancing anti-inflammatory factors. However, both deficiency and excessively high concentrations of natural compounds can impair stem cell function. Interdisciplinary knowledge about the impact of micronutrients on the functioning of mesenchymal stem cells creates new opportunities in personalized medicine and nutrition. Understanding the mechanisms regulating MSCs activity under the influence of diet components may contribute to the development of individualized therapeutic strategies aimed at supporting tissue regeneration, delaying aging processes, and improving the prevention and treatment of chronic diseases. This knowledge is applicable in the design of functional foods and dietary supplements, making it particularly valuable for specialists in personalized nutrition and functional food development. Full article
Show Figures

Figure 1

48 pages, 2045 KB  
Review
Beyond Hunger: The Structure, Signaling, and Systemic Roles of Ghrelin
by Hlafira Polishchuk, Krzysztof Guzik and Tomasz Kantyka
Int. J. Mol. Sci. 2025, 26(22), 10996; https://doi.org/10.3390/ijms262210996 - 13 Nov 2025
Abstract
Our understanding of Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor 1a (GHSR1a), has expanded from considering it to be a “hunger hormone” to a pleiotropic regulator of whole-body physiology. This review synthesizes the current advances spanning ghrelin biogenesis, signaling, and [...] Read more.
Our understanding of Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor 1a (GHSR1a), has expanded from considering it to be a “hunger hormone” to a pleiotropic regulator of whole-body physiology. This review synthesizes the current advances spanning ghrelin biogenesis, signaling, and systems biology. Physiologically, preproghrelin processing and O-acylation by ghrelin O-acyltransferase (GOAT) generate acyl-ghrelin, a high-potency GHSR1a agonist; des-acyl ghrelin predominates in circulation and exerts context-dependent, GHSR1a-independent, or low-potency effects, while truncated “mini-ghrelins” can act as competitive antagonists. The emergence of synthetic ligands, agonists, antagonists, and reverse-agonists has provided the necessary tools to decipher GHSR1a activity. Recent cryo-EM structures of GHSR1a with peptide and small-molecule ligands reveal a bipartite binding pocket and provide a framework for biased signaling, constitutive activity, and receptor partner selectivity. Beyond the regulation of feeding and growth-hormone release, ghrelin modulates glucose homeostasis, gastric secretion and motility, cardiovascular tone, bone remodeling, renal hemodynamics, and innate immunity. Ghrelin broadly dampens pro-inflammatory responses and promotes reparative macrophage phenotypes. In the emerging scholarship on ghrelin’s activity in the central nervous system, ghrelin has been found to influence neuroprotection, stress reactivity, and sleep architecture, and has also been implicated in depression, Alzheimer’s disease, and substance-abuse disorders. Practical and transitional aspects are also highlighted in the literature: approaches for ghrelin stabilization; recent GHSR1a agonists/antagonists and inverse agonists findings; LEAP-2-based strategies; and emerging GOAT inhibitors. Together, structural insights and pathway selectivity position the ghrelin system as a druggable axis for the management of inflammatory diseases, neuropsychiatric and addiction conditions, and for obesity treatment in the post-GLP-1 receptor agonist era. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 4105 KB  
Review
Structural and Functional Insights into Viral and Fungal Proteins Involved in Chronic Inflammation and Their Biologic Treatments
by Mohamed Halawa, Alicia L. Gallo and Valerie J. Carabetta
Pharmaceutics 2025, 17(11), 1466; https://doi.org/10.3390/pharmaceutics17111466 - 13 Nov 2025
Abstract
Chronic inflammation constitutes a significant characteristic of sustained infections caused by viral and fungal pathogens, with a strong correlation to the development of cancer, autoimmune disorders, and tissue fibrosis. Viral proteins such as HIV-1 Tat, HBV X (HBx), HPV E6/E7, and EBV LMP1 [...] Read more.
Chronic inflammation constitutes a significant characteristic of sustained infections caused by viral and fungal pathogens, with a strong correlation to the development of cancer, autoimmune disorders, and tissue fibrosis. Viral proteins such as HIV-1 Tat, HBV X (HBx), HPV E6/E7, and EBV LMP1 modulate the host’s immune signaling pathways, primarily through the activation of the NF-κB signaling cascade and the disruption of cytokine equilibrium. These molecular interactions result in a pro-inflammatory microenvironment that facilitates viral persistence, immune evasion, and the process of oncogenesis. Structural investigations have elucidated the mechanisms by which these viral proteins interact with host signaling complexes, thereby highlighting their potential as viable therapeutic targets. Similarly, fungal proteins, including secreted aspartyl proteases (Saps), ribotoxin Asp f1, and chitin-binding proteins, incite chronic inflammation by activating pattern recognition receptors and triggering inflammasome activation. Despite the limited structural information of these fungal proteins, emerging models and bioinformatic analyses identified conserved motifs that are crucial for host interactions. Biologic therapies, encompassing antiviral and antifungal peptides as well as monoclonal antibodies, are currently under development to disrupt these protein-host interactions and modulate inflammatory responses. This review provides structural and functional insight into viral and fungal inflammatory proteins and evaluates the potential of biologics as targeted therapeutic interventions for chronic inflammation associated with infections. We discuss the ongoing clinical trials involving neutralizing antibodies targeting HIV, peptide vaccines aimed at HPV and other promising molecules. Finally, we discuss the current limitations of biologics and possible solutions to translate these promising therapeutics into clinical practice. Full article
(This article belongs to the Special Issue Antibody–Drug Conjugates Therapeutics)
Show Figures

Graphical abstract

25 pages, 4735 KB  
Article
Role of Nitric Oxide and Nrf2 to Counteract Vascular Endothelial Dysfunction Induced by Periodontal Pathogens Using HUVECs
by Gunaraj Dhungana, Chethan Sampath, Vineeta Sharma, Olga Korolkova and Pandu R. Gangula
Cells 2025, 14(22), 1777; https://doi.org/10.3390/cells14221777 - 12 Nov 2025
Abstract
Background: Polybacterial infections associated with periodontitis are increasingly linked to systemic vascular complications, yet the underlying endothelial mechanisms remain unclear. This study investigated how a consortium of red-complex bacteria (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and orange complex ( [...] Read more.
Background: Polybacterial infections associated with periodontitis are increasingly linked to systemic vascular complications, yet the underlying endothelial mechanisms remain unclear. This study investigated how a consortium of red-complex bacteria (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and orange complex (Fusobacterium nucleatum) affects oxidative stress, inflammation, metabolism, and apoptosis in endothelial cells, and whether L-Sepiapterin [a tetrahydrobiopterin (BH4) precursor via salvage pathway] or bardoxolone methyl (CDDO-Me) [a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator)] could provide protection. Methods: Human umbilical vein endothelial cells (HUVECs) were infected for 12–72 h and treated with L-Sepiapterin or CDDO-Me. Nitric oxide (NO), BH4, and reactive oxygen species (ROS) levels were quantified, and mRNA expression of key genes regulating nitric oxide synthase activity, antioxidant defense, inflammation (TLR4/NF-κB, cytokines), metabolism (PI3K-AKT-PEA-15), and apoptosis (FAS–caspase pathway) was analyzed. Results: Infection markedly reduced NO and BH4, elevated ROS, activated TLR4/NF-κB and proinflammatory cytokines, disrupted PI3K/AKT signaling, and triggered endothelial apoptosis. Treatments with L-Sepiapterin and CDDO-Me restored NO bioavailability, reduced oxidative and inflammatory responses, normalized metabolic gene expression, and attenuated apoptosis, with CDDO-Me showing more promising effects. This study provides the mechanistic insight linking periodontal polybacterial infection to endothelial dysfunction and metabolic impairment such as diabetes, suggesting that redox-modulating strategies such as L-Sepiapterin and CDDO-Me may help prevent vascular damage associated with periodontal disease. Full article
(This article belongs to the Special Issue Redox Regulation by Nrf2 in Health and Disease)
Show Figures

Figure 1

26 pages, 2148 KB  
Article
Less Severe Inflammation in Cyclic GMP–AMP Synthase (cGAS)-Deficient Mice with Rabies, Impact of Mitochondrial Injury, and Gut–Brain Axis
by Pannatat Areekul, Thansita Bhunyakarnjanarat, Sakolwan Suebnuson, Kollawat Somsri, Somchanok Trakultritrung, Kris Taveethavornsawat, Tewin Tencomnao, Siwaporn Boonyasuppayakorn and Asada Leelahavanichkul
Biology 2025, 14(11), 1583; https://doi.org/10.3390/biology14111583 - 12 Nov 2025
Abstract
Activation of cGAS, a receptor recognizing cytosolic DNA, in macrophages might be associated with rabies (an RNA virus) through mitochondrial damage. A similar mortality rate was observed between cGAS-deficient (cGAS-/-) and wild-type (WT) mice post-CVS-11 strain injection. However, 2 out of 12 cGAS-/- [...] Read more.
Activation of cGAS, a receptor recognizing cytosolic DNA, in macrophages might be associated with rabies (an RNA virus) through mitochondrial damage. A similar mortality rate was observed between cGAS-deficient (cGAS-/-) and wild-type (WT) mice post-CVS-11 strain injection. However, 2 out of 12 cGAS-/- mice (but not WT) survived for 15 days post-injection. At 7 days post-infection, less severe brain inflammation in cGAS-/- mice was demonstrated by the viral abundance in the hippocampus, the expression of proinflammatory genes (TNF-α and IL-1β), and the Evans blue dye assay (blood–brain barrier defect) with the presence of higher anti-inflammatory genes (TGF-β and arginase-1). Fecal Proteobacteria was more prominent in the infected WT mice, while serum cytokines (TNF-α and IL-1β) were similar in both mouse strains. There were less prominent responses against the rabies virus in cGAS-/- macrophages than in WT cells, as indicated by supernatant IL-6 and the gene expression of TLR-3, RIG-1, MDA-5, and iNOS. On the other hand, mitochondrial injury and cGAS activation were more prominent in WT macrophages over cGAS-/- cells, as indicated by cGAS expression, supernatant cGAMP (a secondary messenger of cGAS), and mitochondrial oxidative stress (MitoSox) together with a decrease in mitochondrial DNA and maximal respiration (extracellular flux analysis). In conclusion, (i) rabies-damaged mitochondria led to cGAS activation that was less severe in cGAS-/- than in WT, (ii) rabies-induced dysbiosis was demonstrated, and (iii) cGAS manipulation and gut–brain axis-associated inflammation warrants further investigation. Full article
(This article belongs to the Special Issue The Role of Gut Microbiota in Human Metabolism and Disease)
Show Figures

Figure 1

21 pages, 1452 KB  
Review
Inflaming and Immune-Resolving: The Ambivalent Role of Eosinophils in Osteoarthritis
by Silvia Costantini, Paolo Dolzani, Veronica Panichi, Rosa Maria Borzì, Paulraj Balaji, Maria Daglia and Carla Renata Arciola
Int. J. Mol. Sci. 2025, 26(22), 10948; https://doi.org/10.3390/ijms262210948 - 12 Nov 2025
Abstract
Osteoarthritis (OA), the most prevalent form of arthropathy, is characterized by progressive degradation of cartilage, synovial inflammation, and other pathological changes that gradually affect the entire joint. Once regarded as a purely degenerative disease with minimal immune involvement, recent evidence reveals that chronic [...] Read more.
Osteoarthritis (OA), the most prevalent form of arthropathy, is characterized by progressive degradation of cartilage, synovial inflammation, and other pathological changes that gradually affect the entire joint. Once regarded as a purely degenerative disease with minimal immune involvement, recent evidence reveals that chronic low-grade inflammation, insidiously fueled by the destructive crosstalk between cartilage and synovium, plays a key role in OA pathophysiology. Among the immune cells involved, eosinophils have emerged as unexpected yet significant contributors, exhibiting both pro-inflammatory and immunoregulatory properties. Traditionally associated with allergic responses and antiparasitic defense, eosinophils can also secrete anti-inflammatory cytokines along with specialized pro-resolving lipid mediators (SPMs) that promote macrophage polarization toward reparative M2 phenotypes. Eosinophils may sustain inflammation or, conversely, act as “silent modulators” that subtly shape the immune microenvironment and support tissue homeostasis. This immunological plasticity positions them at the intersection of joint damage and repair. This article explores emerging evidence on eosinophil activity in OA, emphasizing their dual nature and potential as therapeutic targets to shift the joint milieu from a pro-inflammatory state toward resolution. Understanding eosinophil-mediated pathways may pave the way for novel strategies to reduce synovial inflammation, preserve cartilage integrity, and improve clinical outcomes. Full article
(This article belongs to the Special Issue Elucidating How Chondrocytes Maintain Cartilage Stability)
Show Figures

Figure 1

15 pages, 1340 KB  
Review
Neuroinflammation as a Novel Therapeutic Frontier for Sanfilippo Syndrome
by Donato Rigante and Chiara Veredice
Children 2025, 12(11), 1530; https://doi.org/10.3390/children12111530 - 12 Nov 2025
Abstract
Glycosaminoglycans (GAGs), also named ‘mucopolysaccharides’, are nodal constituents of the connective tissue matrix which go through synthesis, demolition, and reconstruction within several cellular structures: an abnormal GAG catabolism is the basis of progressive intra-lysosomal accumulation of non-metabolized GAGs, defining all mucopolysaccharidoses (MPS), protean [...] Read more.
Glycosaminoglycans (GAGs), also named ‘mucopolysaccharides’, are nodal constituents of the connective tissue matrix which go through synthesis, demolition, and reconstruction within several cellular structures: an abnormal GAG catabolism is the basis of progressive intra-lysosomal accumulation of non-metabolized GAGs, defining all mucopolysaccharidoses (MPS), protean disorders characterized by physical abnormalities and multi-organ failure depending on the specific site of non-renewable GAGs stored. A severe cognitive decline is typically observed in the Sanfilippo syndrome, which corresponds to MPS type III, a group of four inherited neurodegenerative diseases resulting from the lack of specific enzymes involved in heparan sulfate (HS) metabolism. As a consequence, the storage of partially degraded HS fragments within lysosomes of the central nervous system elicits chain inflammatory reactions involving the NLRP3-inflammasome in microglia and astrocytes, which cease their homeostatic and immune functions and finally compromise neuron survival. This article provides an overview of the neuroinflammatory picture observed in children with MPS type III, postulating a role of HS accumulation to prime innate immunity responses which culminate with pro-inflammatory cytokine release in the brain and highlighting the relevance of interleukin-1 as a main contributor to neuroinflammation. Full article
Show Figures

Figure 1

19 pages, 8725 KB  
Article
Postbiotics from Lacticaseibacillus rhamnosus IOB820 Combat Obesity in HFD Mice by Modulating Gut Microbiota and Enhancing SCFA Production
by Xiaomin Feng, Hanlu Li, Jianxia Tian, Xuemei Han, Wu Liang, Feiliang Zhong and Xuegang Luo
Nutrients 2025, 17(22), 3525; https://doi.org/10.3390/nu17223525 - 11 Nov 2025
Viewed by 100
Abstract
Aims: To evaluate whether Lacticaseibacillus rhamnosus (L. rhamnosus) IOB820 and its postbiotics can combat high-fat diet (HFD)-induced obesity, improve metabolic parameters, and modulate gut microbiota and systemic inflammation in a mouse model. Methods: Seventy 4-week-old male C57BL/6J mice were divided into [...] Read more.
Aims: To evaluate whether Lacticaseibacillus rhamnosus (L. rhamnosus) IOB820 and its postbiotics can combat high-fat diet (HFD)-induced obesity, improve metabolic parameters, and modulate gut microbiota and systemic inflammation in a mouse model. Methods: Seventy 4-week-old male C57BL/6J mice were divided into a normal diet group, an HFD control group, two postbiotic dose groups, two live bacteria dose groups, and an orlistat control group. After 10 weeks of intervention with live L. rhamnosus IOB820 or its postbiotics, body weight, metabolic parameters (blood glucose, lipid profile, hepatic steatosis), pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-10), gut microbiota composition (α, β diversity and taxonomic shifts), and fecal short-chain fatty acid (SCFA) levels were assessed. Results: Both live L. rhamnosus IOB820 and its postbiotics significantly alleviated HFD-induced weight gain and improved metabolic outcomes. The treatments also reduced systemic inflammation, as indicated by decreased levels of TNF-α, IL-6, and IL-1β and elevated IL-10. These effects were accompanied by restoration of gut microbial diversity, enrichment of beneficial taxa, and increased fecal SCFA concentrations. Conclusions: L. rhamnosus IOB820 and its postbiotics effectively mitigate obesity and related metabolic disturbances in HFD-fed mice. Their beneficial effects are likely mediated through modulation of gut microbiota composition and enhancement of SCFA-driven anti-inflammatory responses. Full article
(This article belongs to the Special Issue Fermented Foods and Health Modulation)
Show Figures

Figure 1

21 pages, 4203 KB  
Article
Rv1899c, an HDAC1–ZBTB25-Interacting Protein of Mycobacterium tuberculosis, Promotes Stress Resistance and Immune Evasion in Infected Macrophages
by Arjun M. Menon, Boinapalli Gopichand, Shwetha Susan Thomas, Kuniyil Abhinand, Bipin G. Nair, Geetha B. Kumar, Pradeesh Babu, KB Arun, Lekshmi K. Edison and Aravind Madhavan
Int. J. Mol. Sci. 2025, 26(22), 10872; https://doi.org/10.3390/ijms262210872 - 9 Nov 2025
Viewed by 174
Abstract
Rv1899c, a previously identified HDAC1–ZBTB25-interacting protein of Mycobacterium tuberculosis, plays a crucial role in bacterial adaptation and immune modulation. Recombinant M. smegmatis-expressing Rv1899c (MS_ Rv1899c) showed enhanced survival under acidic and oxidative stress compared to vector controls, along with improved [...] Read more.
Rv1899c, a previously identified HDAC1–ZBTB25-interacting protein of Mycobacterium tuberculosis, plays a crucial role in bacterial adaptation and immune modulation. Recombinant M. smegmatis-expressing Rv1899c (MS_ Rv1899c) showed enhanced survival under acidic and oxidative stress compared to vector controls, along with improved early intracellular growth in THP1-derived macrophages. This was accompanied by reduced reactive oxygen species (ROS), diminished cytokines associated with inflammation and downregulation of autophagy proteins ATG5, Beclin, and LC3, which ultimately skewed the immune response, suppressing the pro-inflammatory M1 macrophage population. Targeting Rv1899c with 3-aminobenzamide (3-AB) impaired intracellular bacterial survival and restored IL-12B expression, while its combination with the HDAC inhibitor C1994 significantly enhanced bacterial clearance. Structural modelling confirmed the high stereochemical quality of the Rv1899c macrodomain, and computational studies identified 3-AB as the strongest ligand (−5.75 kcal/mol), stabilized through hydrogen bonding and hydrophobic interactions with key residues. Molecular dynamics simulations conducted for 200 ns demonstrated stable protein–ligand interactions with consistent parameters, while MM/GBSA analysis indicated favourable binding energy (ΔG_bind = −6.6 kcal/mol), largely influenced by van der Waals and electrostatic forces. Together, these findings highlight Rv1899c as a mediator of stress resistance and immune evasion and propose it as a potential therapeutic target against M. tuberculosis. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction, 6th Edition)
Show Figures

Figure 1

16 pages, 1689 KB  
Article
Dual Roles of CD147 in Regulating THP-1 Monocyte Migration and MCP-1-Induced Inflammatory Responses
by Nutjeera Intasai, Kanokporn Sornsuwan, On-anong Juntit, Thanathat Pamonsupornwichit, Kanyarat Thongheang, Phatcharida Jantaree and Chatchai Tayapiwatana
Int. J. Mol. Sci. 2025, 26(22), 10850; https://doi.org/10.3390/ijms262210850 - 8 Nov 2025
Viewed by 222
Abstract
Cluster of Differentiation (CD) 147, a transmembrane glycoprotein, plays a critical role in monocyte function by regulating invasion, migration and cytokine production. This study explored the impact of CD147 on monocyte chemotaxis and inflammatory responses following monocyte chemoattractant protein-1 (MCP-1) modulation using CD147 [...] Read more.
Cluster of Differentiation (CD) 147, a transmembrane glycoprotein, plays a critical role in monocyte function by regulating invasion, migration and cytokine production. This study explored the impact of CD147 on monocyte chemotaxis and inflammatory responses following monocyte chemoattractant protein-1 (MCP-1) modulation using CD147 knockout (CD147KO) THP-1 monocytes. CD147KO THP-1 cells exhibited significantly enhanced migration towards MCP-1 and chemoattractants secreted by MDA-MB-231 breast cancer cells compared to wild-type (WT) THP-1 cells, while surface expression of the adhesion molecule CD44 remained unchanged. Despite their increased migration, CD147KO cells showed no significant differences in CC chemokine receptor type 1 (CC1) or CC chemokine receptor type 2 (CCR2) protein expression. Upon MCP-1 stimulation, CD147KO THP-1 monocytes exhibited elevated mRNA expression of interleukin (IL)-6 and IL-10, accompanied by a reduction in tumor necrosis factor alpha (TNF-α) at higher MCP-1 concentrations. IL-6 upregulation in CD147KO THP-1 monocytes appears to be a candidate mediator of their enhanced migratory capacity. In summary, this study highlights the dual role of CD147 as a potential checkpoint in regulating THP-1 monocyte migration, with its function varying depending on the context and microenvironment. Additionally, CD147KO THP-1 monocytes exhibited a shift in the balance between pro- and anti-inflammatory cytokine responses. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 4109 KB  
Article
Modulation of AMPK/NLRP3 Signaling Mitigates Radiation-Induced Lung Inflammation by a Synthetic Lipoxin A4 Analogue
by Sun Ho Min, Jae-Ho Shin, Sunjoo Park, Ronglan Cui, Youn Ji Hur, Woo Hyun Jeong, Sang Yeon Kim, Younghwa Na and Jaeho Cho
Int. J. Mol. Sci. 2025, 26(22), 10832; https://doi.org/10.3390/ijms262210832 - 7 Nov 2025
Viewed by 221
Abstract
Radiation-induced lung inflammation (RILI) is a major complication of thoracic radiotherapy, characterized by excessive inflammation and subsequent fibrosis that compromise pulmonary function and treatment outcomes. This study explores the pharmacological properties of a newly synthesized Lipoxin A4 analogue (CYNC-2) to mitigate RILI by [...] Read more.
Radiation-induced lung inflammation (RILI) is a major complication of thoracic radiotherapy, characterized by excessive inflammation and subsequent fibrosis that compromise pulmonary function and treatment outcomes. This study explores the pharmacological properties of a newly synthesized Lipoxin A4 analogue (CYNC-2) to mitigate RILI by modulating the AMP-activated protein kinase (AMPK)/NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome pathway. A murine RILI model was established in mice by delivering a single high-dose (ablative) X-ray irradiation to the left lung. Mice in the treatment group received CYNC-2 via tail-vein injection three times per week for 2 weeks. The effects of CYNC-2 on RILI were evaluated histological, immunohistochemical analysis of lung tissues, cytokine profiling, lung function testing using a FlexiVent system, and micro-computed tomography (micro-CT) imaging of lung damage. In parallel, two human lung cell lines—L132 (normal bronchial epithelial cells) and A549 (lung carcinoma cells)—were irradiated with 6 Gy X-rays and treated with CYNC-2 to assess cell viability and changes in AMPK/NLRP3 pathway markers via qPCR and immunofluorescence. Lung tissue sample from patients who underwent thoracic radiotherapy were also examined to validate key findings. CYNC-2 activated AMPK and inhibited mTOR signaling, which suppressed NLRP3 inflammasome activation and led to reduced secretion of pro-inflammatory cytokines (IL-1β, IL-6, and TGF-β1). In vitro, CYNC-2 mitigated radiation-induced inflammatory responses and preserved cellular viability. Overall, CYNC-2 effectively dampened acute pulmonary in the RILI model. These findings suggest that targeting the AMPK/NLRP3 inflammasome pathway via a stable LXA4 analogue such as CYNC-2 is a promising therapeutic strategy to improve clinical outcomes for patients receiving thoracic radiation therapy. Full article
Show Figures

Figure 1

17 pages, 651 KB  
Article
Biological Mechanisms of Pain Management in Lumbar Disk Herniation: Focus on Cytokine Correlations and Therapeutic Approaches
by Karla Rožac, Anita Matić, Dino Budrovac, Dijana Hnatešen, Ivan Radoš, Kristina Kralik, Martina Smolić and Tanja Kovač Lukić
Int. J. Mol. Sci. 2025, 26(22), 10830; https://doi.org/10.3390/ijms262210830 - 7 Nov 2025
Viewed by 520
Abstract
Lumbar disk herniation is a common cause of pain in people older than 30, often associated with workload, where the therapeutic approach includes different methods of treatment; therefore, the aim of the study was to inspect the effectiveness of different methods of treating [...] Read more.
Lumbar disk herniation is a common cause of pain in people older than 30, often associated with workload, where the therapeutic approach includes different methods of treatment; therefore, the aim of the study was to inspect the effectiveness of different methods of treating pain caused by lumbar disk herniation in relation to pro-inflammatory and anti-inflammatory parameters before and after two weeks of therapy. There were twenty-eight participants with a diagnosis confirmed by a specialist who also assigned the participant to a clinically appropriate type of treatment. Pain and disability were assessed using the SF-MPQ and ODI (Title: Immune Response During the Conservative and Minimal Invasive Treatment of Pain Caused by Lumbar Disc Herniation, Clinical Trials Number (NCT06545812), Initial Release 23 July 2024, Last Release 27 August 2025). In addition to the above questionnaires, serum samples were collected before and after therapy for analysis of inflammatory biomarkers. Although there was no statistically significant difference, the tendency of decreases in IL-1 beta and IL-8 in the median levels (interquartile range) was observed after conservative treatment. The results indicate role of inflammatory mechanisms in the treatment of disk herniation and support the benefits of a conservative approach through the regulation of pain, disability, and cytokine activity. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Intervertebral Disc Disease)
Show Figures

Figure 1

20 pages, 5526 KB  
Article
Staphylococcus aureus Mastitis: A Time-Course Transcriptome of Immune Activation in Small-Tailed Han Sheep
by Xiaoli Zhang, Li Wang, Wenzhe Chen, Xiaoyu Song, Meng Wang, Xiaojun Ma, Lijiao Yan and Chuan Wang
Pathogens 2025, 14(11), 1133; https://doi.org/10.3390/pathogens14111133 - 7 Nov 2025
Viewed by 293
Abstract
Mastitis is a common mammary gland disease in mammals that severely impairs lactation function, with Staphylococcus aureus (S. aureus) being the primary pathogenic bacterium. However, the molecular mechanisms underlying S. aureus-induced mastitis in sheep remain incompletely elucidated. This study employed [...] Read more.
Mastitis is a common mammary gland disease in mammals that severely impairs lactation function, with Staphylococcus aureus (S. aureus) being the primary pathogenic bacterium. However, the molecular mechanisms underlying S. aureus-induced mastitis in sheep remain incompletely elucidated. This study employed RNA sequencing (RNA-SEq) technology to systematically analyze the dynamic transcriptomic characteristics of mammary tissue in small-tailed sheep (SHT) after S. aureus infection, aiming to clarify the molecular regulatory mechanism of the host immune response and its relationship with the occurrence of mastitis. Twelve lactating STH were selected to establish an S. aureus-induced mastitis model. Blood, milk, and tissue samples were collected at 0, 24, 48, and 72 h post-infection (hpi). The infected sheep exhibited typical mastitis symptoms, including exacerbated breast swelling, reduced milk yield, elevated udder temperature, and darker, more viscous milk. Hematoxylin–eosin (HE) staining revealed significant pathological changes over time, such as stromal hyperplasia, extensive inflammatory cell infiltration, severe necrosis and sloughing of mammary epithelial cells, and compromised tissue integrity. RNA-Seq analysis identified 1299 differentially expressed genes (DEGs), among which 75 core genes maintained stable expression throughout the infection time (24 hpi, 48 hpi, and 72 hpi). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were associated with metabolic processes, protein binding, Toll-like receptor signaling, and the NF-κB pathway. The PPI network analysis identified core hub genes including PTK2B, STAT3, and JAK1/3, providing critical evidence for therapeutic target screening. Furthermore, qPCR verification indicated that the expressions of innate immune receptors TLR2, TLR4, TLR7, and TLR10, as well as pro-inflammatory factors IL-1β, IL-16, TNF-α, type I interferon (IFN-α), and nuclear transcription factor NF-κB were significantly upregulated in a time-dependent manner (p < 0.05). In conclusion, this study delineated the dynamic response of ovine mammary tissue to S. aureus infection, systematically elucidated temporal gene expression patterns, and revealed the molecular mechanisms underlying the tissue’s initial defense against inflammatory challenges. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

Back to TopTop